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Transform Domain Data Analysis

� Given an invertible transform A, the entropy of a 

source x does not change subject to A, i.e. Ax has the 

same entropy as x.

� However, there are several reasons why we want to 
perform lossy compression on Ax, instead of x:

� Input data sequence can be interpreted with more insights

� Input data possibly are de-correlated in transform domain

� The original time-ordered sequence of data can be 
decomposed into different categories
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Example: Height-Weight Data (1/3)

� The height-weight data pair tends to cluster alone the 
line xh = 2.5xw. A rotation transform

can simplify the data representation :
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Example: Height-Weight Data (2/3)

� If we set θ1 to zeros for all the data pairs, and 
transform the data back to xh–xw domain, we have the 

reconstruction errors as follows:

Original data Reconstructed data
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Example: Height-Weight Data (3/3)

� Note that, in original data, both xh and xw have non-

negligible variances, however, for θ0 and θ1, only θ0

has large variance

� Variance (or energy) of a source and its information 

has a positive relation; larger source variance, higher 

entropy 

� For Gaussian source, the differential entropy is (log2πeσ2)/2.

� The error introduced into the reconstructed sequence 
of {x} is equal to the error introduced into the 

transform-domain sequence {θ}.
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Transform Coding Principle

� Transform step:

� The source {xn} is divided into blocks of size N. Each block is 

mapped into a transform sequence {en} using a reversible mapping

� Most of the energy of the transformed block was contained in few 

elements of the transformed values

� Quantization step:

� The transformed sequence is quantized based on the following 

strategy:

� The desired average bit rate

� The statistics of the various transformed elements

� The effect of distortion on the reconstructed sequence

� Entropy coding step:

� The quantized data are entropy-coded using Huffman, AC, or other 

techniques
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Transform Formulation

� For media coding, only linear transforms are used

� The forward transform can be denoted by

� The inverse transform is

� The selection of N is application-specific

� Complexity of transform is lower for small N

� Large N adapts to fast-changing statistics badly

� Large N produces better resolution in transform domain
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2-D Forward Transform

� For 2-D signals Xi,j, a general linear 2-D transform of 

block size N×N is given as

� If separable transform is used; the formulation can be 

simplified to

� In matrix form, the separable transform becomes

ΘΘΘΘ = AXAT.
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Orthonormal Transform

� All the transforms used in multimedia compression 
are orthonormal transforms. Thus, A–1 = AT.

In this case, ΘΘΘΘ = AXAT becomes ΘΘΘΘ = AXA–1.

� Orthonormal transforms are energy preserving
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Energy Compaction Effect

� The efficiency of a transform depends on how much 

energy compaction is provided by the transform

� The amount of energy compaction can be measured 

by the ratio of the arithmetic mean of the variances to 

their geometric means:

where σi
2 is the variance of the ith coefficients.
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will be → better energy compaction!
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Decomposition of 1-D Input

� Transform decomposes an input sequence into 

components with different characteristics. If

input x = [x1, x2], the transformed output is

The first transformed component computes the 

average (i.e. low-pass) behavior of the input 

sequence, while the 2nd component captures the 

differential (i.e. high-pass) behavior of the input.
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Decomposition of 2-D Input

� If A in previous example is used for 2-D transform 

and X is a 2-D input, we have X = ATΘA:

where αi,j is the outer product of ith and jth rows of A.

� How do you interpret θ0,0, …, θ1,1?

� θ0,0 is the DC coefficient, and other θi,j are AC coefficients.
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Karhunen-Loeve Transform (KLT)

� KLT consists of the eigenvectors of the 
autocorrelation matrix: [R]i,j = E[XnXn+|i–j|].

� KLT minimizes the geometric means of the variance 
of the transform coefficients → provides maximal GTC

� Issues with KLT

� For non-stationary inputs, the autocorrelation function is time 
varying; computation of KLT is relatively expensive

� KLT matrix must be transmitted to the decoder

� If the input statistics change slowly, and the transform size 
can be kept small, the KLT can be useful



14/36

Example: KLT

� For N = 2, the autocorrelation matrix for a stationary 

process is

The eigenvectors of R are

With orthonormal constraint, the transform matrix is

.
11

11

2

1









−
=K

,
)0()1(

)1()0(








=

xxxx

xxxx

RR

RR
R

., 21 








−
=








=

β

β

α

α
vv



15/36

Discrete Cosine Transform

� DCT is derived from the Discrete Fourier Transform 

(DFT) by first perform an even-function extension to 

the input data, then compute its DFT:

� Only real number operations are required

� Better energy compaction than DFT

DFT

DCT
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DCT Formulation

� The rows of DCT matrix is composed of cosine 

functions of different frequencies:

� The inner product of the input signal with each row of 

the matrix is the projection of the input signal onto a 

cosine function of fixed frequency

� The larger N is, the better the frequency resolution is
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Basis Functions of 8-Point DCT

� Each column of the DCT matrix is a basis function:
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Basis Images of 8-Point 2-D DCT

� DCT can be extended to a 2-D transform:
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Performance of DCT

� For Markov sources with high correlation coefficient ρ,

the compaction ability of DCT is close to that of KLT

� As many sources can be modeled as Markov sources 

with high values for ρ, DCT is the most popular 

transform for multimedia compression
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Discrete Walsh-Hadamard Trans.

� The Hadamard transform is defined by an N×N

matrix H with the property HHT = NI.

� Simple to compute while still separate low frequency from 
high frequency components of the input data

� The Hadamard matrix is recursively defined as:

� The DWHT transform matrix is obtained by

� Normalize the matrix by 1/N½ so that it is orthonormal

� Re-arrange the rows according to number of sign changes
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Coding of Transform Coefficients

� Different transform coefficients should be quantized 

and coded differently based on the amount of 

information it carries

� Information is related to the variance of each coefficients

� The bit allocation problem tries to determine the level 

of quantizer to use for different transform coefficients

� The Lagrange multiplier optimization technique is 

often used to solve the optimal bit allocation
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Lagrange Multiplier

� A constrained optimization problem tries to minimize 
a cost function f(x, y) subject to some constraints on 

the parameter x and y: g(x, y) = c

� The Lagrange cost function is defined as follows:

� Solution: solve
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Rate-Distortion Optimization (1/3)

� If the rate per coefficient is R and the rate per kth

coefficient is Rk , then

where M is the number of transform coefficients

� The error variance for the kth quantizer σrk

2, is related 

to the kth input variance σθk

2, by:

where αk depends on input distribution and quantizer

� The total reconstruction error is given by
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Rate-Distortion Optimization (2/3)

� The objective of the bit allocation procedure is to find 
Rk to minimize σr

2 subject to total rate constraint R.

� If we assume that αk is a constant α for all k, we can 

set up the minimization problem in terms of Lagrange 

multipliers as

� Taking the derivative of J with respect to Rk and 

setting it to zero, we obtain the expression for Rk:
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Rate-Distortion Optimization (3/3)

� Substituting Rk to the expression for R, we have:

� Therefore, the individual bit allocations for each 

transform coefficients is:

� Note that Rk may not be integers or positive numbers

� Negative Rk’s are set to zero

� Positive Rk’s are reduced to a smaller integer value
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Zonal Sampling

� Zonal sampling is a simple bit allocation algorithm:

1. Compute σθk
2 for each coefficient.

2. Set Rk = 0 for all k and set Rb = MR, where Rb is the total 

number of bits available for distribution.

3. Sort the variances {σθk
2} Suppose σθm

2 is the maximum.

4. Increment Rm by 1, and divide σθm
2 by 2.

5. Decrement Rb by 1. If Rb = 0, then stop; otherwise, go to 3.

Bit allocation map for an 8×8 transform
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Threshold Coding

� Another bit allocation policy is called threshold coding

� Arrange the transform coefficients in a line

� The first coefficient is always coded

� For remaining coefficients

� If the magnitude is smaller than a threshold, it is skipped

� If the magnitude is larger than a threshold, its quantized value 

and the number of skipped coefficients before it is coded

� Zigzag scan is often used for 2-D to 1-D mapping
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JPEG Image Compression

� A standard defined by ISO/IEC JTC1/SC 29/WG 1

in 1992

� The official IS number is IS 10918-1, which defines the input 
to the decoder (a.k.a. the elementary stream), and how the 
decoder reconstructs the image

� The popular file format JFIF for JPEG elementary stream is 
defined in 10918-5

� There are several new image coding standards that 

are incompatible to the old JPEG, but still bearing the 

JPEG name

� Wavelet-based JPEG-2000 (IS 15444-1)

� High quality lossless/lossy JPEG-XR (IS 29199-2)
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JPEG Initial Processing

� Color space RGB → YCBCR mapping

� Chroma channel 4:2:2 sub-sampling

� Level shifting: assume each pixel has p-bit, then each 

pixel xi,j = xi,j – 2p–1

� Split pixels into 8×8 blocks

� If image size is not a multiple of 8, extra rows/columns are 
padded to achieve multiple of 8

� Padded data is discarded after decoding
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JPEG 8×8 DCT Transform

� Forward DCT is applied to each 8×8 block

Level-shifting

Forward DCT
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JPEG Quantization

� Midtread quantization is used; the step size for each 
coefficients is from an 8×8 quantization matrix Q, e.g.,

� Quantized values are called “labels.” For input 

coefficient θij, we have

Qij is the step size for
i,j-th transform coefficients
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JPEG Quantization Example

� Quantization controls the entropy of the image

� Quantization matrices reflect image quality

� A scalar number (quality factor) is often used as quantization 
matrix multiplier to control image quality
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Entropy Coding

� DC/AC coefficients are coded differently

� DCs are coded using

� Differential coding + Huffman coding

� Each DC difference is coded using a Huffman prefix plus a 

fixed length suffix

� ACs are coded using

� Run-Length coding + Huffman coding
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DC Difference Code Table

Difference
category
(VLC-code
as prefix)

value in each category (FLC-code as suffix)
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AC RLE Code Table

� AC is zigzag scanned into a 1-D sequence

� Each non-zero coefficient is coded using a Z/C

codeword plus a sign bit S

� Z – number of zero run before the label

� C – label magnitude

� EOB is used to signal the end of each block

� ZRL is used to signal 15 consecutive zeros
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JPEG Coding Example

� A good example from Wikipedia:

83,261 bytes
compression ratio 2.6:1

15,138 bytes
compression ratio 15:1

4,787 bytes
compression ratio 46:1


