Mathematical Background on Lossy Data Compression

National Chiao Tung University Chun-Jen Tsai 10/30/2014

Distortion Criteria

- $\hfill\square$ The difference between x and x' is the distortion
- Whether the distortion is acceptable or not depends on the applications:
 - A work of art?
 - Commercial photos?
 - Machine vision applications?
 - Audiophile entertainment?
 - Political speech broadcasting?
- □ If the target user of the distorted data is a human:
 - Difficult to incorporate the human response into mathematical design procedures
 - If a human is used to evaluate distortion, there is difficulty in objectively reporting the results

 \Box If {*x_n*} is the source and {*y_n*} is the reconstructed data:

- Squared error measure: $d(x, y) = (x y)^2$
- Absolute difference measure: d(x, y) = |x y|.

□ A scalar-value measure is "easier" to use:

• Mean square error (MSE):
$$\sigma_d^2 = \frac{1}{N} \sum_{n=1}^N (x_n - y_n)^2$$
.

• Mean absolute difference (MAD): $d_1 = \frac{1}{N} \sum_{n=1}^{N} |x_n - y_n|.$

• Max error measure:
$$d_{\infty} = \max_{n} |x_{n} - y_{n}|$$
.

Human Visual System

□ Human eyes

- Retina: has two types of sensors
 - Rod sensitive to magnitude
 - Cone sensitive to wavelengths
- Fovea
 - A small area of the retina where cones concentrate
 - High resolution area of retina
- Just noticeable difference (JND)
 - If the background intensity is *I*, the center intensity is $I + \Delta I$, JND is the minimal ΔI which makes the center square visible

Human Auditory Perception

□ Human auditory system model (Basilar Membrane):

- A bandpass filterbank
- 25 overlapping critical bands covering 20~20k Hz
- Masking: a loud sound will mask the audibility of another sound of nearby frequency (in the same critical band)

Minimal Rate R Given D and Codec \Box Note that, if the distortion constraint D^* is large, random guesses on the decoder side (which has R = 0) may still satisfy the rate constraint $D \le D^*$. □ In 1959, Shannon showed that the minimal rate for a given distortion is given by $R(D) = \min_{\{P(y_i|x_i)\}\in\Gamma} I(X;Y),$ where $\Gamma = \{ \{ P(y_i | x_i) \} \text{ such that } D(\{ P(y_i | x_i) \}) \le D^* \}$ is determined by the compression scheme $\blacksquare H(Y \mid X) = 0 \rightarrow I(X ; Y) = H(Y)$ $\blacksquare H(Y \mid X) = H(Y) \rightarrow I(X ; Y) = 0$

Rate-Distortion Functions in Practice

The simplest (yet effective) first-order R-D model for video data:

$$R = \alpha \cdot \frac{C}{D}$$

where *R* is the rate, *C* the video complexity, *D* the distortion, and α the R-D model parameter.

Data Source Probability Models

- Uniform distribution
 - Used when we know nothing about the source
- Gaussian distribution
 - Mathematically simple
 - Sample mean approaches Gaussian
- □ Laplacian Distribution
 - Has higher concentration at zero than Gaussian model
 - Most de-correlated multimedia data has this characteristic
- Gamma Distribution
 - Even more peaked at zero than Laplacian model

 \Box Autoregressive Moving Average Model: ARMA(N, M)

$$x_n = \sum_{i=1}^N a_i x_{n-i} + \sum_{j=1}^M b_j \mathcal{E}_{n-j} + \mathcal{E}_n$$

 \Box Autoregressive Model: AR(*N*)

$$x_n = \sum_{i=1}^N a_i x_{n-i} + \mathcal{E}_n.$$

• AR(N) is a Markov Model of order N.

 \Box Examples of AR(1) sources:

Auto Correlation Function

□ The autocorrelation function for the AR(N) process can be obtained as follows:

$$R_{xx}(k) = E\left[x_n x_{n-k}\right] = E\left[\left(\sum_{i=1}^N a_i x_{n-i} + \mathcal{E}_n\right) x_{n-k}\right]$$
$$= E\left[\sum_{i=1}^N a_i x_{n-i} x_{n-k}\right] + E\left[\mathcal{E}_n x_{n-k}\right] = \begin{cases}\sum_{i=1}^N a_i R_{xx}(k-i), & k > 0\\\sum_{i=1}^N a_i R_{xx}(i) + \sigma_{\mathcal{E}}^2, & k = 0\end{cases}$$

- Autocorrelation function of a process tells us the sample-to-sample behavior of a sequence
 - Slowly decay w.r.t. $k \rightarrow$ high sample-to-sample correlation
 - Fast decay w.r.t. $k \rightarrow$ low sample-to-sample correlation
 - No sample-to-sample correlation \rightarrow zero (except when k = 0).