
Firmware for Embedded
Computing

National Chiao Tung University
Chun-Jen Tsai

3/10/2011

 Chun-Jen Tsai, CS, NCTU, 2010 2/42

Define “Firmware”

 Firmware is a computer program that is embedded in a
hardware device, for example a microcontroller. It can
also be provided on flash ROMs or as a binary image
file that can be uploaded onto existing hardware by a
user†.

 Firmware is stored on non-volatile solid-state memory
 Typical functions of a firmware:

 Booting and running a system (a board or a chip)
 Providing basic I/O services
 Providing debugging services
 Providing backdoor for system recovery/maintenance

†www.wikipedia.org

 Chun-Jen Tsai, CS, NCTU, 2010 3/42

Recursive System Layout

 A typical system printed circuit board (PCB):

PCB

IC (SoC)

System BUS

MCU

ROM:
System bootcode

SDRAM:
Operating Systems
Applications

OS
boot Image
(may be on

Flash)

I/O Device ICs
(analog)

LocalB
U

S

RISC
Processor

Core

I/O
Device

IPs
(digital)

Onchip
bootcode

Onchip
SRAM

RISC
Core

I/O
Device

IPs

Onchip
bootcode

Onchip
SRAM

Onchip
DRAM

cache

LocalB
U

S

Custom
Accelerator
Logic (IP)

 Chun-Jen Tsai, CS, NCTU, 2010 4/42

Board-level vs. Chip-level Firmware

 Typical examples:
 Board-level: BIOS, bootloader, debug agent, etc.
 Chip-level: microcontroller codes for an MPEG codec chip,

USB controller chip, etc.

 Firmware code size:
 Board-level: ranges from several KB to several MB
 Chip-level: as small as possible to reduce cost

 Chun-Jen Tsai, CS, NCTU, 2010 5/42

Board-level Firmware and OS

 There is a lot of similarity between board-level
firmware and an operating system (OS)
 Provides I/O interfaces for (application) program
 Loads and executes program images
 Helps program development

 In the good old days, the entire OS of a computer can
be a firmware (e.g. Apple II)

 Today, more and more consumer electronics have a
firmware-based OS (e.g. mobile phones, PDAs)

 Chun-Jen Tsai, CS, NCTU, 2010 6/42

Operating Systems Components

 Process Management
 Who gets to use the CPU?

Memory Management
 Who gets to use the runtime memory?

 File System
 How to retrieve/store data?

 I/O (Sub)-system
 How to talk to the peripherals?
 Can be part of the file system (e.g. Unix)

Graphics (Multimedia), Windowing, and Events
Subsystem

 Chun-Jen Tsai, CS, NCTU, 2010 7/42

kernel space

Typical Architecture of an OS

OS libraries

user applications

system call interface

file system process manager

scheduler memory manager Inter-process
communication

buffer control

device drivers

DSP MCUperipherals

user space

hardware

hardware abstraction layer (HAL)

 Chun-Jen Tsai, CS, NCTU, 2010 8/42

Can We Get away with “OS”?

 There are two kinds of tasks a typical embedded
system runs:
 Background operations:

 Runs the main application of the embedded system
 Handling routine (synchronous) tasks
 Usually called task level

 Foreground operations:
 Handling asynchronous events
 Usually called interrupt level

 Chun-Jen Tsai, CS, NCTU, 2010 9/42

Foreground/Background Systems

Background Foreground

ISR†

ISR ISR

T
im

e

code
execution

†ISR stands for Interrupt Service Routine

 Chun-Jen Tsai, CS, NCTU, 2010 10/42

F/B System vs. Full OS

Why do we need an OS for embedded systems?
 Handling complex scheduling problems for background tasks
 Reduced development cost for a family of product
 Easy extensibility (for new hardware)
 Support for third party applications
 Have someone to blame if things don’t work … (e.g. Microsoft)

 In general, a firmware-based F/B system should be
good enough for most embedded devices

 Chun-Jen Tsai, CS, NCTU, 2010 11/42

Industrial Firmware Example: AFS

 Firmware are typically custom-designed for each
embedded systems
 However, many firmware codes can be recycled for different

applications/projects

 The ARM Firmware Suite (AFS) is a collection of
libraries and utilities designed as an aid to application
and OS development on ARM-based platforms†

†AFS is free as long as it is used for ARM-based platforms!

 Chun-Jen Tsai, CS, NCTU, 2010 12/42

AFS Components

 µHAL libraries:
The ARM Hardware Abstraction Layer; the basis of AFS

 Flash library and utilities:
Library and utilities for programming on board flash memory

 Angel:
A remote debugging monitor for ADS

 µC/OS-II:
AFS includes a port of the multitasking kernel, µC/OS II, using
µHAL API

 Additional libraries:
Libraries for specialized hardware, (e.g. PCI bus, Vector
Floating Point), exception handling, and compression

 Additional components:
Including a boot monitor, generic applications, and board-
specific applications

 Chun-Jen Tsai, CS, NCTU, 2010 13/42

Logical Organization of AFS

 AFS also shields the hardware detail from user
applications, however, it is much thinner than an OS

User applications AFS utilities

C and C++ libraries

AFS board-specific HAL routines AFS support
routines

Development Board

General

Specific

 Chun-Jen Tsai, CS, NCTU, 2010 14/42

HAL

 The µHAL libraries mask hardware differences
between platforms by providing a standard layer of
board-dependent functions

 Example of µHAL functions:
 System (processor, memory, and buses) initialization
 Serial ports initialization
 Generic timers
 Generic LEDs
 Interrupt control
 Code/data access in flash memory
 Memory management (cache and MMU)

 Chun-Jen Tsai, CS, NCTU, 2010 15/42

Example: Using HAL (1/2)

Getting Board Information:

 LEDs Control:

infoType platformInfo;

/* who are we? */
uHALr_GetPlatformInfo(&platformInfo);
uHALr_printf("platform Id :0x%08X\n", platformInfo.platformId);
uHALr_printf("memory Size :0x%08X\n", platformInfo.memSize);
uHALr_printf("cpu ID :0x%08X\n", platformInfo.cpuId);

int idx;
int count = uHALr_InitLEDs(); /* turn off all the LEDs */

for (idx = 0; idx < count; idx++) uHALr_SetLED(idx);

 Chun-Jen Tsai, CS, NCTU, 2010 16/42

Example: Using HAL (2/2)

 Installing a Timer:
static int OSTick = 0;
void TickTimer(unsigned int irq) { OSTick++; }

int main(int argc, char *argv[])
{

uHALr_InitInterrupts(); /* Install trap handlers */
uHALr_InitTimers(); /* Initialize the timers */

uHALr_printf("Timer init\n");
if (uHALr_RequestSystemTimer(TickTimer, "test") <= 0)
{

uHALr_printf("Timer/IRQ busy\n");
}

uHALr_InstallSystemTimer(); /* Enable the interrupt */

/* Get the interval per tick */
interval = uHALir_GetSystemTimerInterval();

}

 Chun-Jen Tsai, CS, NCTU, 2010 17/42

Firmware Operation Modes

 An embedded system application operates in one of
two modes:
 Standalone:

A standalone application is one that has complete control of
the system from boot time onwards

 Semihosted:
A semihosted application is one for which an application or
debug agent, such as Angel or Multi-ICE, provides or
simulates facilities that do not exist on the target system

uHALr_SetLED(0);

#ifdef SEMIHOSTED
/* All done, give semihosted a chance to break in … */
uHALr_printf("Press a key to repeat the test.\n");
uHALr_getchar();

#endif

 Chun-Jen Tsai, CS, NCTU, 2010 18/42

Development board

Typical Firmware Images

 A typical prototype board with AFS

User application

Debug Agent

Default application
(e.g. boot monitor)

Boot switcher

Flash memory

User
flash

AFS in
boot flash

Switches
LEDs
I/O
Serial port

System-dependent
hardware

 Chun-Jen Tsai, CS, NCTU, 2010 19/42

Weakness of Thin Firmware

 A system build upon a thin firmware, such as AFS,
has the following weaknesses:
 Can only implement F/B systems: no multithreading for the

applications
 No device driver model: adding new hardware requires

extension of system call API
 Selection of different applications can only be done via boot

switcher

 Chun-Jen Tsai, CS, NCTU, 2010 20/42

Deeply-Embedded OS

 Sometimes, we need a little extra functions in the
firmware to implement a powerful F/B systems
 Multi-threading for the background task (but still allowing

only single process)
 Installable device drivers (the “installation”may happen

before the build time)
 Componentized model for building a custom system
 More flexible foreground task management
 Remains small (otherwise, we can use a full-blown OS)

 Chun-Jen Tsai, CS, NCTU, 2010 21/42

eCos: A Deeply Embedded OS

 eCos stands for Embedded Configurable Operating
System

 eCos is an “application-oriented”OS: The OS can be
configured for a specific application/platform
combination (e.g. digital security camera)

 eCos is something between a “full”OS and a thin
firmware

 Chun-Jen Tsai, CS, NCTU, 2010 22/42

eCos Features (1/2)

 Embedded Configurable Operating System
 Developed and maintained by RedHat
 Not Linux-based
 Under eCos license (similar to GPL)
 Current version 2.0
 Minimum footprint : about 50 Kbytes
 Single address space for all threads
 Real-time support

 Chun-Jen Tsai, CS, NCTU, 2010 23/42

eCos Features (2/2)

 eCos is different from other Embedded OS
 Dynamic memory management is not part of the kernel
 Device drivers are handled as “packages“as well
 eCos kernel is an “optional”package of the OS. It is only

required when multi-threading support is required for the
application

 eCos is linked with the user application as a single runtime
image!

 Chun-Jen Tsai, CS, NCTU, 2010 24/42

Client Platforms
Thin clients Deeply embedded

STB HH OA Mobile Pager

“Open”Embedded OS Spectrum†

Server Platforms

•Internet
•File Server

Communication
Infrastructure

•Routers
•Filters

GNU

Linux eCos

Embedded Linux
AFS

†http://sources.redhat.com/elix/presentation/esc-west99

 Chun-Jen Tsai, CS, NCTU, 2010 25/42

eCos Supported Hardware

 Architectures:
 ARM, CalmRISC, FR-V, H8, IA32, M68K, Matsushita AM3x, MIPS,

NEC V8xx, PowerPC, SPARC (Leon), SuperH

 Devices:
 Flash: AMD, ATMEL, Intel, Sharp
 Ethernet: AMD, Cirrus Logic, Intel, Motorola, Natioanl

Semiconductor, SMSC, VIA
 Seriel: Motorola, 1655x, 8250
 USB: Intel SA-11x0 on-chip, NEC uPD985xx on-chip
 RTC: DS-1742

 See http://sources.redhat.com/ecos/hardware.html for a
complete list of the supported platforms

 Chun-Jen Tsai, CS, NCTU, 2010 26/42

Componentized Build Environment

 eCos components required for a custom build can be
selected using a GUI build tool

 Chun-Jen Tsai, CS, NCTU, 2010 27/42

Typical eCos Usage

 Typical eCos board-level Image (could be for chip-
level bootcode as well)

Development board

RedBoot
(bootloader + debug agent)

User application
(linked with eCos image)

Flash memory

User
flash

boot flash

Switches
LEDs
I/O
Serial port
Ethernet
Accelerator

System-dependent
hardware

 Chun-Jen Tsai, CS, NCTU, 2010 28/42

RedBoot –the Boot Loader for eCos

 RedBoot -- RedHat embedded debug and bootstrap loader
 Based on eCos HAL
 Support boot scripting
 Simple command line interface
 Support flash & network booting of OS
 Support BOOTP, DHCP
 Support TFTP, X/Y-modem for program download
 Support GDB for remote debugging via serial or Ethernet

connections

 Source code:
 http://sources.redhat.com/redboot/

 Chun-Jen Tsai, CS, NCTU, 2010 29/42

eCos Kernel

 Support multi-threading embedded applications:
 The ability to create new threads in the system, either during

startup or when the system is already running
 Control over the various threads in the system, for example

manipulating their priorities
 A choice of schedulers, determining which thread should currently

be running
 A range of synchronization primitives, allowing threads to interact

and share data safely
 Integration with the system’s support for interrupts and exceptions

 Chun-Jen Tsai, CS, NCTU, 2010 30/42

eCos Kernel Is Optional

 For simple foreground/background (F/B) systems, the
eCos kernel package can be skipped
 F/B applications have a central polling loop, continually

checking all devices and taking appropriate action when I/O
occurs

 RedBoot is one of such eCos applications
 However, RedBoot with network support includes the kernel

since the TCP/IP stack uses multithreading internally

 Chun-Jen Tsai, CS, NCTU, 2010 31/42

eCos Schedulers

 eCos support two types of task scheduler
 Bitmap scheduler
 Multi-level queue (MLQ) scheduler

 The number of priority levels is configurable -- the
default is 32

 Low priority thread only runs if all higher priority
threads are blocked

 Chun-Jen Tsai, CS, NCTU, 2010 32/42

Bitmap Scheduler

Only allows one thread per priority level, so if the
system is configured with 32 priority levels then it is
limited to only 32 threads

 Bitmaps can be used to keep track of which threads
are currently runnable, waiting on a mutex, or other
synchronization primitive

 Bitmap scheduler is fast and totally deterministic
Does not support SMP and priority inversion

prevention

 Chun-Jen Tsai, CS, NCTU, 2010 33/42

MLQ Scheduler

 The MLQ scheduler allows multiple threads to run at
the same priority
 Each priority level maintains a queue of threads
 Timeslicing is used among threads in same priority queue
 Timeslicing can be enabled/disabled at kernel build time

Operation of finding the highest priority queue with
runnable thread is expensive
 Default behavior is LIFO, which does not guarantee highest

priority queue will be examined next; in this case MLQ is
only used to increase the number of simultaneous threads

 MLQ scheduler also support strict priority queuing but the
system’s dispatch latency is worse

 Chun-Jen Tsai, CS, NCTU, 2010 34/42

eCos Synchronization Primitives

Mutexes
Condition variables
Counting semaphores
Mail boxes
 Event flags (binary semaphores)

 Chun-Jen Tsai, CS, NCTU, 2010 35/42

Sync. Support in Device Drivers

 The eCos common HAL package provides its own
device driver API which contains some of the above
synchronization primitives

 If the configuration includes the eCos kernel package
then the driver API routines map directly onto the
equivalent kernel routines

 If the kernel package is not included and the
application consists of just a simple F/B system then
the driver API is implemented entirely within the
common HAL

 Chun-Jen Tsai, CS, NCTU, 2010 36/42

Interrupt Handling

 Kernel uses a two-level approach to interrupt
handling:
 Associated with every interrupt vector is an Interrupt Service

Routine or ISR, which will run as quickly as possible
 However an ISR can make only a small number of kernel

calls, and it cannot make any call that would cause a thread
to wake up

 If an ISR detects that an I/O operation has completed it can
cause the associated Deferred Service Routine (DSR) to run
and make more kernel calls, for example, to signal a
condition variable or post to a semaphore

 Chun-Jen Tsai, CS, NCTU, 2010 37/42

Interrupt Translation†

 eCos translates different interrupt jump table
mechanisms to a common approach

 Each hardware vector executes a trampoline code
that makes an indirect jump via a table to the actual
handler called the Vector Service Routine (VSR)

 The trampoline code performs the absolute minimum
processing to identify the exception source, and jump
to the VSR

 The VSR is responsible for saving the CPU state and
handle the exception or interrupt

†eCos reference manual, p.188

 Chun-Jen Tsai, CS, NCTU, 2010 38/42

eCos HAL & Kernel

Hardware

HAL Kernel (optional)

Dev Drv Dev Drv

Application Application Application

Thread

DSR

ISR
VSR

 Chun-Jen Tsai, CS, NCTU, 2010 39/42

eCos HAL Principles

 eCos kernel itself is largely implemented in C++, but
the HAL is implemented in C and assembly to
enforce portability
 All interfaces to the HAL are implemented by CPP macros

 The HAL provides simple, portable mechanisms for
dealing with the hardware of a wide range of
architectures and platforms

 Chun-Jen Tsai, CS, NCTU, 2010 40/42

HAL Structure (1/2)

Common HAL
 Generic debugging functionality, driver API, eCos/ROM

monitor calling interface, and tests.

 Architecture HAL
 Architecture specific debugger functionality
 Exception/interrupt vector definitions and handlers
 Cache definition and control macros
 Context switching code
 Assembler functions for early system initialization
 Configuration options

 Chun-Jen Tsai, CS, NCTU, 2010 41/42

HAL Structure (2/2)

 Variant HAL
 Extensions to the architecture code (cache, exception/interrupt)
 Configuration options
 Drivers for variant on-core devices

 Platform HAL
 Early platform initialization code
 Platform memory layout specification
 Configuration options (processor speed, compiler options)
 Diagnostic IO functions
 Debugger IO functions
 Platform specific extensions to architecture or variant code (off-core

interrupt controller)

 Auxiliary HAL

 Chun-Jen Tsai, CS, NCTU, 2010 42/42

Discussions

 Thin firmware such as AFS is less and less popular
for embedded systems

 If the application platform of a device is based on an
open standard (e.g. J2ME or Android), a deeply
embedded OS kernel such as eCos is a better choice
than Linux, WinCE, BSD Unix, …, etc. for complex
embedded systems
 For multimedia, feature-rich functions, just leave it to the

portable system middleware

 Software is the key to high-value consumer
electronics

