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Concept of Lossy Coding

� If x is the original data, xc is the compressed 
representation, and y is the reconstructed data,

x must equals y for lossless coding

� For lossy coding, we want to find a way to modify x

such that the entropy is reduced.

As a result, x ≈ x′ = y′, and Rate(y′) < Rate(y).

x xc y
compression decompression

x x′c y′
compression decompression

x′
non-invertible
modification
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Distortion Criteria

� The difference between x and x′ is the distortion

� Whether the distortion is acceptable or not depends 
on the applications:
� A work of art?

� Commercial photos?

� Machine vision applications?

� Audiophile entertainment?

� Political speech broadcasting?

� If the target user of the distorted data is a human:
� Difficult to incorporate the human response into 

mathematical design procedures

� If a human is used to evaluate distortion, there is difficulty in 
objectively reporting the results
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Objective Distortion Measures (1/2)

� If {xn} is the source and {yn} is the reconstructed data:

� Squared error measure: d(x, y) = (x – y)2

� Absolute difference measure: d(x, y) = |x – y|.

� A scalar-value measure is “easier” to use:

� Mean square error (MSE):

� Mean absolute difference (MAD):

� Max error measure:
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Objective Distortion Measures (2/2)

� Often, relative error measures (w.r.t. {xn}) are more 

descriptive:

� Signal-to-noise ratio:

� Peak-signal-to-noise-ratio:

� Until today, there is no perceptual measures (neither 
visual nor audio) that can represent human 
perceptions objectively
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Human Visual System

� Human eyes

� Retina: has two types of sensors

� Rod – sensitive to magnitude

� Cone – sensitive to wavelengths

� Fovea

� A small area of the retina
where cones concentrate

� High resolution area of retina

� Just noticeable difference (JND)

� If the background intensity is I,

the center intensity is I + ∆I,

JND is the minimal ∆I which

makes the center square visible

© 2009 WebMD, LLC 

contrast sensitivity test
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Human Auditory Perception

� Human auditory system model (Basilar Membrane):

� A bandpass filterbank

� 25 overlapping critical bands
covering 20~20k Hz

� Masking: a loud sound will
mask the audibility of another
sound of nearby frequency
(in the same critical band)

Critical band effect

Fletcher-Munson curves

© 2009 WebMD, LLC 
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Formulation of Lossy Compression

� Assume that the source alphabet X = {x0, x1, …, xN–1}

and the reconstructed alphabet Y = {y0, y1, …, yM–1}

are different:

� What is the information relationship between two different 
(but correlated) random variables?

� Note that the entropies of the source and the 
reconstruction are:
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Conditional Self-Information

� A measure of the relationship between two random 
variables is the conditional entropy (the average 
value of the conditional self-information)

� The conditional self-information of an event A, given 
that another event B has occurred, can be defined as

� B : the event “something is barking”
A : the event “there is a dog”

→ P(A | B) should be close to one, which means that the 
conditional self-information i(A | B) would be close to zero
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Conditional Entropy

� The conditional entropies of the source and 
reconstruction are given as

� The conditional entropy H(X | Y) is the amount of 
uncertainty about X, given that we know what value 

the reconstruction Y took. Note that H(X | Y) ≤ H(X).
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Example: Uniform Quantization (1/2)

� Let X = {0, 1, …, 15}, Y = {0, 2, …, 14}, yi = xi/2×2.

� Assume P(X = i) = 1/16, for i ∈ X, then H(X) = 4 bits.

� P(Y = j) = P(X = j) + P(X = j+1) = 1/8 → H(Y) = 3 bits.

� Thus, the conditional entropy H(X | Y) is 
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Example: Uniform Quantization (2/2)

� Note that, the conditional entropy H(X | Y) = 1 means 
that the uncertainty of X given Y is 1 bit

� On the other hand, since

we have that H(Y | X) = 0 bits.
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Average Mutual Information (1/2)

� Mutual information: the amount of joint information 
contained by both X and Y. For the joint event xi and 
yj, the mutual information is defined as

� Average mutual information:
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Average Mutual Information (2/2)

�

� I(X; Y) = I(Y; X)
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Differential Entropy

� The concept of entropy can be extended to sources 
with continuous distributions. The differential entropy 
of a random variable X with pdf fX(x) is defined to be:

� With this definition, the relation between mutual 
information and entropies of X and Y still holds:

I(X; Y) = h(X) – h(X | Y).
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Rate-Distortion Theory

� Rate distortion theory is concerned with the trade-offs 
between distortion and rate in lossy compression 
schemes

� Rate distortion function R(D):

� A function that specifies the lowest rate at which the output 
of a source can be encoded while keeping the distortion less 
than or equal to D.

� Given a source X, a reconstruction Y, and a distortion 
constraint D*, if the distortion measure is d(x, y), then

But, what is the lowest R for D ≤ D*? Is it minimal H(Y)?
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Minimal Rate R Given D and Codec

� Note that, if the distortion constraint D* is large, 

random guesses on the decoder side (which has
R = 0) may still satisfy the rate constraint D ≤ D*.

� In 1959, Shannon showed that the minimal rate for a 
given distortion is given by

where Γ = {{P(yj | xi)} such that D({P(yj | xi)}) ≤ D*}
is determined by the compression scheme

� H(Y | X) = 0 → I(X ; Y) = H(Y)

� H(Y | X) = H(Y) → I(X ; Y) = 0
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Theoretical Rate-Distortion Function

� Assume that the data source is zero mean Gaussian 
with variance σ2. If the distortion function is
d(x, y) = (x – y)2, the R-D function is:
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Rate-Distortion Functions in Practice

� The simplest (yet effective) first-order R-D model for 
video data:

where R is the rate, C the video complexity, D the 

distortion, and α the R-D model parameter.

D
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R ⋅= α
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Source Models

� If the sources can be modeled accurately, we would 
be able to derive more accurate R-D relationships for 
coding decisions

� In practice, tractable model that performs generally ok is 
better than precise model that works well for specific output 
samples

� Popular models

� Probability models

� Linear system models
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Data Source Probability Models

� Uniform distribution

� Used when we know nothing about the source

� Gaussian distribution

� Mathematically simple

� Sample mean approaches
Gaussian

� Laplacian Distribution

� Has higher concentration
at zero than Gaussian model

� Most de-correlated multimedia
data has this characteristic

� Gamma Distribution

� Even more peaked at zero than Laplacian model
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Linear System Models

� Autoregressive Moving Average Model: ARMA(N, M)

� Autoregressive Model: AR(N)

� AR(N) is a Markov Model of order N.

� Examples of AR(1) sources:
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Auto Correlation Function

� The autocorrelation function for the AR(N) process 

can be obtained as follows:

� Autocorrelation function of a process tells us the 
sample-to-sample behavior of a sequence

� Slowly decay w.r.t. k → high sample-to-sample correlation

� Fast decay w.r.t. k → low sample-to-sample correlation

� No sample-to-sample correlation → zero (except when k = 0).
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