
Problem 4. 

 

a) 

 

b)  

If we sort the probabilities in descending order, we can see that the two letters with 

the lowest probabilities are a2 and a4. These will become the leaves on the lowest level 

of the binary tree. The parent node of these leaves will have a probability of 0.9. If we 

consider parent node as a letter in a reduced alphabet then it will be one of the two 

letters with the lowest probability: the other one being a1. Continuing in this manner, 

we get the binary tree shown in Figure 1. and the code is 

 

Figure 1: Huffman code for the five-letter alphabet. 

 

 
 

c)  lavg = 0.15 × 3 + 0.04 × 4 + 0.26 × 2 + 0.05 × 4 + 0.5 × 1 = 1.83bits/symbol. 

 



Problem 5. 

 

Figure 2: Huffman code for the four-letter alphabet in Problem 5. 

 

a) The Huffman code tree is shown in Figure 2. The code is 

 

The average length of the code is 0.1×3+0.3×2+0.25×3+0.35×1 = 2 bits/symbol. 

b) Huffman code tree is shown in Figure 3. The code is 

 

The average length of the code is obviously 2 bits/symbol. 

 

Figure 3: Minimum variance Huffman code for the four-letter alphabet in Problem 5. 

 

While the average length of the codeword is the same for both codes, that is they are 

both equally efficient in terms of rate. However, the second code has a variance of 

zero for the code lengths. This means that we would not have any problems with 

buffer control if we were using this code in a communication system. We cannot 

make the same assertion about the first code. 



Problem 6.  

Examining the Huffman code generated in Problem 4 (not 3!) along with the 

associated probabilities, we have 

 

The proportion of zeros in a given sequence can be obtained by first computing the 

probability of observing a zero in a codeword and then 

dividing that by the average length of a codeword. The probability of observing a zero 

in a codeword is 

1 × 0.15 + 0 × 0.04 + 1 × 0.26 + 1 × 0.05 + 1 × 0.50 = 0.96. 

0.96/1.83 = 0.52. Thus, the proportion of zeros is close to a half. If we examine 

Huffman codes for sources with dyadic probabilities, we would find that the 

proportion is exactly a half. Thus, the use of a Huffman code will not lead to 

inefficient channel usage. 

 

Problem 10.  

 

Depending on how you count, the errors five characters are received in error 

 before the first correctly decoded character. 

 

For the minimum variance code the situation is different 



 

Again, only a single character is received in error. 

 

Problem 13.  

 

 

 


