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Basic Concept of Quantization

� Quantization is the process of representing a large, 

possibly infinite, set of values with a smaller set

� Example: real-to-integer conversion

� Source: real numbers in the range [–10.0, 10.0]

� Quantizer: Q(x) = x + 0.5

� [–10.0, –10.0] → { –10, –9, …, –1, 0, 1, 2, …, 9, 10}

� The set of inputs and outputs of a quantizer can be 

scalars (scalar quantizer) or vectors (vector quantizer)
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The Quantization Problem

� Encoder mapping
� Map a range of values to a codeword

� Irreversible mapping

� If source is analog → A/D converter

� Decoder mapping
� Map the codeword to a (fixed) value representing the range 

� Knowledge of the source distribution can help us pick a 
better value representing each range

� If output is analog → D/A converter

� Informally, the encoder mapping is called the 
quantization process, and the decoder mapping is 
called the inverse quantization process
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Quantization Examples

� 3-bit Quantizer

� Encoder (A/D)                                              � Decoder (D/A)

� Digitizing a sine wave
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Quantization Function

� A quantizer describes the relation between the 

encoder input values and the decoder output values

� Example of a quantization function:
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Quantization Problem Formulation

� Input:

� X – random variable

� fX(x) – probability density function (pdf)

� Output:

� {bi}i = 0..M decision boundaries

� {yi}i = 1..M reconstruction levels

� Discrete processes are often approximated by 

continuous distributions

� Example: Laplacian model of pixel differences

� If source is unbounded, then the first and the last decision
boundaries = ±∞ (they are often called “saturation” values)
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Quantization Error

� If the quantization operation is denoted by Q(·), then

Q(x) = yi iff  bi–1 < x ≤ bi.

The mean squared quantization error (MSQE) is then

� Quantization error is also called quantization noise or 

quantizer distortion, e.g., additive noise model:
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Quantized Bitrate with FLC

� If the number of quantizer output is M, then the rate 

(per symbol) of the quantizer output is
R = log2M
� Example: M = 8 → R = 3

� Quantizer design problem:

� Given an input pdf fX(x) and the number of levels M in the 
quantizer, find the decision boundaries {bi} and the 
reconstruction levels {yi} so as to minimize the mean 

squared quantization error
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Quantized Bitrate with VLC

� For VLC representation of quantization intervals, the 

bitrate depends on decision boundary selection

� Example: eight-level quantizer:
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Optimization of Quantization

� Rate-optimized quantization

� Given: Distortion constraint σq
2 ≤ D*

� Find: { bi }, { yi } binary codes

� Such that: R is minimized

� Distortion-optimized quantization

� Given: Rate constraint R ≤ R*

� Find: { bi }, { yi } binary codes

� Such that: σq
2 is minimized
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Uniform Quantizer

� All intervals are of the same size

� Boundaries are evenly spaced (step size:∆), except for out-
most intervals

� Reconstruction

� Usually the midpoint is selected as the representing value

� Quantizer types:

� Midrise quantizer: zero is not an output level

� Midtread quantizer: zero is an output level
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Midrise vs. Midtread Quantizer

� Midrise                                   Midtread
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Uniform Quantization of Uniform Source

� If the source is uniformly distributed in [–Xmax, Xmax], 

the output is quantized by an M-level uniform 

quantizer, then the quantization step size is

and the distortion is
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Alternative MSQE Derivation

� We can also compute the “power” of quantization 
error q = x – Q(x), q ∈ [–∆/2, ∆/2] by:
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The SNR of Quantization

� For n-bit uniform quantization of an uniform source of 

[–Xmax, Xmax], the SNR is 6.02n dB, where n = log2M:
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Example: Quantization of Sena

� Darkening and contouring effects of quantization

8 bits / pixel

2 bits / pixel

1 bits / pixel

3 bits / pixel
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Quantization of Non-uniform Sources

� Given a non-uniform source, x ∈[–100, 100],

P(x∈[–1, 1]) = 0.95, and we want to design an 8-level 

(3-bit) quantizer.

� A naïve approach uses uniform quantizer (∆ = 25):

� 95% of sample values represented by only two numbers:
–12.5 and 12.5, with a maximal quantization error of 12.5 
and minimal error of 11.5

� If we use ∆ = 0.3 (two end-intervals would be huge) 

� Max error is now 98.95 (i.e. 100 – 1.05), however, 95% of 
the time the error is less than 0.15
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Optimal ∆ that minimizes MSQE

� Given pdf fX(x) of the source, let’s design an M-level 

mid-rise uniform quantizer that minimizes MSQE:
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Solving for Optimum Step Sizes

� Given an fX(x) and M, we can solve for ∆ numerically:

� Optimal uniform quantizer ∆ for different sources:
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Overload/Granular Regions

� Selection of the step size must trade off between 

overload noise and granular noise
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Variance Mismatch Effects (1/2)

� Effect of variance mismatch on the performance of a 

4–bit uniform quantizer
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Variance Mismatch Effects (2/2)

� The MSQE as a function of variance mismatch with a 

4–bit uniform quantizer
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Distribution Mismatch Effects

� Given 3-bit quantizer, the effect of distribution 

mismatch for different sources (SNR errors in dB):

� Form left-to-right, we assume that the sources are uniform, 
Gaussian, Laplacian, and Gamma, and compute the 
optimum MSQE step size for uniform quantizer

� The resulting ∆ gets larger from left-to-right

→ if there is a mismatch, larger than “optimum” ∆ gives better performance

→ 3-bit quantizer is too coarse
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Adaptive Quantization

� We can adapt the quantizer to the statistics of the 

input (mean, variance, pdf)

� Forward adaptive (encoder-side analysis)

� Divide input source in blocks

� Analyze block statistics

� Set quantization scheme

� Send the scheme to the decoder via side channel

� Backward adaptive (decoder-side analysis)

� Adaptation based on quantizer output only

� Adjust ∆ accordingly (encoder-decoder in sync)

� No side channel necessary



25/55

Forward Adaptive Quantization (FAQ)

� Choosing analysis block size is a major issue

� Block size too large

� Not enough resolution

� Increased latency

� Block size too small

� More side channel information

� Assuming a mean of zero, signal variance is 

estimated by
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Speech Quantization Example (1/2)

� 16-bit speech samples → 3-bit fixed quantization
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Speech Quantization Example (2/2)

� 16-bit speech samples → 3-bit FAQ

� Block = 128 samples

� 8-bit variance quantization
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FAQ Refinement

� So far, we assumed uniform pdf over maximal ranges, 

we can refine it by computing the range of distribution 

adaptively for each block

� Example: Sena image, 8×8 blocks, 2×8-bit for range 

per block, 3-bit quantizer

Original 8 bits/pixel Quantized 3.25 bits/pixel
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Backward Adaptive Quantization (BAQ)

� Key idea: only encoder sees input source, if we do 

not want to use side channel to tell the decoder how 

to adapt the quantizer, we can only use quantized 

output to adapt the quantizer

� Possible solution:

� Observe the number of output values that falls in outer levels 
and inner levels

� If they match the assumed pdf, ∆ is good

� If too many values fall in outer levels, ∆ should be enlarged, 
otherwise, ∆ should be reduced

� Issue: estimation of pdf requires large observations?
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Jayant Quantizer

� N. S. Jayant showed in 1973 that ∆ adjustment based 

on few observations still works fine:

� If current input falls in the outer levels, expand step size

� If current input falls in the inner levels, contract step size

� The total product of expansions and contraction should be 1

� Each decision interval k has a multiplier Mk

� If input sn–1 falls in the kth interval, step size is multiplied by Mk

� Inner-level Mk < 1, outer-level Mk > 1

� Step size adaptation rule:

where l(n–1) is the quantization interval at time n–1.

,1)1( −− ∆=∆ nnln M
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Output Levels of 3-bit Jayant Quantizer

� The multipliers are symmetric:

� M0 = M4, M1 = M5, M2 = M6, M3 = M7
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Example: Jayant Quantizer

� M0 = M4 = 0.8, M1 = M5 = 0.9

� M2= M6 = 1.0, M3= M7 = 1.2, ∆0= 0.5

� Input: 0.1, –0.2, 0.2, 0.1, –0.3, 0.1, 0.2, 0.5, 0.9, 1.5
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Picking Jayant Multipliers

� We must select ∆min and ∆max to prevent underflow 

and overflow of step sizes

� Selection of multipliers

� Total production of expansion/contractions should be 1

� Scaled to probability of events in each interval, we have

� Pick γ > 1, and let Mk = γ lk, we have

→ γ and lk are chosen, Pk is known. 
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Example: Ringing Problem

� Use a 2-bit Jayant quantizer to quantize a square 

wave

� P0 = 0.8, P1 = 0.2 → pick l0 = –1, l1 = 4, γ ~ 1.



� To avoid overload errors, we should expand ∆ rapidly 

and contracts ∆ moderately

� Robustness over changing input statistics
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Jayant Quantizer Performance

Jayant is about 1dB lower
than fixed quantizer
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Non-uniform Quantization

� For uniform quantizer,

decision boundaries

are determined by a

single parameter ∆.

� We can certainly reduce

quantization errors

further if each decision

boundaries can be

selected freely
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pdf-optimized Quantization

� Given fX(x), we can try to minimize MSQE:

� Set derivative of σq
2 w.r.t. yj to zero and solve for yj,

we have:

If yj are determined, the bj’s can be selected as:
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Lloyd-Max Algorithm (1/3)

� Lloyd-Max algorithm solves yj and bj iteratively until 

an acceptable solution is found

� Example: For midrise quantizer,
b0 = 0, bM/2 is the largest input,

we only have to find
{ b1, b2, …, bM/2–1} and

{ y1, y2, …, yM/2–1}.
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Lloyd-Max Algorithm (2/3)

� Begin with j = 1, we want to find b1 and y1 by

� Pick a value for y1 (e.g. y1 = 1), solve for b1 and 

compute y2 by

y2 = 2b1 + y1,

and b2 by

� Continue the process until all {bj} and {yj} are found
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Lloyd-Max Algorithm (3/3)

� If the initial guess of y1 does not fulfills the termination 

condition:

where

we must pick a different y1 and repeat the process.
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Example: pdf-Optimized Quantizers

� We can achieve gain over the uniform quantizer

(9.24) (7.05)

(12.18) (9.56)

(14.27) (11.39)
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Mismatch Effects

� Non-uniform quantizers also suffer mismatch effects. 

� To reduce the effect, one can use an adaptive non-

uniform quantizer, or an adaptive uniform quantizer 

plus companded quantization techniques

Variance mismatch on a 4-bit Laplacian non-uniform quantizer.
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Companded Quantization (CQ)

� In companded quantization, we adjust (i.e. re-scale) 

the intervals so that the size of each interval is in 

proportion to the probability of inputs in each interval

equivalent to a non-uniform quantizer
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Example: CQ (1/2)

� The compressor function:

� The uniform quantizer:
step size ∆ = 1.0
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Example: CQ (2/2)

� The expander function:

� The equivalent non-uniform

quantizer
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Remarks on CQ

� If the level of quantizer is large and the input is 
bounded by xmax, it is possible to choose a c(x) such 

that the SNR of CQ is independent to the input pdf:

SNR = 10 log10(3M2) – 20log10 α,

where c′(x) = xmax / (α |x|) and a is a constant.

� Two popular CQ for telephones: µ-law and A-law

� µ-law compressor

� A-law compressor
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Entropy Coding of Quantizer Outputs

� The levels of the quantizer is the alphabet of entropy 
coders, for M-level quantizer, FLC needs log2M bits 

per output

� Example of VLC coded output of minimum MSQE 

quantizers:

� Note: non-uniform quantizer has higher entropies since high 
probability regions uses smaller step sizes
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Vector Quantization

� Vector quantization groups source data into vectors

� A vector quantizer maintains a set of vectors called the 
codebook. Each vector in the codebook is assigned an index.
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Why Vector Quantization (1/2)?

� Correlated multi-dimensional data have limited valid 

ranges
useless

useless
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Why Vector Quantization (2/2)?

� Looking at the data from a higher dimension allow us 

to better fit the quantizer structure to the joint pdf

� Example: quantize the Laplacian source data two at a time:

11.44 dB 11.73 dB
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Vector Quantization Rule

� Vector quantization (VQ) of X may be viewed as the 

classification of X into a discrete number of sets

� Each set is represented by a vector output Yj

� Given a distance measure d(x, y), we have

� VQ output: Q(X) = Yj iff d(X, Yj) < d(X, Yi), ∀ i ≠ j.

� Quantization region: Vj = { X: d(X, Yj) < d(X, Yi), ∀ i ≠ j}.

Vj

Yj

x1

x2



52/55

Codebook Design

� The set of quantizer output points in VQ is called the codebook
of the quantizer, and the process of placing these output points 
is often referred to as the codebook design

� The k-means algorithm† is often used to classify the outputs

� Given a large set of output vectors from the source, known as the 
training set, and an initial set of k representative patterns

� Assign each element of the training set to the closest 

representative pattern

� After an element is assigned, the representative pattern is updated 

by computing the centroid of the training set vectors assigned to it

� When the assignment process is complete, we will have k groups of 

vectors clustered around each of the output points

† The idea is the same as the scalar quantization problem in Stuart P. Lloyd, “Least Squares Quantization in PCM,” IEEE 

Trans. on Information Theory, Vol. 28, No. 2, March 1982.
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The Linde-Buzo-Gray Algorithm

1. Start with an initial set of reconstruction values 
{Yi

(0)}i=1..M and a set of training vectors {Xn}n=1..N.

Set k = 0, D(0) = 0. Select threshold ε.

2. The quantization regions {Vi
(k)}i=1..M are given by

Vj
(k) = {Xn: d(Xn, Yi) < d(Xn, Yj), ∀ j ≠ i}, i = 1, 2, …, M.

3. Compute the average distortion D(k) between the 

training vectors and the representative value

4. If (D(k) – D(k–1))/D(k) < ε, stop; otherwise, continue

5. Let k = k + 1. Update {Yi
(k)}i=1..M with the average 

value of each quantization region Vi
(k–1). Go to step 2.
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Example: Codebook Design

� Initial state � Final state
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Impact of Training Set

� The training sets used to construct the codebook 

have significant impact on the performance of VQ

Images quantized at 0.5 
bits/pixel, codebook size 256


