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Transform Domain Data Analysis

a Given an invertible transform A, the entropy of a
source x does not change subject to A, i.e. Ax has the

same entropy as x.
d However, there are several reasons why we want to
perform lossy compression on Ax, instead of x:
m |nput data sequence can be interpreted with more insights
m |nput data possibly are de-correlated in transform domain

m The original time-ordered sequence of data can be
decomposed into different categories
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Example: Height-Weight Data (1/3)

a The height-weight data pair tends to cluster alone the
line x, = 2.5x,,. A rotation transform

[ cos¢ sing@

—sing cos¢@

j, ¢ =68.02°,

can simplify the data representation :




Example: Height-Weight Data (2/3)

a If we set 6, to zeros for all the data pairs, and

transform the data back to x,—x,, domain, we have the

reconstruction errors as follows:

Original data Reconstructed data

Height Weight Height Weight
65 170 68 169
75 188 75 188
60 150 60 150
70 170 68 171
56 130 53 131
80 203 81 203

68 160 65 162
50 o 45 2
40 80 34 84
50 153 60 150
69 148 61 151
62 140 57 142
76 164 67 168
64 120 50 125
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Example: Height-Weight Data (3/3)

d Note that, in original data, both x, and x,, have non-
negligible variances, however, for g, and 6,, only 6,
has large variance

d Variance (or energy) of a source and its information
has a positive relation; larger source variance, higher
entropy

m For Gaussian source, the differential entropy is (log, 7 c?)/2.

a The error introduced into the reconstructed sequence
of {x} is equal to the error introduced into the
transform-domain sequence { 6}.
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Transform Coding Principle

O Transform step:

m The source {x,} is divided into blocks of size N. Each block is
mapped into a transform sequence {e¢,} using a reversible mapping
m Most of the energy of the transformed block was contained in few
elements of the transformed values
O Quantization step:

m The transformed sequence is quantized based on the following
strateqgy:
o The desired average bit rate
o The statistics of the various transformed elements
o The effect of distortion on the reconstructed sequence

O Entropy coding step:

m The quantized data are entropy-coded using Huffman, AC, or other
techniques
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Transform Formulation

a For media coding, only linear transforms are used
m The forward transform can be denoted by

N-1
gn = Z xian,i :
i=0

m Theinverse transform is

N-1
x,=>.6b,.
i=0
d The selection of N is application-specific
m Complexity of transform is lower for small N
m Large N adapts to fast-changing statistics badly

m Large NN produces better resolution in transform domain
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2-D Forward Transform

a For 2-D signals X i @ general linear 2-D transform of
block size NxN is given as

N-1N-1

O = Z Z Xi jGi k-

Q If separable transform is used; the formulation can be
simplified to

N-1

N-1 N-1
Z Clk X .aj,l =Zak,i[2xi,jaj,l}
=0 i=0 j=0
— O In matrix form, the separable transform becomes
®=AXA".
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Orthonormal Transform

a All the transforms used in multimedia compression
are orthonormal transforms. Thus, A-! = AT.
In this case, ® = AXAT becomes ® = AXAL

a Orthonormal transforms are energy preserving

N-1
Y 07 =0"0=(Ax)" Ax

i=0

N-1
= x'ATAx=x"x= sz.

n
n=0

9/36




Energy Compaction Effect

a The efficiency of a transform depends on how much
energy compaction is provided by the transform

d The amount of energy compaction can be measured
by the ratio of the arithmetic mean of the variances to
their geometric means:

DI
Gye = T
([mYo? )
where o is the variance of the ith coefficients.

Note: The wider the spread of ¢ w.r.t. their arithmetic mean, the smaller the value of the geometric mean
will be — better energy compaction! 10/36




Decomposition of 1-D Input

a Transform decomposes an input sequence into
components with different characteristics. If

Lo L[
_ﬁ{l —J’

input x = [x,, x,], the transformed output is

AX =

_(x1+x2) (xl—xz)}
V2o N2 ]

The first transformed component computes the
average (i.e. low-pass) behavior of the input
sequence, while the 2" component captures the
differential (i.e. high-pass) behavior of the input.
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Decomposition of 2-D Input

a If A in previous example is used for 2-D transform
and X is a 2-D input, we have X = ATOA:

Xoo  Xor | _ T L 116, 6|1 1
Xo Xy | 211 =116, 6,1 -1
21{9004'901"'910"'911 000_001+910_911:|

2 900 + 901 _910 _911 900 _901 _910 + 911
= 00X T 901“0,1 + 910051,0 + 911051,1,

where ¢ is the outer product of ith and jth rows of A.

Q How do you interpret 6,,, ..., 6,,?
m 6, is the DC coefficient, and other §,; are AC coefficients.
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Karhunen-Loeve Transform (KLT)

a KLT consists of the eigenvectors of the
autocorrelation matrix: [R];; = E[X,X,,,,;,_y]-

O KLT minimizes the geometric means of the variance
of the transform coefficients — provides maximal G,

A Issues with KLT

m For non-stationary inputs, the autocorrelation function is time
varying; computation of KLT is relatively expensive

m KLT matrix must be transmitted to the decoder

m [f the input statistics change slowly, and the transform size
can be kept small, the KLT can be useful
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Example: KLT

a For N =2, the autocorrelation matrix for a stationary
process is

R R_(0) R_()
RO RO

The eigenvectors of R are

1)
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Discrete Cosine Transform

Q DCT is derived from the Discrete Fourier Transform
(DFT) by first perform an even-function extension to
the input data, then compute its DFT:

m Only real number operations are required
m Better energy compaction than DFT

Sl i Enii
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DFT
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DCT Formulation

a The rows of DCT matrix is composed of cosine
functions of different frequencies:

(21+1)]7Z’
fcos i=0,7=0,1,.,N-1

ECOS (21+1)17r i=1,.,N-1j=01,..N-1
\ 2N
d The inner product of the input signal with each row of
the matrix is the projection of the input signal onto a
cosine function of fixed frequency
m The larger N is, the better the frequency resolution is

[C]i,j =9
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Basis Functions of 8-Point DCT

d Each column of the DCT matrix is a basis function:

umn Dl £
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Basis Images of 8-Point 2-D DCT

O DCT can be extended to a 2-D transform:




Performance of DCT

a For Markov sources with high correlation coefficient p,

_ E['Xn'xn+1]
E[x’]

0

the compaction ability of DCT is close to that of KLT

O As many sources can be modeled as Markov sources
with high values for p, DCT is the most popular
transform for multimedia compression

19/36




Discrete Walsh-Hadamard Trans.

d The Hadamard transform is defined by an NxN
matrix H with the property HH" = NI.

m Simple to compute while still separate low frequency from
high frequency components of the input data

d The Hadamard matrix is recursively defined as:

|:HN HN

H,, =
HN _HN

}, and H, =[1].

—— 0 The DWHT transform matrix is obtained by
m Normalize the matrix by 1/N” so that it is orthonormal
m Re-arrange the rows according to number of sign changes
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Coding of Transform Coefficients

A Different transform coefficients should be quantized
and coded differently based on the amount of
iInformation it carries

m |nformation is related to the variance of each coefficients

Q The bit allocation problem tries to determine the level

of quantizer to use for different transform coefficients

d The Lagrange multiplier optimization technique is
often used to solve the optimal bit allocation

21/36




Lagrange Multiplier

d A constrained optimization problem tries to minimize
a cost function f(x, y) subject to some constraints on
the parameter x and y: g(x, y) =c

d The Lagrange cost function is defined as follows:
Jx,y, )= f ) - A gx,y) =] .

d Solution: solve
V.t y,4)=0.
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Rate-Distortion Optimization (1/3)

Q If the rate per coefficient is R and the rate per kth
coefficient is R, , then

1 M
R=—)> R,
M ,; ‘
where M is the number of transform coefficients

d The error variance for the kth quantizer &2, is related
to the kth input variance oy?, by:

Gi = akZ_ZR" O';k,
where ¢, depends on input distribution and quantizer
d The total reconstruction error is given by

M
2 2R, 2
o = E a2 "o, .
k=1
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Rate-Distortion Optimization (2/3)

d The objective of the bit allocation procedure is to find
R, to minimize o;* subject to total rate constraint R.

Q If we assume that ¢, is a constant « for all k, we can
set up the minimization problem in terms of Lagrange

multipliers as
M 1 M
J=a) 270, —/I(R—ZR,C}
k=1 M k=1

d Taking the derivative of J with respect to R, and
setting it to zero, we obtain the expression for R,

R, = %log2 (2aln20, ) —%log2 A.
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Rate-Distortion Optimization (3/3)

d Substituting R, to the expression for R, we have:
M 1
A=T]Raim2s? ) 272",
k=1

A Therefore, the individual bit allocations for each
transform coefficients is:

1 O
R, =R+—log, ————.

2 T )

— O Note that R, may not be integers or positive numbers
m Negative R,’s are set to zero
m Positive R,’s are reduced to a smaller integer value
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Zonal Sampling

Q Zonal sampling is a simple bit allocation algorithm:
1. Compute oy? for each coefficient.

2. Set R, =0 for all k and set R, = MR, where R, is the total
number of bits available for distribution.

3. Sort the variances { 0y?} Suppose os,> is the maximum.
4. Increment R Dby 1, and divide o3> by 2.
5. Decrement R, by 1. If R, =0, then stop; otherwise, go to 3.

Bit allocation map for an 8x8 transform
7 5

= L
oD e e ) LN

OO =W

fom R ane i s L S L]
R
o0 O 9O QO D O -—
cooocCcoQe
cococoooc o0
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Threshold Coding

d Another bit allocation policy is called threshold coding
m Arrange the transform coefficients in a line
m The first coefficient is always coded

m For remaining coefficients
« |If the magnitude is smaller than a threshold, it is skipped
« If the magnitude is larger than a threshold, its quantized value
and the number of skipped coefficients before it is coded

d Zigzag scan is often used for 2-D to 1-D mapping
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JPEG Image Compression

d A standard defined by ISO/IEC JTC1/SC 29/WG 1
in 1992

m The official IS number is IS 10918-1, which defines the input
to the decoder (a.k.a. the elementary stream), and how the
decoder reconstructs the image

m The popular file format JFIF for JPEG elementary stream is
defined in 10918-5
d There are several new image coding standards that
are incompatible to the old JPEG, but still bearing the
JPEG name
m Wavelet-based JPEG-2000 (IS 15444-1)
m High quality lossless/lossy JPEG-XR (IS 29199-2)
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JPEG Initial Processing

A Color space RGB — YCzCr mapping
O Chroma channel 4:2:2 sub-sampling

a Level shifting: assume each pixel has p-bit, then each
pixel x;, = x;; — 27"
a Split pixels into 8x8 blocks

m |f image size is not a multiple of 8, extra rows/columns are
padded to achieve multiple of 8

m Padded data is discarded after decoding
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JPEG 8x8 DCT Transform

a Forward DCT is applied to each 8x8 block

124 125 122 120 122 119 117 118
121 121 120 119 119 120 120 118
126 124 123 122 121 121 120 120
124 124 125 125 126 125 124 124
127 127 128 129 130 128 127 125
143 142 143 142 140 139 139 139
150 148 152 152 152 152 150 151
156 159 158 155 158 158 157 156
Level-shifting
Forward DCT
39.88 6.56 —2.24 1.22 —0.37 —1.08 0.79 1.13
—102.43 4.56 2.26 1.12 0.35 —0.63 —1.05 —0.48
37.77 1.31 1.77 0.25 —1.50 —2.21 —0.10 0.23
—5.67 2.24 —1.32 —0.81 1.41 0.22 —0.13 0.17
—3.37 —0.74 —1.75 0.77 —0.62 —2.65 —1.30 0.76
5.98 —0.13 —0.45 —0.77 1.99 —0.26 1.46 0.00
3.97 5.52 2.39 —0.55 —0.051 —0.84 —0.52 —0.13
—3.43 0.51 —1.07 0.87 0.96 0.09 0.33 0.01
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JPEG Quantization

d Midtread quantization is used; the step size for each
coefficients is from an 8x8 quantization matrix Q, e.g.,

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56 : :

14 17 22 29 5] 87 80 62 |:'> _Q,ij is the step size fo.r.

18 22 37 56 68 109 103 77 lJ'th tranSfOI’m COfoICIentS
24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

0 Quantized values are called “labels.” For input
coefficient 4;, we have

ij
6.

ll.j =|—L4+0.5]|
0,
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JPEG Quantization Example

a Quantization controls the entropy of the image
m Quantization matrices reflect image quality

m A scalar number (quality factor) is often used as quantization
matrix multiplier to control image quality

900/ Qoo
39.88 ) 656 224  1.22 (@ 11 10 16
~102.43 456 226  1.12 12 12 14 19
3777 131 177 025 14 13 16 24
567 224 -132 -0.81 14 17 2 29
0
lo=|"%/ +0.5|=[398% +0.5|=[2.99|=2
00 0) 16
00
100
EPEET
> I
3 0 0 0
2
0 0 0 0 32136




Entropy Coding

A DC/AC coefficients are coded differently

m DCs are coded using
o Differential coding + Huffman coding

o Each DC difference is coded using a Huffman prefix plus a
fixed length suffix

m ACs are coded using
o Run-Length coding + Huffman coding
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DC Difference Code Table

Difference

?\?tl_eé]_%g/ de value in each category (FLC-code as suffix)

as prefix) I

— —

0 0
1 —1 ]
2 —3 -2 2 3
3 —7 cen —4 4 e 7
4 —15 o —8 3 e 15
5 —31 cen —16 16 e 31
6 —63 e —32 32 e 63
7 —127 —64 64 127
8 —255 —128 128 255
9 —511 —256 256 511
10 —1,023 —512 512 1.023
11 —2.047 o —1,024 1,024 e 2.047
12 —4.,095 cen —2,048 2,048 e 4.095
13 —8.191 —4,096 4,096 8.191
14 — 16,383 —8.192 8,192 16,383
15 —32.767 e —16,384 16,384 e 32,767
16 32,768
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AC RLE Code Table

A AC is zigzag scanned into a 1-D sequence
d Each non-zero coefficient is coded using a Z/C

codeword plus a sign bit S

m / — number of zero run before the label

m C — label magnitude
m EOB is used to signal the end of each block
m ZRL is used to signal 15 consecutive zeros

Z/C Codeword Z/C  Codeword Z/C Codeword

0/0 (EOB) 1010 F/0 (ZRL) IT111111001

0/1 00 1/1 1100 F/1 ITITTI1I111110101
0/2 01 1/2 11011 F/2 ITTLTLII111110110
0/3 100 1/3 1111001 F/3 ITIITLIIT11110111
0/4 1011 1/4 [TI110110 F/4 ITTTT11111111000
0/5 11010 1/5 [TI11110110 F/5 ITTTTTT111111001
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JPEG Coding Example

QO A good example from Wikipedia:

83,261 bytes 15,138 bytes 4,787 bytes
compression ratio 2.6:1 compression ratio 15:1 compression ratio 46:1
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