Firmware for Embedded
Computing

/} National Chiao Tung

University

;4 Chun-Jen Tsai

3/10/2011

Define “Firmware”

Q Firmware Is a computer program that is embedded in a
hardware device, for example a microcontroller. It can
also be provided on flash ROMs or as a binary image
file that can be uploaded onto existing hardware by a
usert,

Q Firmware is stored on non-volatile solid-state memory

Q Typical functions of a firmware:

Booting and running a system (a board or a chip)
Providing basic I/O services

Providing debugging services

Providing backdoor for system recovery/maintenance

T www.wikipedia.org
— Chun-Jen Tsai, CS, NCTU, 2010 — 2/42

Recursive System Layout

Q A typical system printed circuit board (PCB):

N

PCB

SDRAM:
v Operating Systems
v" Applications

N~

OS

boot Image
(may be on

Flash)

N

ROM: I/O Device ICs
System bootcode (analog)
| |

|
< System BUS

|
McU 4 IC (SoC)
RISC 110
Processor | | — Device RISC
Core o IPs Core
o (digital)
=
cache g Onchip
%) Onchip bootcode
bootcode
Onchip .
Onchip
SRAM \/ S

/\

SN4d [ed307]

<

Custom
Accelerator
Logic (IP)

>

— Chun-Jen Tsai, CS, NCTU, 2010 —

3/42

Board-level vs. Chip-level Firmware

Q Typical examples:
m Board-level: BIOS, bootloader, debug agent, etc.

m Chip-level: microcontroller codes for an MPEG codec chip,
USB controller chip, etc.

a Firmware code size:
m Board-level: ranges from several KB to several MB
m Chip-level: as small as possible to reduce cost

—Chun-Jen Tsai, CS, NCTU, 2010 — 4/42

Board-level Firmware and OS

Q There is a lot of similarity between board-level
firmware and an operating system (OS)
m Provides I/O interfaces for (application) program
m Loads and executes program images
m Helps program development

Q In the good old days, the entire OS of a computer can
be a firmware (e.g. Apple II)

d Today, more and more consumer electronics have a
firmware-based OS (e.g. mobile phones, PDAS)

—Chun-Jen Tsai, CS, NCTU, 2010 — 5/42

Operating Systems Components

Q Process Management
m Who gets to use the CPU?

d Memory Management
m \Who gets to use the runtime memory?

Q File System
m How to retrieve/store data?

Q 1/O (Sub)-system

m How to talk to the peripherals?
m Can be part of the file system (e.g. Unix)

Q Graphics (Multimedia), Windowing, and Events
Subsystem

—Chun-Jen Tsai, CS, NCTU, 2010 — 6/42

Typical Architecture of an OS

user applications

!

OS libraries

: user space

system call interface

kernel space

A

v

process manager

Inter-process
memory manager

A
v
file system < .
I bufferfontr0| scheduler
\ 4
device drivers

|

hardware abstraction layer (HAL)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
. . !
communication E
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

peripherals

hardware

—Chun-Jen Tsai, CS, NCTU, 2010 — 7/42

Can We Get away with "OS™?

Q There are two kinds of tasks a typical embedded
system runs:
m Background operations:
e Runs the main application of the embedded system
o Handling routine (synchronous) tasks
o Usually called task level
m Foreground operations:

o Handling asynchronous events
o Usually called interrupt level

—Chun-Jen Tsai, CS, NCTU, 2010 — 8/42

Foreground/Background Systems

Background Foreground
v
code
execution
ISRT
> -
3
< D
. ISR ISR
4 .
.) | |

T ISR stands for Interrupt Service Routine
— Chun-Jen Tsai, CS, NCTU, 2010 —

9/42

F/B System vs. Full OS

aQ Why do we need an OS for embedded systems?
m Handling complex scheduling problems for background tasks
m Reduced development cost for a family of product
m Easy extensibility (for new hardware)
m Support for third party applications
m Have someone to blame if things don't work ... (e.g. Microsoft)

A In general, a firmware-based F/B system should be
good enough for most embedded devices

—Chun-Jen Tsai, CS, NCTU, 2010 — 10/42

Industrial Firmware Example: AFS

Q Firmware are typically custom-designed for each
embedded systems

m However, many firmware codes can be recycled for different
applications/projects

A The ARM Firmware Suite (AFS) is a collection of
libraries and utilities designed as an aid to application
and OS development on ARM-based platformst

T AFS is free as long as it is used for ARM-based platforms!

—Chun-Jen Tsai, CS, NCTU, 2010 — 11/42

AFS Components

a pHAL libraries:
The ARM Hardware Abstraction Layer; the basis of AFS

Q Flash library and utilities:
Library and utilities for programming on board flash memory
ad Angel:
A remote debugging monitor for ADS
Q uC/OS-ll:
AFS includes a port of the multitasking kernel, pC/OS II, using
UHAL API
O Additional libraries:
Libraries for specialized hardware, (e.g. PCI bus, Vector
Floating Point), exception handling, and compression
O Additional components:

Including a boot monitor, generic applications, and board-
specific applications

—Chun-Jen Tsai, CS, NCTU, 2010 — 12/42

Logical Organization of AFS

A AFS also shields the hardware detall from user
applications, however, it is much thinner than an OS

User applications

AFS utilities

C and C++ libraries

AFS board-specific uHAL routines

AFS support
routines

Development Board

—Chun-Jen Tsai, CS, NCTU, 2010 —

A

v

General

Specific

13/42

LUHAL

A The uHAL libraries mask hardware differences
between platforms by providing a standard layer of
board-dependent functions

d Example of pHAL functions:

System (processor, memory, and buses) initialization
Serial ports initialization

Generic timers

Generic LEDs

Interrupt control

Code/data access in flash memory

Memory management (cache and MMU)

—Chun-Jen Tsai, CS, NCTU, 2010 — 14/42

Example: Using uHAL (1/2)

Q Getting Board Information:

I nf oType pl atformnl nf o;

/* who are we? */
UHALr Get Pl at f or m nf o(&pl at f or m nf 0) ;

UHALr _printf("cpu ID :0x%8X\n", platform nfo.cpuld);

UHALr printf("platformlId :0x%®8X\n", platform nfo.platformd);
UHALr printf("nmenory Size :0x%®08X\n", platforn nfo.nentize);

d LEDs Control:

I nt idx;
int count = uHALr _InitLEDs(); /* turn off all the LEDs

for (idx = 0; idx < count; idx++) uHALr_ Set LED(i dx);

*/

—Chun-Jen Tsai, CS, NCTU, 2010 —

15/42

Example: Using uHAL (2/2)

A Installing a Timer:

static int OSTick = O;
voi d TickTinmer(unsigned int irq) { OSTi ck++; }

int main(int argc, char *argv[])

{
UHALr Initlnterrupts(); /* Install trap handlers */

UHALr I nitTinmers(); [* Initialize the tinmers */

UHALr _printf("Timer init\n");
I f (uHALr _Request Systenili ner (Ti ckTinmer, "test") <= 0)

{
}

UHALr Install SystenmTiner(); /* Enable the interrupt */

UHALr _printf ("Timer/1 RQ busy\n");

[* Get the interval per tick */
I nterval = uHALir_GCet Systeniinerlnterval ();

—Chun-Jen Tsai, CS, NCTU, 2010 — 16/42

Firmware Operation Modes

ad An embedded system application operates in one of
two modes:

m Standalone:

A standalone application is one that has complete control of
the system from boot time onwards

m Semihosted:
A semihosted application is one for which an application or
debug agent, such as Angel or Multi-ICE, provides or
simulates facilities that do not exist on the target system

UHALr _Set LED(0) ;

#i f def SEM HOSTED
/* Al'l done, give sem hosted a chance to break in .. */
UHALr printf("Press a key to repeat the test.\n");
UHALr get char();

#endi f

—Chun-Jen Tsai, CS, NCTU, 2010 — 17/42

Typical Firmware Images

Q A typical prototype board with AFS

p
User TTTTTTTTTTTTTTTTmmmmmm e System-dependent
flash | | Userapplication hardware .
Debug Agent : _
. : Switches
Default application ' LEDs
AFSin) | (e.g:bootmoniton) x) 110
boot flash Boot switcher . Serial port
N I
Flash memory
Development board

—Chun-Jen Tsai, CS, NCTU, 2010 —

18/42

Weakness of Thin Firmware

Q A system build upon a thin firmware, such as AFS,
has the following weaknesses:

m Can only implement F/B systems: no multithreading for the
applications

m No device driver model: adding new hardware requires
extension of system call API

m Selection of different applications can only be done via boot
switcher

—Chun-Jen Tsai, CS, NCTU, 2010 — 19/42

Deeply-Embedded OS

O Sometimes, we need a little extra functions In the
firmware to implement a powerful F/B systems

Multi-threading for the background task (but still allowing
only single process)

Installable device drivers (the “installation” may happen
before the build time)

Componentized model for building a custom system
More flexible foreground task management
Remains small (otherwise, we can use a full-blown OS)

—Chun-Jen Tsai, CS, NCTU, 2010 — 20/42

eCos: A Deeply Embedded OS

d eCos stands for Embedded Configurable Operating
System

d eCos is an “application-oriented” OS: The OS can be
configured for a specific application/platform
combination (e.g. digital security camera)

Q eCos is something between a “full” OS and a thin
firmware

—Chun-Jen Tsai, CS, NCTU, 2010 — 21/42

eCos Features (1/2)

d Embedded Configurable Operating System
Developed and maintained by RedHat

Not Linux-based

Under eCos license (similar to GPL)

Current version 2.0

Minimum footprint : about 50 Kbytes

Single address space for all threads

Real-time support

—Chun-Jen Tsai, CS, NCTU, 2010 —

22/42

eCos Features (2/2)

O eCos Is different from other Embedded OS

Dynamic memory management is not part of the kernel
Device drivers are handled as “packages” as well

eCos kernel is an “optional” package of the OS. It is only
required when multi-threading support is required for the
application

eCos is linked with the user application as a single runtime
Image!

—Chun-Jen Tsai, CS, NCTU, 2010 — 23/42

“Open” Embedded OS Spectrum?

GNU
Server Platforms | “ommunication |Cjlient Platforms
Infrastructure o
Thin clients Deeply embedded

* Internet

- File Server * Routers STB HH OA Mobile Pager
N * Filters)
R I

Linux :_ : eCos

Embecided Linux AFS

T http://sources.redhat.com/elix/presentation/esc-west99

—Chun-Jen Tsai, CS, NCTU, 2010 —

24/42

eCos Supported Hardware

d Architectures:

m ARM, CalmRISC, FR-V, H8, IA32, M68K, Matsushita AM3x, MIPS,
NEC V8xx, PowerPC, SPARC (Leon), SuperH

a Devices:
m Flash: AMD, ATMEL, Intel, Sharp

m Ethernet: AMD, Cirrus Logic, Intel, Motorola, Natioanl
Semiconductor, SMSC, VIA

m Seriel: Motorola, 1655x, 8250
m USB: Intel SA-11x0 on-chip, NEC uPD985xx on-chip
m RTC: DS-1742

Q See http://sources.redhat.com/ecos/hardware.html for a
complete list of the supported platforms

—Chun-Jen Tsai, CS, NCTU, 2010 — 25/42

Componentized Build Environment

ad eCos components required for a custom build can be

selected using a GUI build tool

i+ untitled® - eCos Configuration Tool
File Edit Wiew Build Tools Help

=10l x|

C3 Redboot for AEM optinns

(23 (obal build aptions

3 Redboot HAL options

2r ARM Evaluator-7T FLASH memary support

"-E"; AMD AM2OHEEEH FLARH memory support
“%u e T 39VF400 FLASH memons support

4 eCos HAL

B 110 sub-systermn

4 Serial device drivers

 Infrastructurs

4 eCos kernel

‘{E‘g' Dyvmamde memory allocation

5 180 C and POSTE infrastroctore

4 180 C library

4 Math Libaary

Y Wallclock device

*ﬁ' Common error code support

curreit
current
current
current
current
current
current
curreint
current
current
current
current
curreit
current

Property | Value

URL reffecosref.html

1 |

The root node for all configurable items

=

Ready

|No conflicts 2

—Chun-Jen Tsai, CS, NCTU, 2010 —

26/42

Typical eCos Usage

Q Typical eCos board-level Image (could be for chip-
level bootcode as well)

.
User User application ﬁgrsésvrg;gependent
flash (linked with eCos image)

<« Switches
\ ' LEDs
RedBoot o
boot flash< |(bootloader + debug agent) , Serial port
. Ethernet
\ Accelerator

Flash memory Development board

—Chun-Jen Tsai, CS, NCTU, 2010 — 27142

RedBoot — the Boot Loader for eCos

O RedBoot -- RedHat embedded debug and bootstrap loader
Based on eCos HAL

Support boot scripting

Simple command line interface

Support flash & network booting of OS

Support BOOTP, DHCP

Support TFTP, X/Y-modem for program download

Support GDB for remote debugging via serial or Ethernet
connections

O Source code:
m http://sources.redhat.com/redboot/

—Chun-Jen Tsai, CS, NCTU, 2010 — 28/42

eCos Kernel

Q Support multi-threading embedded applications:

m The ability to create new threads in the system, either during
startup or when the system is already running

m Control over the various threads in the system, for example
manipulating their priorities

m A choice of schedulers, determining which thread should currently
be running

m A range of synchronization primitives, allowing threads to interact
and share data safely

m Integration with the system’s support for interrupts and exceptions

—Chun-Jen Tsai, CS, NCTU, 2010 — 29/42

eCos Kernel Is Optional

Q For simple foreground/background (F/B) systems, the
eCos kernel package can be skipped

m /B applications have a central polling loop, continually
checking all devices and taking appropriate action when 1/O
OCCUrs

m RedBoot is one of such eCos applications

o However, RedBoot with network support includes the kernel
since the TCP/IP stack uses multithreading internally

—Chun-Jen Tsai, CS, NCTU, 2010 — 30/42

eCos Schedulers

Q eCos support two types of task scheduler
m Bitmap scheduler
m Multi-level queue (MLQ) scheduler

A The number of priority levels is configurable -- the
default is 32

Q Low priority thread only runs if all higher priority
threads are blocked

—Chun-Jen Tsai, CS, NCTU, 2010 — 31/42

Bitmap Scheduler

Q Only allows one thread per priority level, so if the
system is configured with 32 priority levels then it is
limited to only 32 threads

Q Bitmaps can be used to keep track of which threads
are currently runnable, waiting on a mutex, or other
synchronization primitive

Q Bitmap scheduler is fast and totally deterministic

a Does not support SMP and priority inversion
prevention

—Chun-Jen Tsai, CS, NCTU, 2010 — 32/42

MLQ Scheduler

A The MLQ scheduler allows multiple threads to run at
the same priority
m Each priority level maintains a queue of threads
m Timeslicing is used among threads in same priority queue
m Timeslicing can be enabled/disabled at kernel build time

Q Operation of finding the highest priority queue with
runnable thread Is expensive

m Default behavior is LIFO, which does not guarantee highest
priority queue will be examined next; in this case MLQ is
only used to increase the number of simultaneous threads

m MLQ scheduler also support strict priority queuing but the
system’s dispatch latency is worse

—Chun-Jen Tsai, CS, NCTU, 2010 — 33/42

eCos Synchronization Primitives

d Mutexes

a Condition variables

ad Counting semaphores

Q Mail boxes

A Event flags (binary semaphores)

—Chun-Jen Tsai, CS, NCTU, 2010 —

34/42

Sync. Support in Device Drivers

ad The eCos common HAL package provides its own
device driver APl which contains some of the above
synchronization primitives

Q If the configuration includes the eCos kernel package
then the driver API routines map directly onto the
equivalent kernel routines

Q If the kernel package is not included and the
application consists of just a simple F/B system then
the driver APl Is implemented entirely within the
common HAL

—Chun-Jen Tsai, CS, NCTU, 2010 — 35/42

Interrupt Handling

Q Kernel uses a two-level approach to interrupt
handling:

m Associated with every interrupt vector is an Interrupt Service
Routine or ISR, which will run as quickly as possible

m However an ISR can make only a small number of kernel
calls, and it cannot make any call that would cause a thread
to wake up

m If an ISR detects that an I/O operation has completed it can
cause the associated Deferred Service Routine (DSR) to run

and make more kernel calls, for example, to signal a
condition variable or post to a semaphore

—Chun-Jen Tsai, CS, NCTU, 2010 — 36/42

Interrupt Translation?

A eCos translates different interrupt jump table
mechanisms to a common approach

A Each hardware vector executes a trampoline code
that makes an indirect jump via a table to the actual
handler called the Vector Service Routine (VSR)

d The trampoline code performs the absolute minimum
processing to identify the exception source, and jump
to the VSR

A The VSR is responsible for saving the CPU state and
handle the exception or interrupt

T eCos reference manual, p.188
— Chun-Jen Tsai, CS, NCTU, 2010 — 37/42

eCos HAL & Kernel

Application Application Application | .
I N A N ' Thread
Dev Drv || Dev Drv
I I DSR
HAL - -» Kernel (optional) ISR
Hardware
— Chun-Jen Tsai, CS, NCTU, 2010 — 38/42

eCos HAL Principles

Q eCos kernel itself is largely implemented in C++, but
the HAL is implemented in C and assembly to
enforce portability

m All interfaces to the HAL are implemented by CPP macros

Qd The HAL provides simple, portable mechanisms for
dealing with the hardware of a wide range of
architectures and platforms

—Chun-Jen Tsai, CS, NCTU, 2010 — 39/42

HAL Structure (1/2)

0 Common HAL

m Generic debugging functionality, driver API, eCos/ROM
monitor calling interface, and tests.

d Architecture HAL

m Architecture specific debugger functionality
m Exception/interrupt vector definitions and handlers
m Cache definition and control macros
m Context switching code

m Assembler functions for early system initialization
m Configuration options

—Chun-Jen Tsai, CS, NCTU, 2010 — 40/42

HAL Structure (2/2)

d Variant HAL

m Extensions to the architecture code (cache, exception/interrupt)

Configuration options
Drivers for variant on-core devices

d Platform HAL

Early platform initialization code

Platform memory layout specification

Configuration options (processor speed, compiler options)
Diagnostic IO functions

Debugger 10 functions

Platform specific extensions to architecture or variant code (off-core

interrupt controller)

a Auxiliary HAL

—Chun-Jen Tsai, CS, NCTU, 2010 —

41/42

Discussions

A Thin firmware such as AFS is less and less popular
for embedded systems

Q If the application platform of a device Is based on an
open standard (e.g. J2ME or Android), a deeply
embedded OS kernel such as eCos is a better choice
than Linux, WIinCE, BSD Unix, ..., etc. for complex
embedded systems

m For multimedia, feature-rich functions, just leave it to the
portable system middleware

Q Software is the key to high-value consumer
electronics

—Chun-Jen Tsai, CS, NCTU, 2010 — 42/42

