Problem 1. Given a number $a \in[0,1)$ with binary representation $\left[b_{1} b_{2} \ldots b_{n}\right]$

$$
a=b_{1} 2^{-1}+b_{2} 2^{-2}+\cdots+b_{n} 2^{-n}
$$

If b has a binary representation with $\left[b_{1} b_{2} \ldots b_{n}\right]$ as prefix, then

$$
b=b_{1} 2^{-1}+b_{2} 2^{-2}+\cdots+b_{n} 2^{-n}+b_{n+1} 2^{-(n+1)}+\cdots
$$

Therefore,

$$
b-a=b_{n+1} 2^{-(n+1)}+\cdots
$$

Obviously $b-a \geq 0$ and $b \geq a$. To show $b<a+\frac{1}{2^{n}}$ we note that

$$
\begin{aligned}
b-a & =b_{n+1} 2^{-(n+1)}+b_{n+2} 2^{-(n+2)}+\cdots \\
& \leq 2^{-(n+1)}+2^{-(n+2)}+\cdots \\
& <\frac{1}{2^{n}}
\end{aligned}
$$

Problem 5.

Letter	Probability	cdf
a_{1}	.2	$F_{X}(1)=0.2$
a_{2}	.3	$F_{X}(2)=0.5$
a_{3}	.5	$F_{X}(3)=1.0$

$l^{(0)}=0, l^{(1)}=1$.

First letter is a_{1} :

$$
\begin{aligned}
l^{(1)}=0+(1-0) \times 0 & =0 \\
u^{(1)}=0+(1-0) \times .2 & =.2
\end{aligned}
$$

Second letter is a_{1} :

$$
\begin{gathered}
l^{(2)} \quad=0+(.2-0) \times 0=0 \\
u^{(2)}=0+(.2-0) \times .2=.04
\end{gathered}
$$

Third letter is a_{3} :

$$
\begin{aligned}
l^{(3)} & =0+(.04-0) \times 0.5=0.02 \\
u^{(3)} & =0+(.04-0) \times 1.0=0.04
\end{aligned}
$$

Fourth letter is a_{2} :

$$
\begin{aligned}
l^{(4)} & =0.02+(.04-0.02) \times 0.2=0.024 \\
u^{(4)} & =0.02+(.04-0.02) \times 0.5=0.03
\end{aligned}
$$

Fifth letter is a_{3} :

$$
\begin{aligned}
l^{(5)} & =0.024+(.03-0.024) \times 0.5=0.027 \\
u^{(5)} & =0.024+(.03-0.024) \times 1.0=0.03
\end{aligned}
$$

Sixth letter is a_{1} :

$$
\begin{aligned}
l^{(6)} & =0.027+(.03-0.027) \times 0.0=0.027 \\
u^{(6)} & =0.027+(.03-0.027) \times 0.2=0.0276
\end{aligned}
$$

Therefore, a possible tag value is 0.0273 .

Problem 6.

The tag decodes to the following sequence: $a_{3} a_{2} a_{2} a_{1} a_{2} a_{1} a_{3} a_{2} a_{2} a_{3}$.

Problem 7.

Letter	Count	Cum_Count
		Cum_Count $[0]=0$
$a(=1)$	37	Cum_Count $[1]=37$
$b(=2)$	38	Cum_Count $[2]=75$
$c(=3)$	25	Cum_Count $[3]=100$

(a) Total count $=100$,
$m=\left\lceil\log _{2}(\right.$ Total_Count $\left.)\right\rceil+2=7+2=9$ bits.
(b) 00101011000111100 . Note that the underlined bit patterns (i.e., EOS) is the lower limit of the final interval, $l^{(7)}$, you can transmit any value between $l^{(7)}$ and $u^{(7)}$.
(c) Decoding of 001010110+EOS should give you abacabb.

