Dictionary-based Coding
Technigues

National Chiao Tung University
Chun-den Tsai
10/16/2014

Rationale

a In previous two chapters, we looked at coding
techniques that assume a source that generates a
sequence of independent symbols.

m Most data sources are correlated, thus, the coding step is
generally preceded by a de-correlation step (i.e. model
prediction).

a Alternatively, we can build a list of commonly
occurring patterns and encode these patterns by
transmitting their index in the list
— dictionary techniques

2/31

Static vs. Adaptive Dictionary

d The dictionary holds a list of strings of symbols and it
may be static or dynamic (adaptive)

Q Static dictionary — permanent, sometimes allowing
the addition of strings but no deletions

a Dynamic dictionary — holding strings previously found
in the input stream, allowing for additions and
deletions of strings as new input symbols are being
read

3/31

Basic ldea of Dictionary Coding

a Given an input source, we want to

|dentify frequent symbol patterns

Encode those more efficiently

Use a default (less efficient) encoding for the rest
Hopefully, the average bits per symbol gets smaller

3 In general, dictionary-based techniques works well
for highly correlated data (e.g. text), but less efficient
for data with low correlation (e.g. i.i.d. sources)

4/31

Motivating Example

a Consider an ‘English’ source with 26 letters & six
punctuation marks
m Single-symbol FLC, fixed-length encoding: 5 bps
m Four-symbol FLC, fixed-length encoding: 20 bps (324)
a If we assume uneven distribution of the symbols

m Pick a dictionary witch contains the 256 most-frequent
patterns (probability p) and encode them with 8 bits

m Encode the rest with 20 bits
m Use 1-bit prefix to distinguish the two cases

then, the average rate is 9p + 21(1 — p) =21 — 12p.
If p>0.084, 21 — 12p < 20.

5/31

Static Dictionary

a Using a static dictionary is less complex, but the
probability p of a hit highly depends on the
applications

m For student records in a university is probably ok.

d The key for success is that the most common

patterns are a small subset of all possible messages

m Out of over 100,000 English words, only less than 2,000
words are used in most writings

6/31

Digram Coding

d The dictionary is composed of
m All letters from the alphabet
m As many digrams (pairs of letters) as possible

a For example, if we want to encode pure ASCI| text
documents, we can design a dictionary of size 256
entries, and

m Source alphabet: 95 printable ASCII symbols
m Digrams: 161 most common pairs

7/31

Simple Digram Coding Example

d The source alphabet A ={a, b, ¢, d, r}

a Dictionary:
Code Entry Code Entry
000 a 100 r
001 b 101 ab
010 C [10 ac

011 d 111 ad

—— 0 Try to code the sequence abracadabra, the output is
101100110111101100000.

8/31

Problem: Which Digrams to Use?

O Source 1:LaTex documents 0O Source 2: C programs

Pair Count Pair Count Pair Count Pair Count
elp 1128 ar 314 Bip 5728 st 442
pt 838 at 313 nllp 1471 le 440
bl 823 pw 309 snl 1133 ut 440
th 817 te 296 in 985 f(416
he 712 s 295 nt 739 ar 381
in 512 dip 272 = 687 or 374
sl 494 po 266 i 662 rip 373
er 433 io 257 1/, 615 en 371
Pa 425 co 256 b= 612 er 358
rp 401 re 247); 558 ri 357
en 392 A 246 Ny 554 at 352
on 385 rip 239 ninl 506 pr 351
ni 353 di 230 pf 505 te 349
ti 322 ic 229 elp 500 an 348
pi 317 ct 226 P 444 lo 347

9/31

Adaptive Dictionary Technique

A Original ideas published by Jacob Ziv and Abraham
Lempel in 1977 (LZ77/LZ1) and 1978 (LZ78/LZ2)

a The most well-known dictionary-based technique,
LZW, is a modification to LZ algorithms published by
Terry Welch in 1984

10/31

LZ77 (1/2)

a General approach
m Dictionary is a portion of the previously encoded sequence
m Use a sliding window for compression

d Mechanism

m Find the maximum length match for the string pointed to by
the search pointer in the search buffer, and encode it

O Rationale

m [f patterns tend to repeat locally, we should be able to get
more efficient representation

11/31

LZ77 (2/2)

Q Sliding window is composed of a search buffer and a look-
ahead buffer (note: window size W= S + LA)

Match pointer Search pointer
a _ _ | al b rlal|l _|al|d]al]lb r| a r r| a r roa _
— N _
—~ ~—
Search buffer Lool;—ahead buffer
(size S =8) (size LA=T7)

O Offset = search pointer — match pointer (o = 7)

O Length of match = number of consecutive letters matched (I =

QO Codeword (c = C(r)), where C(x) is the codeword for x
O Encoding triple: <o, I, c> =<7, 4, C(r)>

m |f FLC is used and alphabet size is 1Al, <o, I, c> Can be
encoded with [log,S |+ [log,W |+ log,|Al | bits.

4)

12/31

Possible Cases for Triples

d There could be three different possibilities that may
be encountered during the coding process:
m No match for the next character to be encoded in the window
m Thereis a match
m The matched string extends inside the look-ahead buffer

d For each of these cases, we have a triple to signal
the case to the decoder

13/31

LZ77 Encoding Example

O Sequence Q lcadabrarirarradl

m cabracadabrarrarrad lcadabrarlrarrad|

m W=13,§=7 lcadabrarlrarrad|
Q lcabracaldabrarlrarrad m send <3, 3, C(r)>

= no match ford Q Could we do better?

= send <0, 0, C(d)> m send <3, 5, C(d)> instead
Q labracadlabrarrlarrad

labracadlabrarrlarrad

labracadlabrarrlarrad

labracadlabrarrlarrad

m send <7, 4, C(r)>

14/31

LZ77 Decoding Example

Q Current input: <0, 0, C(d)> <7, 4, C(r)> <3, 5, C(d)>
Q Current output: cabraca
A Decode: <0, 0, C(d)>
m Decode C(d): clabracadl
QA Decode: <7, 4, C(r)>
m Start with the first ‘a’, copy four letters: cabralcadabral
m Decode C(r): cabracladabrarl

Q Decode: <3, 5, C(d)>
m Start with the first ‘7, copy three letters: cabracadalbrarrarl
m Copy two more letters: cabracadabrlarrarar]
m Decode C(d): cabracadabrarrarard

15/31

LZ77 Variants

Q For LZ77, we have
m Adaptive scheme, no prior knowledge
m Asymptotically approaches the source statistics
m Assumes that recurring patterns close to each others

d Possible improvements

m Variable-bit encoding: PKZip, zip, gzip, ..., etc., uses a
variable-length coder to encode <o, [, ¢>.

m Variable buffer size: larger buffer requires faster searches
m Elimination of <0, 0, C(x)>

e LZSS sends a flag bit to signal whether the next “token” is an
<o, I> pair or the codeword of a symbol

16/31

Problems with LZ77

Q If the recurring patterns happens with a period larger
than the search window, the performance is bad

ad Example:

a b c¢c de f g h 1 alblc|df|e|f]|g]|h]1 ‘J:IE]E:|:d:|:{IE:|-.‘§.Eh i

Search buffer Look ahead buffer

17/31

LZ78

a LZ78 improvements from LZ77
m No search buffer — explicit dictionary instead
m Encoder/decoder must build dictionary in sync
m Encoding: <i, ¢>
e i =index in the dictionary, i = 0 for symbols not in the dictionary
» ¢ = code of the following character
d Example: encode the following contents

m wabbabwabbabwabbabwabbabwoobwoobwoo

18/31

LZ78 Example

Q Input: wabbabwabbabwabbabwabbabwoobwoobwoo
A Dictionaries:

final dictionary
A

initial dictionary (empty)

Dictionary
Index Entry Encoder Output Index Entry
0, C(w)) 01 w
0, C(a)) 02 a
(0, C(b)) 03 b
3, C@)y) o4 ba
(0, C(h)) 05 b
(1, C(a)) 06 wa
(3, C(h)) 07 bb
(2, C(H) 08 alp
dictionary after encoding w, a, b (6, C(b)) 09 wab
4, C(h)) 10 balp
Encoder Output Index Entry (9, C (b)) 11 wabb
<0, C(w)> 01 w (8, C(w)) 12 apw
<0, C(a)> 02 a :> 0, C(o)) 13 0
<0, C(b)> 03 b (13, CH) 14 op
(1, C(o)) 15 wo
(14, C(w)) 16 olpw
(13, C(0)) 17 00

19/31

Remarks on LZ78

a Observation
m |f we keep on encoding, the dictionary will keep on growing

d Possible solutions

m Stop growing the dictionary
« Effectively switch to a static dictionary

m Prune it
o Based on usage statistics

m Resetit
o Start all over again

d The best solution depends on the knowledge of the
source

20/31

LZ/8 Variants: LZW

A Invented by Terry Welch in 1984

a Idea
m Instead of <i, ¢>, encode i only

a Algorithm
m [nitial dictionary contains all alphabet letters, p = null

while (!done)
read next symbol into a
if (p*a) 1is in the dictionary // Note: ‘*’ stands for concatenation

p = p*a
else
send out index of p
add p*a to the dictionary
p = a
end

21/31

Example: LZW Encoding

Q Input: wabbabwabbabwabbabwabbabwoobwoobwoo
A Dictionaries:

initial dictionary (source alphabet) final dictionary
In(iex Erz;ry Index Entry Index Entry

2 a 01] 14 ap w

3 b :> 02 a 15 wabb

4 o 03 b 16 balp

5 W 04 0 17 B wa
05 w 18 abb
o6 wa 19 balp w
07 ab 20 wo
08 bb 21 00
09 ba 22 ol
10 alp 23 pwo
11 B w 24 oolp
12 wab 25 P woo
13 bba

Q Output: 523321681012911716544 1121234

22/31

Problems with LZW Decoding

a Decoding of LZW is simple, in general
m Output symbols from the dictionary as indexed by the inputs
m Construct the dictionary on-the-fly as the encoder does

d However, if we have a message pattern c¢ScS ...,
where c is a character, S is a string, we may run into
a situation that the indexed entry is in partial
construction

d Solution: the current dictionary entry under
construction is in p, we should allow reading partial
data out of p during decoding

23/31

Example: Special Case in Decoding

a Alphabet A = {a, b}, input is abababab, encoder output
1S 1235

d Decoding dictionaries:

initial dictionary intermediate dictionary
Tndex Entry Index Entry
1 a _> 1 a
2 b 2 b
3 ab
4 ba
5

when we reach decoding of 5, p = ab???, we do not
have the complete output!

24/31

Application: Compress

a An early implementation of LZW
d Adaptive dictionary, starts with 2° entries
Q User can configure max codeword length b, . = 9~16

Qa Dictionary grows up to double in size

m When dictionary reaches 2% entries, it becomes a static
dictionary encoder

A If compression ratio falls below a threshold, dictionary
IS reset

25/31

Application: GIF Images

a LZW scheme, similar to compress:

d Clear code is used to reset the encoder/decoder. For
b bits/pixel images, 2’ is used as the clear code

Q Dictionary size is initially 27+!

3 Dictionary size can grows up to 4096 entries

d Format:
m Codewords stored in blocks of 8-bit characters

m Each block begins with a header with a size count up to 255,
and ends with a block terminator symbol (8 zero bits)

m The last block has a end-of-information code, 2? +1, before
the block terminator

26/31

GIF Performance

Q GIF vs. arithmetic coding

Arithmetic Coding Arithmetic Coding

Image GIF of Pixel Values of Pixel Differences
Sena 51,085 53.431 31,847
Sensin 60,649 58,306 37,126
Earth 34,276 38,248 32,137

Omaha 61,580 56,061 51,393

27/31

Application: PNG Images

d Based on LZ77, patent-free alternative to GIF
d Designed specifically for lossless image compression
O Modes: true color, grayscale, 8-bit pallette

d Two autonomous compression components

m Deflate (RFC 1951) — LZ77-style dictionary compression
algorithm plus Huffman coding

m Filtering — lossless transformations of byte-level image data

28/31

PNG — Deflate

A Deflate = LZ77 + Huffman

d Three types of data blocks
m Uncompressed, LZ77 + fixed Huffman, LZ77 + adaptive
Huffman
a Match length is between 3 and 258 bytes
m A sliding window of at least 3-byte long is examined
m [f match is not found, encode the first byte and slide window

m At each step, LZ77 either outputs a codeword for a literal or
a paired value of <match_length, offset>

o Match length is encoded by index code (257~285) and a
selector code (0~5 bits)

o Offset (1~32768) is encoded using Huffman code

29/31

PNG — Filtering

Q Filters are applied on a scanline-by-scanline basis
Q All algorithms applied to bytes (not pixels)

Q Filter types:
m None: unmodified value
Sub: difference from previous byte value (mod 256)
Up: difference from the byte value above
Average: subtract average of the left and the above bytes

Paeth:
o Compute initial estimate by left + above — upper_left

o The value of left, above, or upper_left that is closest to the
initial estimate is used as the estimate

30/31

PNG: Performance

A PNG vs. GIF vs. arithmetic coding

Arithmetic Coding

Arithmetic Coding

Image PNG GIF of Pixel Values of Pixel Differences
Sena 31,577 51,085 53,431 31,847
Sensin 34,488 60,649 58,306 37,126
Earth 26,995 34,276 38,248 32,137
Omaha 50.185 61.580 56,061 51,393

31/31

