
Firmware for Embedded
Computing

National Chiao Tung University
Chun-Jen Tsai

3/10/2011



 Chun-Jen Tsai, CS, NCTU, 2010  2/42

Define “Firmware”

 Firmware is a computer program that is embedded in a
hardware device, for example a microcontroller. It can
also be provided on flash ROMs or as a binary image
file that can be uploaded onto existing hardware by a
user†.

 Firmware is stored on non-volatile solid-state memory
 Typical functions of a firmware:

 Booting and running a system (a board or a chip)
 Providing basic I/O services
 Providing debugging services
 Providing backdoor for system recovery/maintenance

†www.wikipedia.org



 Chun-Jen Tsai, CS, NCTU, 2010  3/42

Recursive System Layout

 A typical system printed circuit board (PCB):

PCB

IC (SoC)

System BUS

MCU

ROM:
System bootcode

SDRAM:
Operating Systems
Applications

OS
boot Image
(may be on

Flash)

I/O Device ICs
(analog)

LocalB
U

S

RISC
Processor

Core

I/O
Device

IPs
(digital)

Onchip
bootcode

Onchip
SRAM

RISC
Core

I/O
Device

IPs

Onchip
bootcode

Onchip
SRAM

Onchip
DRAM

cache

LocalB
U

S

Custom
Accelerator
Logic (IP)





 Chun-Jen Tsai, CS, NCTU, 2010  4/42

Board-level vs. Chip-level Firmware

 Typical examples:
 Board-level: BIOS, bootloader, debug agent, etc.
 Chip-level: microcontroller codes for an MPEG codec chip,

USB controller chip, etc.

 Firmware code size:
 Board-level: ranges from several KB to several MB
 Chip-level: as small as possible to reduce cost



 Chun-Jen Tsai, CS, NCTU, 2010  5/42

Board-level Firmware and OS

 There is a lot of similarity between board-level
firmware and an operating system (OS)
 Provides I/O interfaces for (application) program
 Loads and executes program images
 Helps program development

 In the good old days, the entire OS of a computer can
be a firmware (e.g. Apple II)

 Today, more and more consumer electronics have a
firmware-based OS (e.g. mobile phones, PDAs)



 Chun-Jen Tsai, CS, NCTU, 2010  6/42

Operating Systems Components

 Process Management
 Who gets to use the CPU?

Memory Management
 Who gets to use the runtime memory?

 File System
 How to retrieve/store data?

 I/O (Sub)-system
 How to talk to the peripherals?
 Can be part of the file system (e.g. Unix)

Graphics (Multimedia), Windowing, and Events
Subsystem



 Chun-Jen Tsai, CS, NCTU, 2010  7/42

kernel space

Typical Architecture of an OS

OS libraries

user applications

system call interface

file system process manager

scheduler memory manager Inter-process
communication

buffer control

device drivers

DSP MCUperipherals

user space

hardware

hardware abstraction layer (HAL)



 Chun-Jen Tsai, CS, NCTU, 2010  8/42

Can We Get away with “OS”?

 There are two kinds of tasks a typical embedded
system runs:
 Background operations:

 Runs the main application of the embedded system
 Handling routine (synchronous) tasks
 Usually called task level

 Foreground operations:
 Handling asynchronous events
 Usually called interrupt level



 Chun-Jen Tsai, CS, NCTU, 2010  9/42

Foreground/Background Systems

Background Foreground

ISR†

ISR ISR

T
im

e

code
execution

†ISR stands for Interrupt Service Routine



 Chun-Jen Tsai, CS, NCTU, 2010  10/42

F/B System vs. Full OS

Why do we need an OS for embedded systems?
 Handling complex scheduling problems for background tasks
 Reduced development cost for a family of product
 Easy extensibility (for new hardware)
 Support for third party applications
 Have someone to blame if things don’t work … (e.g. Microsoft)

 In general, a firmware-based F/B system should be
good enough for most embedded devices



 Chun-Jen Tsai, CS, NCTU, 2010  11/42

Industrial Firmware Example: AFS

 Firmware are typically custom-designed for each
embedded systems
 However, many firmware codes can be recycled for different

applications/projects

 The ARM Firmware Suite (AFS) is a collection of
libraries and utilities designed as an aid to application
and OS development on ARM-based platforms†

†AFS is free as long as it is used for ARM-based platforms!



 Chun-Jen Tsai, CS, NCTU, 2010  12/42

AFS Components

 µHAL libraries:
The ARM Hardware Abstraction Layer; the basis of AFS

 Flash library and utilities:
Library and utilities for programming on board flash memory

 Angel:
A remote debugging monitor for ADS

 µC/OS-II:
AFS includes a port of the multitasking kernel, µC/OS II, using
µHAL API

 Additional libraries:
Libraries for specialized hardware, (e.g. PCI bus, Vector
Floating Point), exception handling, and compression

 Additional components:
Including a boot monitor, generic applications, and board-
specific applications



 Chun-Jen Tsai, CS, NCTU, 2010  13/42

Logical Organization of AFS

 AFS also shields the hardware detail from user
applications, however, it is much thinner than an OS

User applications AFS utilities

C and C++ libraries

AFS board-specific HAL routines AFS support
routines

Development Board

General

Specific



 Chun-Jen Tsai, CS, NCTU, 2010  14/42

HAL

 The µHAL libraries mask hardware differences
between platforms by providing a standard layer of
board-dependent functions

 Example of µHAL functions:
 System (processor, memory, and buses) initialization
 Serial ports initialization
 Generic timers
 Generic LEDs
 Interrupt control
 Code/data access in flash memory
 Memory management (cache and MMU)



 Chun-Jen Tsai, CS, NCTU, 2010  15/42

Example: Using HAL (1/2)

Getting Board Information:

 LEDs Control:

infoType platformInfo;

/* who are we? */
uHALr_GetPlatformInfo(&platformInfo);
uHALr_printf("platform Id :0x%08X\n", platformInfo.platformId);
uHALr_printf("memory Size :0x%08X\n", platformInfo.memSize);
uHALr_printf("cpu ID :0x%08X\n", platformInfo.cpuId);

int idx;
int count = uHALr_InitLEDs(); /* turn off all the LEDs */

for (idx = 0; idx < count; idx++) uHALr_SetLED(idx);



 Chun-Jen Tsai, CS, NCTU, 2010  16/42

Example: Using HAL (2/2)

 Installing a Timer:
static int OSTick = 0;
void TickTimer(unsigned int irq) { OSTick++; }

int main(int argc, char *argv[])
{

uHALr_InitInterrupts(); /* Install trap handlers */
uHALr_InitTimers(); /* Initialize the timers */

uHALr_printf("Timer init\n");
if (uHALr_RequestSystemTimer(TickTimer, "test") <= 0)
{

uHALr_printf("Timer/IRQ busy\n");
}

uHALr_InstallSystemTimer(); /* Enable the interrupt */

/* Get the interval per tick */
interval = uHALir_GetSystemTimerInterval();

}



 Chun-Jen Tsai, CS, NCTU, 2010  17/42

Firmware Operation Modes

 An embedded system application operates in one of
two modes:
 Standalone:

A standalone application is one that has complete control of
the system from boot time onwards

 Semihosted:
A semihosted application is one for which an application or
debug agent, such as Angel or Multi-ICE, provides or
simulates facilities that do not exist on the target system

uHALr_SetLED(0);

#ifdef SEMIHOSTED
/* All done, give semihosted a chance to break in … */
uHALr_printf("Press a key to repeat the test.\n");
uHALr_getchar();

#endif



 Chun-Jen Tsai, CS, NCTU, 2010  18/42

Development board

Typical Firmware Images

 A typical prototype board with AFS

User application

Debug Agent

Default application
(e.g. boot monitor)

Boot switcher

Flash memory

User
flash

AFS in
boot flash

Switches
LEDs
I/O
Serial port

System-dependent
hardware



 Chun-Jen Tsai, CS, NCTU, 2010  19/42

Weakness of Thin Firmware

 A system build upon a thin firmware, such as AFS,
has the following weaknesses:
 Can only implement F/B systems: no multithreading for the

applications
 No device driver model: adding new hardware requires

extension of system call API
 Selection of different applications can only be done via boot

switcher



 Chun-Jen Tsai, CS, NCTU, 2010  20/42

Deeply-Embedded OS

 Sometimes, we need a little extra functions in the
firmware to implement a powerful F/B systems
 Multi-threading for the background task (but still allowing

only single process)
 Installable device drivers (the “installation”may happen

before the build time)
 Componentized model for building a custom system
 More flexible foreground task management
 Remains small (otherwise, we can use a full-blown OS)



 Chun-Jen Tsai, CS, NCTU, 2010  21/42

eCos: A Deeply Embedded OS

 eCos stands for Embedded Configurable Operating
System

 eCos is an “application-oriented”OS: The OS can be
configured for a specific application/platform
combination (e.g. digital security camera)

 eCos is something between a “full”OS and a thin
firmware



 Chun-Jen Tsai, CS, NCTU, 2010  22/42

eCos Features (1/2)

 Embedded Configurable Operating System
 Developed and maintained by RedHat
 Not Linux-based
 Under eCos license (similar to GPL)
 Current version 2.0
 Minimum footprint : about 50 Kbytes
 Single address space for all threads
 Real-time support



 Chun-Jen Tsai, CS, NCTU, 2010  23/42

eCos Features (2/2)

 eCos is different from other Embedded OS
 Dynamic memory management is not part of the kernel
 Device drivers are handled as “packages“as well
 eCos kernel is an “optional”package of the OS. It is only

required when multi-threading support is required for the
application

 eCos is linked with the user application as a single runtime
image!



 Chun-Jen Tsai, CS, NCTU, 2010  24/42

Client Platforms
Thin clients Deeply embedded

STB HH OA Mobile Pager

“Open”Embedded OS Spectrum†

Server Platforms

•Internet
•File Server

Communication
Infrastructure

•Routers
•Filters

GNU

Linux eCos

Embedded Linux
AFS

†http://sources.redhat.com/elix/presentation/esc-west99



 Chun-Jen Tsai, CS, NCTU, 2010  25/42

eCos Supported Hardware

 Architectures:
 ARM, CalmRISC, FR-V, H8, IA32, M68K, Matsushita AM3x, MIPS,

NEC V8xx, PowerPC, SPARC (Leon), SuperH

 Devices:
 Flash: AMD, ATMEL, Intel, Sharp
 Ethernet: AMD, Cirrus Logic, Intel, Motorola, Natioanl

Semiconductor, SMSC, VIA
 Seriel: Motorola, 1655x, 8250
 USB: Intel SA-11x0 on-chip, NEC uPD985xx on-chip
 RTC: DS-1742

 See http://sources.redhat.com/ecos/hardware.html for a
complete list of the supported platforms



 Chun-Jen Tsai, CS, NCTU, 2010  26/42

Componentized Build Environment

 eCos components required for a custom build can be
selected using a GUI build tool



 Chun-Jen Tsai, CS, NCTU, 2010  27/42

Typical eCos Usage

 Typical eCos board-level Image (could be for chip-
level bootcode as well)

Development board

RedBoot
(bootloader + debug agent)

User application
(linked with eCos image)

Flash memory

User
flash

boot flash

Switches
LEDs
I/O
Serial port
Ethernet
Accelerator

System-dependent
hardware



 Chun-Jen Tsai, CS, NCTU, 2010  28/42

RedBoot –the Boot Loader for eCos

 RedBoot -- RedHat embedded debug and bootstrap loader
 Based on eCos HAL
 Support boot scripting
 Simple command line interface
 Support flash & network booting of OS
 Support BOOTP, DHCP
 Support TFTP, X/Y-modem for program download
 Support GDB for remote debugging via serial or Ethernet

connections

 Source code:
 http://sources.redhat.com/redboot/



 Chun-Jen Tsai, CS, NCTU, 2010  29/42

eCos Kernel

 Support multi-threading embedded applications:
 The ability to create new threads in the system, either during

startup or when the system is already running
 Control over the various threads in the system, for example

manipulating their priorities
 A choice of schedulers, determining which thread should currently

be running
 A range of synchronization primitives, allowing threads to interact

and share data safely
 Integration with the system’s support for interrupts and exceptions



 Chun-Jen Tsai, CS, NCTU, 2010  30/42

eCos Kernel Is Optional

 For simple foreground/background (F/B) systems, the
eCos kernel package can be skipped
 F/B applications have a central polling loop, continually

checking all devices and taking appropriate action when I/O
occurs

 RedBoot is one of such eCos applications
 However, RedBoot with network support includes the kernel

since the TCP/IP stack uses multithreading internally



 Chun-Jen Tsai, CS, NCTU, 2010  31/42

eCos Schedulers

 eCos support two types of task scheduler
 Bitmap scheduler
 Multi-level queue (MLQ) scheduler

 The number of priority levels is configurable -- the
default is 32

 Low priority thread only runs if all higher priority
threads are blocked



 Chun-Jen Tsai, CS, NCTU, 2010  32/42

Bitmap Scheduler

Only allows one thread per priority level, so if the
system is configured with 32 priority levels then it is
limited to only 32 threads

 Bitmaps can be used to keep track of which threads
are currently runnable, waiting on a mutex, or other
synchronization primitive

 Bitmap scheduler is fast and totally deterministic
Does not support SMP and priority inversion

prevention



 Chun-Jen Tsai, CS, NCTU, 2010  33/42

MLQ Scheduler

 The MLQ scheduler allows multiple threads to run at
the same priority
 Each priority level maintains a queue of threads
 Timeslicing is used among threads in same priority queue
 Timeslicing can be enabled/disabled at kernel build time

Operation of finding the highest priority queue with
runnable thread is expensive
 Default behavior is LIFO, which does not guarantee highest

priority queue will be examined next; in this case MLQ is
only used to increase the number of simultaneous threads

 MLQ scheduler also support strict priority queuing but the
system’s dispatch latency is worse



 Chun-Jen Tsai, CS, NCTU, 2010  34/42

eCos Synchronization Primitives

Mutexes
Condition variables
Counting semaphores
Mail boxes
 Event flags (binary semaphores)



 Chun-Jen Tsai, CS, NCTU, 2010  35/42

Sync. Support in Device Drivers

 The eCos common HAL package provides its own
device driver API which contains some of the above
synchronization primitives

 If the configuration includes the eCos kernel package
then the driver API routines map directly onto the
equivalent kernel routines

 If the kernel package is not included and the
application consists of just a simple F/B system then
the driver API is implemented entirely within the
common HAL



 Chun-Jen Tsai, CS, NCTU, 2010  36/42

Interrupt Handling

 Kernel uses a two-level approach to interrupt
handling:
 Associated with every interrupt vector is an Interrupt Service

Routine or ISR, which will run as quickly as possible
 However an ISR can make only a small number of kernel

calls, and it cannot make any call that would cause a thread
to wake up

 If an ISR detects that an I/O operation has completed it can
cause the associated Deferred Service Routine (DSR) to run
and make more kernel calls, for example, to signal a
condition variable or post to a semaphore



 Chun-Jen Tsai, CS, NCTU, 2010  37/42

Interrupt Translation†

 eCos translates different interrupt jump table
mechanisms to a common approach

 Each hardware vector executes a trampoline code
that makes an indirect jump via a table to the actual
handler called the Vector Service Routine (VSR)

 The trampoline code performs the absolute minimum
processing to identify the exception source, and jump
to the VSR

 The VSR is responsible for saving the CPU state and
handle the exception or interrupt

†eCos reference manual, p.188



 Chun-Jen Tsai, CS, NCTU, 2010  38/42

eCos HAL & Kernel

Hardware

HAL Kernel (optional)

Dev Drv Dev Drv

Application Application Application

Thread

DSR

ISR
VSR



 Chun-Jen Tsai, CS, NCTU, 2010  39/42

eCos HAL Principles

 eCos kernel itself is largely implemented in C++, but
the HAL is implemented in C and assembly to
enforce portability
 All interfaces to the HAL are implemented by CPP macros

 The HAL provides simple, portable mechanisms for
dealing with the hardware of a wide range of
architectures and platforms



 Chun-Jen Tsai, CS, NCTU, 2010  40/42

HAL Structure (1/2)

Common HAL
 Generic debugging functionality, driver API, eCos/ROM

monitor calling interface, and tests.

 Architecture HAL
 Architecture specific debugger functionality
 Exception/interrupt vector definitions and handlers
 Cache definition and control macros
 Context switching code
 Assembler functions for early system initialization
 Configuration options



 Chun-Jen Tsai, CS, NCTU, 2010  41/42

HAL Structure (2/2)

 Variant HAL
 Extensions to the architecture code (cache, exception/interrupt)
 Configuration options
 Drivers for variant on-core devices

 Platform HAL
 Early platform initialization code
 Platform memory layout specification
 Configuration options (processor speed, compiler options)
 Diagnostic IO functions
 Debugger IO functions
 Platform specific extensions to architecture or variant code (off-core

interrupt controller)

 Auxiliary HAL



 Chun-Jen Tsai, CS, NCTU, 2010  42/42

Discussions

 Thin firmware such as AFS is less and less popular
for embedded systems

 If the application platform of a device is based on an
open standard (e.g. J2ME or Android), a deeply
embedded OS kernel such as eCos is a better choice
than Linux, WinCE, BSD Unix, …, etc. for complex
embedded systems
 For multimedia, feature-rich functions, just leave it to the

portable system middleware

 Software is the key to high-value consumer
electronics


