Problem 1. Given a number $a \in [0, 1)$ with binary representation $[b_1 b_2 \dots b_n]$

$$a = b_1 2^{-1} + b_2 2^{-2} + \dots + b_n 2^{-n}$$

If b has a binary representation with $[b_1b_2\ldots b_n]$ as prefix, then

$$b = b_1 2^{-1} + b_2 2^{-2} + \dots + b_n 2^{-n} + b_{n+1} 2^{-(n+1)} + \dots$$

Therefore,

$$b - a = b_{n+1}2^{-(n+1)} + \cdots$$

Obviously $b - a \ge 0$ and $b \ge a$. To show $b < a + \frac{1}{2^n}$ we note that

$$b - a = b_{n+1}2^{-(n+1)} + b_{n+2}2^{-(n+2)} + \cdots$$

$$\leq 2^{-(n+1)} + 2^{-(n+2)} + \cdots$$

$$< \frac{1}{2^n}$$

Problem 5.

Letter	Probability	cdf
a_1	.2	$F_X(1) = 0.2$
a_2	.3	$F_X(2) = 0.5$
a_3	.5	$F_X(3) = 1.0$

 $l^{(0)} = 0, \ l^{(1)} = 1.$

First letter is a_1 :

$l^{(1)}$	$= 0 + (1 - 0) \times 0 = 0$
$u^{(1)}$	$= 0 + (1 - 0) \times .2 = .2$

Second letter is a_1 :

$l^{(2)}$	$= 0 + (.2 - 0) \times 0 = 0$
$u^{(2)}$	$= 0 + (.2 - 0) \times .2 = .04$

Third letter is a_3 :

 $\begin{aligned} l^{(3)} &= 0 + (.04 - 0) \times 0.5 = 0.02 \\ u^{(3)} &= 0 + (.04 - 0) \times 1.0 = 0.04 \end{aligned}$

Fourth letter is *a*₂:

$$\begin{array}{ll} l^{(4)} &= 0.02 + (.04 - 0.02) \times 0.2 = 0.024 \\ u^{(4)} &= 0.02 + (.04 - 0.02) \times 0.5 = 0.03 \end{array}$$

Fifth letter is a_3 :

$$l^{(5)} = 0.024 + (.03 - 0.024) \times 0.5 = 0.027 u^{(5)} = 0.024 + (.03 - 0.024) \times 1.0 = 0.03$$

Sixth letter is a_1 :

$$l^{(6)} = 0.027 + (.03 - 0.027) \times 0.0 = 0.027$$
$$u^{(6)} = 0.027 + (.03 - 0.027) \times 0.2 = 0.0276$$

Therefore, a possible tag value is 0.0273.

Problem 6.

The tag decodes to the following sequence: $a_3 a_2 a_2 a_1 a_2 a_1 a_3 a_2 a_2 a_3$.

Problem 7.

Letter	Count	Cum_Count
		$\operatorname{Cum}_{\operatorname{Count}}[0] = 0$
a(=1)	37	$Cum_Count[1] = 37$
b(=2)	38	$Cum_Count[2] = 75$
c(=3)	25	$Cum_Count[3] = 100$

(a) Total count = 100,

 $m = \lceil \log_2(Total_Count) \rceil + 2 = 7 + 2 = 9$ bits.

- (b) 00101011000111100. Note that the underlined bit patterns (i.e., EOS) is the lower limit of the final interval, $l^{(7)}$, you can transmit any value between $l^{(7)}$ and $u^{(7)}$.
- (c) Decoding of 001010110+EOS should give you *abacabb*.