

2/36

CB Bandwidth Measurement

The bandwidth of a CB can be measured by taking a sine tone barely masked by a band of white noise around it; when the noise band is narrowed until the point where the sine tone becomes audible, its width at that point is the critical bandwidth

Critical Band Frequencies

The width of one critical band is commonly referred to as "one bark"

Band #	Center Freq.	Range	Band #	Center Freq.	Range
1	50	~ 100	20	5800	5300 ~ 6400
2	150	100 ~ 200	21	7000	6400 ~ 7700
3	250	200 ~ 300	22	8500	7700 ~ 9500
4	350	300 ~ 400	23	10500	9500 ~ 12000
5	450	400 ~ 510	24	13500	12000 ~ 15500
6	570	510 ~ 630	25	19500	15500 ~

Masking Effect and Audio Coding

- □ "Signal masking" is a key to audio compression
 - Masker: dominating strong signal
 - Maskee: low-level "hard-to-hear" signal
- □ Masking effects:
 - $\blacksquare \ In \ frequency \ domain \rightarrow simultaneous \ masking$
 - In temporal domain \rightarrow temporal masking
- □ There are four types of masking:
 - tone-mask-noise
 - noise-mask-tone
 - noise-mask-noise → too complicated to use!
 - tone-mask-tone → too complicated to use!

Inaudible Thresholds

- An audio signal must have SPL higher than inaudible threshold, or it's not audible
- The threshold is also known as threshold of "just noticeable distortion" (JND)
- These thresholds are timevarying

†Peter Noll, "MPEG Digital Audio Coding," IEEE Signal Processing Magazine, Vol. 14, No. 5, Sep. 1997

Signal-to-Mask Ratio (SMR)

Note: NMR \leq 0. When NMR = 0, the distortion is just noticeable distortion

† Peter Noll, "MPEG Digital Audio Coding," IEEE Signal Processing Magazine, Vol. 14, No. 5, Sep. 1997

Perceptually Transparent Coding

If the signal is coded with a complete masking of distortion, the coded signal is subjectively indistinguishable from the source signal

□ JND coding is not desirable because:

- End-user processing amplifies noises
- Transcoding may take places during transmission

□ Example: Blue – coded signal, Purple – noises

14/36

MPEG Layer 3 MDCT (1/2)

- MPEG Layer 3 inserted a cascaded transform module, MDCT, between the filter bank and the quantizer to further increase the coding efficiency
- Three subband block length: for each subband of each frame, block length can be long (18 sample), short (6 samples), or mixed

- □ Modulated, (50%) overlapped filter bank MDCT
- □ Adaptive block switching: 256 and 2048
 - Long widow good freq. resolution, higher coding gain for "stationary" signals
 - Short widow good time resolution, higher quality control on "pitchy" signals
- Adaptive window shape: Inter-band leakage separation between (nearby) freq. bands
 - Sine widow narrow main-lobe, PR, DC-component is contained in one the (1st) coeffficients
 - Kaiser-Bessel Derived (KBD) widow optimization of transition BW and rejection, PR

Progress in Coding Efficiency

