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Concept of Lossy Coding

Q If x is the original data, x_ is the compressed
representation, and y is the reconstructed data,

@ compression :\¥XC_/ decompression :®

x must equals y for lossless coding

Q For lossy coding, we want to find a way to modify x
such that the entropy is reduced.
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modification

As a result, x = x"=y’, and Rate(y") < Rate(y).
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Distortion Criteria

d The difference between x and x” is the distortion

ad Whether the distortion is acceptable or not depends
on the applications:
m A work of art?
m Commercial photos?
m Machine vision applications?
m Audiophile entertainment?
m Political speech broadcasting?

Q If the target user of the distorted data is a human:

m Difficult to incorporate the human response into
mathematical design procedures

m [f a human is used to evaluate distortion, there is difficulty in
objectively reporting the results
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Objective Distortion Measures (1/2)

A If {x } is the source and {y } is the reconstructed data:
m Squared error measure: d(x, y) = (x — y)?
m Absolute difference measure: d(x, y) = Ix —yl.

3 A scalar-value measure is “easier” to use:

1 N
= Mean square error (MSE): o :ﬁz(x” —y ).

n=1

X, =Y,

1 N
m Mean absolute difference (MAD): d, =WZ
n=1

m Max error measure: d_ =max|x, —y,
n
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Objective Distortion Measures (2/2)

a Often, relative error measures (w.r.t. {x,}) are more
descriptive: ,
m Signal-to-noise ratio: SNR =10log,, % (dB).
o)

2
d

2

X
m Peak-signal-to-noise-ratio: PSNR =10log,,—2% (dB).
%

2
d

a Until today, there is no perceptual measures (neither
visual nor audio) that can represent human
perceptions objectively
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Human Visual System

d Human eyes
m Retina: has two types of sensors
o Rod — sensitive to magnitude
o Cone — sensitive to wavelengths

m Fovea
e A small area of the retina
where cones concentrate

o High resolution area of retina

m Just noticeable difference (JND)

o If the background intensity is 1,
the center intensity is I + Al,
JND is the minimal Al which
makes the center square visible

© 2009 WebMD, LLC

contrast sensitivity test
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Human Auditory Perception

O Human auditory system model (Basilar Membrane):
m A bandpass filterbank

m 25 overlapping critical bands A ““ @ijm_m;

covering 20~20k Hz |

m Masking: a loud sound will
mask the audibility of another
sound of nearby frequency
(in the same critical band)

Cochlea

© 2009 WebMD, LLC
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Formulation of Lossy Compression

d Assume that the source alphabet X= {x,, x, ..., xy_;}
and the reconstructed alphabet Y= {y,, y;, ..., V11 }
are different:

m What is the information relationship between two different
(but correlated) random variables?

d Note that the entropies of the source and the
reconstruction are:

H(X)= —Nz_i P(x;)log, P(x;)

i=0

H(Y)=-Y P(y,)log, P(y,)

J=0
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Conditional Self-Information

ad A measure of the relationship between two random
variables is the conditional entropy (the average
value of the conditional self-information)

d The conditional self-information of an event A, given

that another event B has occurred, can be defined as

1
i(AlB)=1o =—log P(A| B).
(Al B)=log P(AIB) gP(AlB)
m B :the event “something is barking”
A : the event “there is a dog”

— P(A | B) should be close to one, which means that the
conditional self-information i(A | B) would be close to zero
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Conditional Entropy

d The conditional entropies of the source and
reconstruction are given as

N-1M-1

H(X1Y)==) > P(x,1y)P(y;)log, P(x;|y,)

i=0 j=0

d The conditional entropy H(X | Y) is the amount of
uncertainty about X, given that we know what value
the reconstruction Y took. Note that H(X | Y) < H(X).

Note: H(X1¥)=Y P(Y = HH(XIY = j)== P(Y = )3 P(X =il¥ = j)log,P(X =il Y = ).
Jj=0 j=0 i=0 10/23




Example: Uniform Quantization (1/2)

QLletX={0,1,...,15}, Y={0,2, ..., 14}, y. = Lx/2]x2.
m Assume P(X =1i) =1/16, for i € X, then H(X) = 4 bits.
m P(Y=j)=P(X=j)+P(X=j+1)=1/8 = H(Y) = 3 bits.

d Thus, the conditional entropy H(X | Y) Is

H(X1Y)==) > P(X =ilY = ))P(Y = j)log, P(X =ilY = j)
=—Z[P(X =JjlY=)PX = jplog, P(X =jlIY = j)+
+P(X = j+11Y = j)P(Y = j)log, P(X = j+11Y = j)] =1.
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Example: Uniform Quantization (2/2)

d Note that, the conditional entropy H(X | Y) = 1 means
that the uncertainty of X given Yis 1 bit

a On the other hand, since
ifi=jori=j+1, for j=0,2,4,...,14

1
PY=jlX=i)=
( / ) {O otherwise.

we have that H(Y | X) =0 bits.
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Average Mutual Information (1/2)

A Mutual information: the amount of joint information
contained by both X and Y. For the joint event x; and
y;; the mutual information is defined as

1 1 i P(x; | yj).

(x.cv.)=1 —1 =
) o T, PG Px)

a Average mutual information:

-1

2
3

I1(X:Y)=

i \g

.

P(x Y Ix;3Y;)

| o
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<

1

] P(x 1y)
P(x. 1y )P(y.)log——~.
i=0 j=0 ! ! P(xi)
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Average Mutual Information (2/2)

N-1M-1 P(x;1y))
Q [(XY)= P(x,,y;)]lo —
ZZ R
N-1M-1 N-1M-1
= P(x;,y)og P(x,1y)= > > P(x,,y,)log P(x,)
i=0 j=0 i=0 j=0
=H(X)-H(XY).
AN
Q I(X; Y)=1Y; X) ‘
"
H(X) H(Y)

I(X;Y)
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Differential Entropy

d The concept of entropy can be extended to sources
with continuous distributions. The differential entropy
of a random variable X with pdf f,(x) is defined to be:

WX)=—[ fy(x)log fy (x)dx.

Q With this definition, the relation between mutual
information and entropies of X and Y still holds:

I(X;Y) = h(X) - h(X 7).
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Rate-Distortion Theory

O Rate distortion theory is concerned with the trade-offs
between distortion and rate in lossy compression
schemes

a Rate distortion function R(D):

m A function that specifies the lowest rate at which the output
of a source can be encoded while keeping the distortion less
than or equal to D.

m Given a source X, a reconstruction Y, and a distortion
constraint D*, if the distortion measure is d(x, y), then
N-1M-1

D=> > P(y,1x)P(x)d(x,y)).

i=0 j=0
But, what is the lowest R for D < D*? Is it minimal H(Y)?
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Minimal Rate R Given D and Codec

a Note that, if the distortion constraint D* is large,
random guesses on the decoder side (which has
R = 0) may still satisfy the rate constraint D < D*,

Q In 1959, Shannon showed that the minimal rate for a
given distortion is given by

R(D)= mm I(X;Y),

{P(y;lx;)lel’

where I' = { {P(y;1 x,)} such that D({P(y; | x,)}) < D*}
IS determined by the compression scheme

m HY1X)=0—>IX;Y)=H(Y)

m HYIX)=HY) = I(X;Y)=0
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ate-Distortion Function

Theoretical |

d Assume that the data source is zero mean Gaussian
with variance &. If the distortion function is
d(x, y) = (x — y)?, the R-D function is:
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Rate-Distortion Functions in Practice

Q The simplest (yet effective) first-order R-D model for

video data: c

R=0o —
D

where R is the rate, C the video complexity, D the
distortion, and a the R-D model parameter.
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Source Models

Q If the sources can be modeled accurately, we would
be able to derive more accurate R-D relationships for
coding decisions

m |n practice, tractable model that performs generally ok is
better than precise model that works well for specific output
samples

a Popular models
m Probability models
m Linear system models
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Data Source Probability Models

O Uniform distribution
m Used when we know nothing about the source

O Gaussian distribution - | | | ! !
= Mathematically simple S
= Sample mean approaches 7 L Gasin
Gaussian 05— F
0 Laplacian Distribution . i
m Has higher concentration i
at zero than Gaussian model "' A
m Most de-correlated multimedia o2 - i \
data has this characteristic !_%,_’/’f" .
O Gamma Distribution A

m Even more peaked at zero than Laplacian model
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Linear System Models

a Autoregressive Movmg Average Model: ARMA(N, M)
X, —Zal X, I+Zb]€n i tE,.
Q Autoregressive Model: AR(N)
N
X, = Zalxn ;TE,.

m AR(N) is a Markov Model of order N.
O Examples of AR(1) sources:
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Auto Correlation Function

d The autocorrelation function for the AR(N) process
can be obtained as follows:

Rxx(k):E[x K- k] E|:(Zalxn,+€J :|
o Bt b

Z a.R (z)+0, k=0

=1 ! XX

a Autocorrelation function of a process tells us the
sample-to-sample behavior of a sequence
m Slowly decay w.r.t. k — high sample-to-sample correlation
m Fast decay w.r.t. £k — low sample-to-sample correlation
m No sample-to-sample correlation — zero (except when k = 0).

23/23




