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Concept of Subband Coding

� In transform coding, we use N (or N×N) samples as 

the data transform unit

� Transform coefficients are de-correlated data each 
describing different characteristics of the original data

� Different coefficients can be quantized differently

� Unfortunately, artificial selection of N causes blocking 

artifacts in the reconstructed image

� Lapped Orthogonal Transform could reduce such artifacts

� Key question: can we design a transform that 
decomposes data without the artificial block size N?
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Long-term vs. Short-term Behavior

� Given a sequence {xn}, it can be decomposed into 

two types of behaviors

� Long-term trend

� Short-term, sample-to-sample variation
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Example: Data Decomposition (1/5)

� Let {xn}: 10, 14, 10, 12, 14, 8, 14, 12, 10, 8, 10, 12

� {xn–xn–1}: 10, 4, –4, 2, 2, –6, 6, –2, –2, –2, 2, 2

� If we use an m-bit uniform quantizer to code {xn–xn–1}:

� M = 2m, ∆ = 12/M, maximum error = ∆/2 = 6/M

� If we compute yn and zn, we have
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Example: Data Decomposition (2/5)

� {yn} : 10, 12, 12, 11, 13, 11, 11, 13, 11, 10, 9, 11

� {yn–yn–1}: 10, 2, 0, –1, 2, –2, 0, 2, –2, –1, –1, 2

� If we use an m-bit uniform quantizer to code {yn–yn–1}:

� M = 2m, ∆ = 4/M, maximum error = 2/M
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Example: Data Decomposition (3/5)

� {zn} : 0, 2, –2, 1, 1, –3, 3, –1, –1, –1, 1, 1

� Differential coding of {zn} does not make sense

� If we use an m-bit uniform quantizer to code {zn}:

� ∆ = 6/M, maximum QE = 3/M

� If FLC is used to code the quantizer outputs, the rate 
of {yn} plus {zn} is twice of the rate of {xn}

� On the other hand, the maximum quantization error is 
smaller (5/M vs. 6/M)

� We can reduce the rate by only sending every other values 
of yn and zn.
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Example: Data Decomposition (4/5)

� We can divide {yn} into subsequences {y1, y3 , …}

and {y2, y4 , …}; and {zn} into subsequences {z1, 

z3 , …} and {z2, z4 , …}. Note that

� The sequence {xn} can be reconstructed by using 

either the even sequences, {y2n} and {z2n}, or the odd 

sequences, {y2n–1} and {z2n–1} as follows:
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Example: Data Decomposition (5/5)

� By transmitting only the even or odd sequences of {yn}

and {zn}, the rate is the same as that of {xn}. But do 

we still have smaller quantization error?

� Quantization error is only affected by the dynamic range of 
the sequences

� The dynamic range of a subsequence will be smaller or 
equal to the original sequence
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Remarks on Data Decomposition

� Decomposing the {xn} sequence into subsequences 

may not result in any increase in rate

� The two subsequences had distinctly different 

characteristics, which should be encoded using 

different techniques

� If we had not split the {xn} sequence, same approach will be 

used to compress both subsequences

� It is possible to further decomposing subsequences 

into subsequences, and so on

� Data decomposition is also known as bank-filtering
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Filters

� Filters are popular tool for data decomposition. A filter 

isolates certain frequency components from others.

� Low-pass filters:

� Filters that only let through components below a certain 
frequency f0.  f0 is called the cut-off frequency

� High-pass filters:

� Filters that block all frequency components below a certain 
value f0 are called high-pass filters

� Band-pass filters:

� Filters that let through components that have frequency 
content above some frequency f1 but below frequency f2
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Example: Low-Pass Filter

� A filter is defined by their magnitude transfer function:

� The ratio of the magnitude of the output and input of the filter 
as a function of frequency

Ideal low-pass filter Realistic low-pass filter
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Sampling and Aliasing

� Nyquist theorem for digitization of analog signals:

� If the highest frequency component of a continuous-time 
signal is f0, then we need to sample the signal at more than 
2f0 times per second in order to fully reconstruct the original 

signal from the samples

� Aliasing effect: if the sampling rate is less than 2f0, 

frequency component higher than f0 will not be 

distinguishable from low frequency components:

f0–f0

freq.

mag.
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Digital Filters

� Digital filtering involves taking a weighted sum of 

current and past inputs to the filter and, in some 

cases, the past outputs of the filter

� The general form of the input-output relationships of 

the filter is given by

where the sequence {xn} is the input to the filter, the 

sequence {yn} is the output from the filter, and the 

values {ai} and {bi} are called the filter coefficients
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Example: Filter for Decomposition

� In previous example, {xn} is decomposed into {yn}

and {zn}. It is easy to show that the filter we use for 

extracting {yn} and {zn} out of {xn} are as follows:

� Filter for {yn}

� Filter for {zn}
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Filter Terminology

� If the input sequence is a single 1 followed by all 0s, 
the output sequence is called the impulse response 
of the filter

� The number N is often called the number of taps in 
the filter

� If the bi are all 0, then the impulse response will die 
out after N samples. These filters are called finite 
impulse response (FIR) filters

� If any of the bi have nonzero values, the impulse 
response can, in theory, continue forever. Filters with 
nonzero values for some of the bi are called infinite 
impulse response (IIR) filters.
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Example: A Simple Two-Tap Filter

� If a0 = 1.25, a1 = 0.5, all other ai and bi are zeros;

xn is an impulse function:

then the output yn is

{yn} is the impulse response (often denoted by {hn})
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Example: An IIR Filter

� If a0 = 1, b1 = 0.9, all other ai and bi are zeros;

xn is the impulse function, then the output yn is

Thus, the impulse response {hn} is
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Convolution Operation

� If {xn} and {yn} are the input and output, respectively, 

of a filter with impulse response {hn}n=0…M, then {yn}

can be obtained by the convolution of {xn} and {hn}:

where M is finite for an FIR filter and infinite for an IIR 

filter.
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Stability of a Filter

� A filter is stable if any bounded inputs will produce 

bounded outputs

� Because FIR filters are simply weighted averages, 

they are always stable

� For IIR filters, it is possible to have unbounded output 

even when the input is bounded

� Although IIR filters can become unstable, they can also 
provide better performance, in terms of sharper cutoffs and 
less ripple in the passband and stopband for a fewer number 
of coefficients
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Example: Unstable IIR Filter

� Consider a filter with a0 = 1 and b1 = 2. Suppose the 

input is a single 1 followed by 0’s, the output is

Even though the input contains a single 1, the output 

at time n = 30 is 230!
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Filter Banks

� In multimedia compression, we often have to 

decompose input data into multiple subsequences 

(i.e. frequency bands)

� We need more than two filters to do the JOB

� An array of filters is often called a filter bank

� In practice, we can cascade multiple use of a pair of 

low-pass and high-pass filters to decompose data 

into multiple frequency bands

freq.f0–f0
f1–f1 f2

f3–f2–f3
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Example: An 8-Band Filter Bank
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Design of a Pair of Low-High Filters

� For cascading implementation of filter banks, we 

need a pair of low-pass and high-pass filters

� The most popular filter pairs are the quadrature 

mirror filters (QMF), which were first proposed by 

Crosier, Esteban, and Galand in 1976

� These filters have the property that if the impulse response 
of the low-pass filter is given by {hn}, then the high-pass 
impulse response is given by {(–1)nhN–1–n}, that is,

.1,...,1,0,
21 −==−−
N

nnN nhh



24/40

Characteristics of Filters

� Johnston 8-tap QMF filter

� Smith-Barnwell 8-tap QMF filter
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Basic Subband Coding Algorithm

� Block diagram of the subband coding system:

Quantization is done differently for each band, this is
called the bit allocation problem; similarly, different entropy
coding methods can be used for different bands
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Analysis Filters

� The source output is passed through a bank of filters, 

called the analysis filter bank. The filters can be non-

overlapping or overlapping.
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Downsampling and Upsampling

� Since each filter output has smaller bandwidth, we 

can discard some samples without losing information; 

this is called down-sampling or decimation

� For reconstruction, we perform upsampling
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Non-Perfect Reconstruction

� Although theoretically there is no data loss for 

subband decomposition, in reality, this is not trivial

Input source spectrum
(freq. domain representation)

+in reality

Causing alias if we downsample the data in this band by factor 2!

ideally
+

Output of a two-band filter bank

V2(e
jω)
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Applications of Subband Coding

� Most audio codecs today uses subband coding

� Human ears can be modeled by a filter bank of 25 
overlapping bands

� Some researchers try to apply subband coding on 

images and videos, but not very successful

� Key issue: cascaded 2-D decomposition using separable
1-D filters is not very meaningful

HLLL

LH HH
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Problems with Time-Freq. Analysis

� Given a non-stationary signal, it is difficult to tell 

which frequency component happened at what time

� We can use short-term Fourier transform (STFT):

t0

2t0

Window function that selects the
signal segment for frequency analysis
while reducing boundary effects

Location of the
frequency analysis
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Key question: how do we pick the window size of g(t)?
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Concept of Wavelets

� Once the window function g(t) is fixed, the basis 

functions, g(t)ejmω0t, m = 0, 1, …, of STFT are:

� A different ideas is to adapt the window size to the 

basis function such that it contains one cycle only:

Such basis functions
are called wavelets
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Wavelet Basis Functions

� We can start with a single basis function, called 

mother wavelet, then translate and scale this function 

to create other basis functions

� Scaling: f(t/a) is the scaling of f(t) by a constant a

� Translation: f(t – b) is the translation of f(t) by a constant b

� Note that scaling will change the norm of a function:

To have the same norm, we must multiply f(t/a) by
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Example: Scaling

� Given the function

scale it by 0.5:
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Example: Translation

� Translate the function f(t/0.5) to the right
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Basis Function Generation

� Given a mother wavelet ψ(t), the remaining functions 

are obtained as

Note that the frequency domain representation of ψ(t)

is Ψa,b(ω) = F [ψa,b(t)], where F [⋅] is the Fourier 

transform.

� If a and b are continuous, then ψa,b(t) are the basis 

functions for continuous wavelet transform (CWT).
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Wavelet Transforms

� Forward transform:

� the coefficient w.r.t. each wavelet basis function are:

� Inverse transform

� f(t) can be recovered from wa,b by

where
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Selection of Mother Wavelet

� Note that CΨ must be finite for the inverse transform 

to exist → Ψ(0) = 0

� The mother wavelet ψ(t) must have zero mean

� The wavelets bases should have finite energy as well, 

i.e.,

� Since Ψ(ω) only has energy distributed in some frequency 
band, it is effectively a band-pass filter
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Selection of a and b

� If the scaling and translating parameters a and b are 

discrete values, they must be set properly so that no 

input data are missed in the action

� Small a and large b causes “gaps” in the analysis process

� A popular approach is to select a and b according to

a = a0
–m, b = nb0a0

–m,

where m and n are integers, a0 = 2, b0 = 1. That is,
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Example: Harr Wavelet

� The Harr wavelet is given by

By translating and scaling ψ(t), we can synthesize a 

variety of functions.

� Harr wavelet is effectively a simple high-pass filter 

that analyze the signal at various resolutions and 

locations
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Subband Coding vs. Wavelet Trans.

� In subband coding, a signal is decomposed into 

different frequency subbands for analysis

� The dimensions of time- and freq.-domain are the same

� In wavelet analysis, a signal can be decomposed into 

a (possibly) higher dimensional space for analysis

� Each subspace can represent different characteristics of the 
original signals (beyond frequency)


