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Define “Firmware”

 Firmware is a computer program that is embedded in a
hardware device, for example a microcontroller. It can
also be provided on flash ROMs or as a binary image
file that can be uploaded onto existing hardware by a
user†.

 Firmware is stored on non-volatile solid-state memory
 Typical functions of a firmware:

 Booting and running a system (a board or a chip)
 Providing basic I/O services
 Providing debugging services
 Providing backdoor for system recovery/maintenance

†www.wikipedia.org
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Recursive System Layout

 A typical system printed circuit board (PCB):
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Board-level vs. Chip-level Firmware

 Typical examples:
 Board-level: BIOS, bootloader, debug agent, etc.
 Chip-level: microcontroller codes for an MPEG codec chip,

USB controller chip, etc.

 Firmware code size:
 Board-level: ranges from several KB to several MB
 Chip-level: as small as possible to reduce cost
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Board-level Firmware and OS

 There is a lot of similarity between board-level
firmware and an operating system (OS)
 Provides I/O interfaces for (application) program
 Loads and executes program images
 Helps program development

 In the good old days, the entire OS of a computer can
be a firmware (e.g. Apple II)

 Today, more and more consumer electronics have a
firmware-based OS (e.g. mobile phones, PDAs)
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Operating Systems Components

 Process Management
 Who gets to use the CPU?

Memory Management
 Who gets to use the runtime memory?

 File System
 How to retrieve/store data?

 I/O (Sub)-system
 How to talk to the peripherals?
 Can be part of the file system (e.g. Unix)

Graphics (Multimedia), Windowing, and Events
Subsystem
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kernel space

Typical Architecture of an OS
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Can We Get away with “OS”?

 There are two kinds of tasks a typical embedded
system runs:
 Background operations:

 Runs the main application of the embedded system
 Handling routine (synchronous) tasks
 Usually called task level

 Foreground operations:
 Handling asynchronous events
 Usually called interrupt level
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F/B System vs. Full OS

Why do we need an OS for embedded systems?
 Handling complex scheduling problems for background tasks
 Reduced development cost for a family of product
 Easy extensibility (for new hardware)
 Support for third party applications
 Have someone to blame if things don’t work … (e.g. Microsoft)

 In general, a firmware-based F/B system should be
good enough for most embedded devices
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Industrial Firmware Example: AFS

 Firmware are typically custom-designed for each
embedded systems
 However, many firmware codes can be recycled for different

applications/projects

 The ARM Firmware Suite (AFS) is a collection of
libraries and utilities designed as an aid to application
and OS development on ARM-based platforms†

†AFS is free as long as it is used for ARM-based platforms!
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AFS Components

 µHAL libraries:
The ARM Hardware Abstraction Layer; the basis of AFS

 Flash library and utilities:
Library and utilities for programming on board flash memory

 Angel:
A remote debugging monitor for ADS

 µC/OS-II:
AFS includes a port of the multitasking kernel, µC/OS II, using
µHAL API

 Additional libraries:
Libraries for specialized hardware, (e.g. PCI bus, Vector
Floating Point), exception handling, and compression

 Additional components:
Including a boot monitor, generic applications, and board-
specific applications
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Logical Organization of AFS

 AFS also shields the hardware detail from user
applications, however, it is much thinner than an OS
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HAL

 The µHAL libraries mask hardware differences
between platforms by providing a standard layer of
board-dependent functions

 Example of µHAL functions:
 System (processor, memory, and buses) initialization
 Serial ports initialization
 Generic timers
 Generic LEDs
 Interrupt control
 Code/data access in flash memory
 Memory management (cache and MMU)
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Example: Using HAL (1/2)

Getting Board Information:

 LEDs Control:

infoType platformInfo;

/* who are we? */
uHALr_GetPlatformInfo(&platformInfo);
uHALr_printf("platform Id :0x%08X\n", platformInfo.platformId);
uHALr_printf("memory Size :0x%08X\n", platformInfo.memSize);
uHALr_printf("cpu ID :0x%08X\n", platformInfo.cpuId);

int idx;
int count = uHALr_InitLEDs(); /* turn off all the LEDs */

for (idx = 0; idx < count; idx++) uHALr_SetLED(idx);
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Example: Using HAL (2/2)

 Installing a Timer:
static int OSTick = 0;
void TickTimer(unsigned int irq) { OSTick++; }

int main(int argc, char *argv[])
{

uHALr_InitInterrupts(); /* Install trap handlers */
uHALr_InitTimers(); /* Initialize the timers */

uHALr_printf("Timer init\n");
if (uHALr_RequestSystemTimer(TickTimer, "test") <= 0)
{

uHALr_printf("Timer/IRQ busy\n");
}

uHALr_InstallSystemTimer(); /* Enable the interrupt */

/* Get the interval per tick */
interval = uHALir_GetSystemTimerInterval();

}
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Firmware Operation Modes

 An embedded system application operates in one of
two modes:
 Standalone:

A standalone application is one that has complete control of
the system from boot time onwards

 Semihosted:
A semihosted application is one for which an application or
debug agent, such as Angel or Multi-ICE, provides or
simulates facilities that do not exist on the target system

uHALr_SetLED(0);

#ifdef SEMIHOSTED
/* All done, give semihosted a chance to break in … */
uHALr_printf("Press a key to repeat the test.\n");
uHALr_getchar();

#endif
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Development board

Typical Firmware Images

 A typical prototype board with AFS
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Weakness of Thin Firmware

 A system build upon a thin firmware, such as AFS,
has the following weaknesses:
 Can only implement F/B systems: no multithreading for the

applications
 No device driver model: adding new hardware requires

extension of system call API
 Selection of different applications can only be done via boot

switcher
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Deeply-Embedded OS

 Sometimes, we need a little extra functions in the
firmware to implement a powerful F/B systems
 Multi-threading for the background task (but still allowing

only single process)
 Installable device drivers (the “installation”may happen

before the build time)
 Componentized model for building a custom system
 More flexible foreground task management
 Remains small (otherwise, we can use a full-blown OS)
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eCos: A Deeply Embedded OS

 eCos stands for Embedded Configurable Operating
System

 eCos is an “application-oriented”OS: The OS can be
configured for a specific application/platform
combination (e.g. digital security camera)

 eCos is something between a “full”OS and a thin
firmware



 Chun-Jen Tsai, CS, NCTU, 2010  22/42

eCos Features (1/2)

 Embedded Configurable Operating System
 Developed and maintained by RedHat
 Not Linux-based
 Under eCos license (similar to GPL)
 Current version 2.0
 Minimum footprint : about 50 Kbytes
 Single address space for all threads
 Real-time support
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eCos Features (2/2)

 eCos is different from other Embedded OS
 Dynamic memory management is not part of the kernel
 Device drivers are handled as “packages“as well
 eCos kernel is an “optional”package of the OS. It is only

required when multi-threading support is required for the
application

 eCos is linked with the user application as a single runtime
image!
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Client Platforms
Thin clients Deeply embedded

STB HH OA Mobile Pager

“Open”Embedded OS Spectrum†

Server Platforms

•Internet
•File Server

Communication
Infrastructure

•Routers
•Filters

GNU

Linux eCos

Embedded Linux
AFS

†http://sources.redhat.com/elix/presentation/esc-west99
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eCos Supported Hardware

 Architectures:
 ARM, CalmRISC, FR-V, H8, IA32, M68K, Matsushita AM3x, MIPS,

NEC V8xx, PowerPC, SPARC (Leon), SuperH

 Devices:
 Flash: AMD, ATMEL, Intel, Sharp
 Ethernet: AMD, Cirrus Logic, Intel, Motorola, Natioanl

Semiconductor, SMSC, VIA
 Seriel: Motorola, 1655x, 8250
 USB: Intel SA-11x0 on-chip, NEC uPD985xx on-chip
 RTC: DS-1742

 See http://sources.redhat.com/ecos/hardware.html for a
complete list of the supported platforms
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Componentized Build Environment

 eCos components required for a custom build can be
selected using a GUI build tool
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Typical eCos Usage

 Typical eCos board-level Image (could be for chip-
level bootcode as well)
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RedBoot –the Boot Loader for eCos

 RedBoot -- RedHat embedded debug and bootstrap loader
 Based on eCos HAL
 Support boot scripting
 Simple command line interface
 Support flash & network booting of OS
 Support BOOTP, DHCP
 Support TFTP, X/Y-modem for program download
 Support GDB for remote debugging via serial or Ethernet

connections

 Source code:
 http://sources.redhat.com/redboot/
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eCos Kernel

 Support multi-threading embedded applications:
 The ability to create new threads in the system, either during

startup or when the system is already running
 Control over the various threads in the system, for example

manipulating their priorities
 A choice of schedulers, determining which thread should currently

be running
 A range of synchronization primitives, allowing threads to interact

and share data safely
 Integration with the system’s support for interrupts and exceptions
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eCos Kernel Is Optional

 For simple foreground/background (F/B) systems, the
eCos kernel package can be skipped
 F/B applications have a central polling loop, continually

checking all devices and taking appropriate action when I/O
occurs

 RedBoot is one of such eCos applications
 However, RedBoot with network support includes the kernel

since the TCP/IP stack uses multithreading internally
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eCos Schedulers

 eCos support two types of task scheduler
 Bitmap scheduler
 Multi-level queue (MLQ) scheduler

 The number of priority levels is configurable -- the
default is 32

 Low priority thread only runs if all higher priority
threads are blocked
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Bitmap Scheduler

Only allows one thread per priority level, so if the
system is configured with 32 priority levels then it is
limited to only 32 threads

 Bitmaps can be used to keep track of which threads
are currently runnable, waiting on a mutex, or other
synchronization primitive

 Bitmap scheduler is fast and totally deterministic
Does not support SMP and priority inversion

prevention
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MLQ Scheduler

 The MLQ scheduler allows multiple threads to run at
the same priority
 Each priority level maintains a queue of threads
 Timeslicing is used among threads in same priority queue
 Timeslicing can be enabled/disabled at kernel build time

Operation of finding the highest priority queue with
runnable thread is expensive
 Default behavior is LIFO, which does not guarantee highest

priority queue will be examined next; in this case MLQ is
only used to increase the number of simultaneous threads

 MLQ scheduler also support strict priority queuing but the
system’s dispatch latency is worse
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eCos Synchronization Primitives

Mutexes
Condition variables
Counting semaphores
Mail boxes
 Event flags (binary semaphores)
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Sync. Support in Device Drivers

 The eCos common HAL package provides its own
device driver API which contains some of the above
synchronization primitives

 If the configuration includes the eCos kernel package
then the driver API routines map directly onto the
equivalent kernel routines

 If the kernel package is not included and the
application consists of just a simple F/B system then
the driver API is implemented entirely within the
common HAL
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Interrupt Handling

 Kernel uses a two-level approach to interrupt
handling:
 Associated with every interrupt vector is an Interrupt Service

Routine or ISR, which will run as quickly as possible
 However an ISR can make only a small number of kernel

calls, and it cannot make any call that would cause a thread
to wake up

 If an ISR detects that an I/O operation has completed it can
cause the associated Deferred Service Routine (DSR) to run
and make more kernel calls, for example, to signal a
condition variable or post to a semaphore
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Interrupt Translation†

 eCos translates different interrupt jump table
mechanisms to a common approach

 Each hardware vector executes a trampoline code
that makes an indirect jump via a table to the actual
handler called the Vector Service Routine (VSR)

 The trampoline code performs the absolute minimum
processing to identify the exception source, and jump
to the VSR

 The VSR is responsible for saving the CPU state and
handle the exception or interrupt

†eCos reference manual, p.188
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eCos HAL & Kernel
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eCos HAL Principles

 eCos kernel itself is largely implemented in C++, but
the HAL is implemented in C and assembly to
enforce portability
 All interfaces to the HAL are implemented by CPP macros

 The HAL provides simple, portable mechanisms for
dealing with the hardware of a wide range of
architectures and platforms
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HAL Structure (1/2)

Common HAL
 Generic debugging functionality, driver API, eCos/ROM

monitor calling interface, and tests.

 Architecture HAL
 Architecture specific debugger functionality
 Exception/interrupt vector definitions and handlers
 Cache definition and control macros
 Context switching code
 Assembler functions for early system initialization
 Configuration options
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HAL Structure (2/2)

 Variant HAL
 Extensions to the architecture code (cache, exception/interrupt)
 Configuration options
 Drivers for variant on-core devices

 Platform HAL
 Early platform initialization code
 Platform memory layout specification
 Configuration options (processor speed, compiler options)
 Diagnostic IO functions
 Debugger IO functions
 Platform specific extensions to architecture or variant code (off-core

interrupt controller)

 Auxiliary HAL
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Discussions

 Thin firmware such as AFS is less and less popular
for embedded systems

 If the application platform of a device is based on an
open standard (e.g. J2ME or Android), a deeply
embedded OS kernel such as eCos is a better choice
than Linux, WinCE, BSD Unix, …, etc. for complex
embedded systems
 For multimedia, feature-rich functions, just leave it to the

portable system middleware

 Software is the key to high-value consumer
electronics


