Arithmetic Coding

National Chiao Tung University
Chun-den Tsai
10/09/2014

About Large Block Coding

a Huffman coding is inefficient if the probability model
IS biased (e.g. P, >>0.5). Although extended
Huffman coding fixes this issue, it is expensive:

m The codebook size increases exponentially w.r.t. alphabet
set size

a Key idea:

Can we assign codewords to a long sequences of
symbols without generating codes for all possible
sequences of the same length?

Solution: Arithmetic Coding

2/31

Arithmetic Coding Background

a History

m Shannon started using cumulative density function for
codeword design

m Original idea by Elias (Huffman’s classmate) in early 1960s
m First practical approach published in 1976, by Rissanen (IBM)

m Made well-known by a paper in Communication of the ACM,
by Witten et al. in 19871

Q Arithmetic coding addresses two issues in Huffman coding:
m Integer codeword length problem
m Adaptive probability model problem

T ILH. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic coding for data compression,” Communication of the ACM,
30, 6(June), 1987, pp. 520-540 3/31

Two-Steps of Coding Messages

d To encode a long message into a single codeword
without using a large codebook, we must

m Step I: use a (hash) function to compute an ID (or tag) for the
message. The function should be invertible

m Step lI: Given an ID (tag), assign a codeword for it using
simple rules (e.g. maybe something similar to Golomb
codes?), hence, there is no need to build a large codebook

a Arithmetic coding is an example of how these two
steps can be achieved by using cumulative density
function (CDF) as the hash function

4/31

CDF for Tag Generation

A Given a source alphabet 4= {q,, a,, ..., a,}, a random
variable X(a,) =i, and a probability model
®. P(X =1i) = P(a;). The CDF is defined as:

F, (i) = XP(X = k).

a CDF divides [0, 1) into disjoint subintervals:

tag for a, can be any value that belongs to [Fy(i — 1), F(7))

Fy(1) Fy(2) Fy(i—1) Fy(i) Fy(m)

|
|

5/31

Example of Tag Generation

3 In arithmetic coding,
each symbol is mapped
to an interval

message: “eaii!”

€ a
11—, 05—., ','0.26— /
mr |« |«
0 0 0
:l :i :z
e e e
a . a a
0 — 0.2 — e 0.2 —

Symbol Probability Interval
a 2 [0, 0.2)
e 3 [0.2, 0.5)
i A [0.5, 0.6)
0 2 [0.6, 0.8)
u A [0.8, 0.9)
/ A [0.9, 1.0)
[i /
I,-0.236— / I,~0.2336— --------- 0.2336 — /
] w _ ap
0 0
i _ HE
e e
\ a \) a
10.23 — 10.233 — '0.23354 —

6/31

Tag Selection for a Message (1/2)

d Since the intervals of messages are disjoint, we can
pick any values from the interval as the tag
m A popular choice is the lower limit of the interval

d Single symbol example: if the mid-point of the interval
[Fy(a;), Fy(a;)) is used as the tag T(a;) of symbol a,,
then

TX(ai):iP(X =k)+%P(X =)

=FX(i—1)+%P(X:i).

Note that: the function T,(a,) is invertible.

7/31

Tag Selection for a Message (2/2)

d To generate a unique tag for a long message, we
need an ordering on all message sequences

m A logical choice of such ordering rule is the lexicographic
ordering of the message

a With lexicographical ordering, for all messages of
length m, we have

T (x)= S P(y) +%P<xi>,

Y<X;
where y < x;. means y precedes x; in the ordering of all
messages.

d Bad news: need P(y) for all y < x; to compute T,(x;)!

8/31

Recursive Computation of Tags (1/3)

d Assume that we want to code the outcome of rolling a
fair die for three times. Let’'s compute the upper and
lower limits of the message “3-2-2.”

m For the first outcome “3,” we have

IO = F(2), u®=Fy(3).

m For the second outcome “2,” we have upper limit

Fy@(32) = [P(x; = 1) + P(x, =2)] + P(x = 31) + P(x = 32)
=F2)+ P(x;, =3)P(x,=1) + P(x; =3)P(x,=2)
= F(2) + P(x; = 3)F(2) = Fy(2) + [F(3) — Fy(2)]F(2).
Thus, u®@ =10+ (D - [D)F(2).
Similarly, the lower limit F,?(31) is [=D + (u®D — [DYF(1).

9/31

Recursive Computation of Tags (2/3)

m For the third outcome “2,” we have
3 = F,3(321), u® =F3(322).

Using the same approach above, we have

Fyd(321) = Fy®(31) + [Fy®(32) - Fy®(31)]Fy(D).
F,3(322) = F,O(31) + [F2(32) — F, OB 1)]F(2).

Therefore,
3 =@ + u® - [P)F,(1), and
U® =@ 4 (u® — [D)F(2).

10/31

Recursive Computation of Tags (3/3)

d In general, we can show that for any sequence
X = (XX,...X,),

[V =[=D 4 (=D — [-DyF (x —1)
u®™ = (=D 4 (=) — [-DYF (),
If the mid-point is used as the tag, then

(n) , 7(n)
u'"’ +1
T, (x)= .

d Note that we only need the CDF of the source
alphabet to compute the tag of any long messages!

11/31

Deciphering The Tag

ad The algorithm to deciphering the tag is quite

straightforward:

1. Initialize [9 =0, 4@ = 1.

2. Foreachk, k=1, find ' = (Ty(x) — [*D)/(u*kD — [=D),
3. Find the value of x, for which Fy(x, — 1) <7 < Fy(x)).
4. Update u® and [0,
5. If there are more symbols, go to step 2.

Q In practice, a special “end-of-sequence” symbol is
used to signal the end of a sequence.

12/31

Example of Decoding Tag

Q Given 2= {1,2,3}, F(1) = 0.8, F(2) = 0.82, F(3) = 1,
[©=0,u® =1. If the tag is Ty(x) = 0.772352, what is x?

" =(0.772352 - 0)/(1 - 0) = 0.772352 Note:
—0<< — . [= [4 (yn-D) _ [-DYF (x,~1)
Fi0) =01 0.8 = Fy1) I R

" =(0.772352 - 0)/(0.8 — 0) = 0.96544
Fy(2)=0.82<1 <1=F3) — 13
[=0.656, u® =0.8.

" =(0.772352 - 0.656)/(0.8 — 0.656) = 0.808
Fy(1)=0.8<¢" <0.82=F,(2) — 132
[=0.7712, u® = 0.77408.

" =(0.772352 - 0.7712)/(0.77408 — 0.7712) = 0.4

F(1)=0<1<0.8=Fyl) — 1321

13/31

Binary Code for the Tag

A If the mid-point of an interval is used as the tag 7,(x),
a binary code for T,(x) is the binary representation of
the number truncated to i(x) = log(1/P(x))] + 1 bits.

a For example, 4= { a,, a,, a;, a, } with probabilities
{0.5,0.25,0.125, 0.125 }, a binary code for each
symbol is as follows:

Symbol Fy Ty In Binary [log ﬁ'l + 1 Code
1 500 2500 .0100 2 01
2 750 .6250 1010 3 101
3 875 8125 1101 4 1101
4 1.000 9375 111 4 1111

d The binary code for a message is defined recursively!

14/31

Unique Decodability of the Code

d Note that the tag 7,(x) uniquely specifies the interval
[Fy(x—1), Fy(x)), if LTx(x) . is still in the interval, it is
unique. Since [Ty(x)J,y, > Fy(x-1) because 1/2/® <
P(x)/2 = Ty(x) — Fy(x-1), we know [T(x)J, is still in
the interval.

d To show that the code is uniquely decodable, we can
show that the code is a prefix code. This is true
because [LT(x)], LTx(X)]+ (1721)) < [Fy(x-1),
F,(x)). Therefore, any other code outside the interval
[F(x-1), F\(x)) will have a different /(x)-bit prefix.

15/31

Efficiency of Arithmetic Codes

d The average code length of a source A™ is:
1
L =D PXOI(X) =) P(X)Hlog P(XJ + 1_
1
< ZP(X){log b

(X)

+1+1 == P(x)log P(x)+2)_ P(X)

=H(X"™)+2.

Recall that for i.i.d. sources, H(X™) = mH(X).

Thus,

H(X)<I, <H(X)+2.
m

16/31

Arithmetic Coding Implementation

a Previous formulation for coding works, but we need
real numbers with undetermined precision to work

m Eventually [and u®™ will be close enough to identify the
message, but could take long iterations

m [0 avoid recording long real numbers, we can sequentially
outputs known digits, and rescale the interval as follows:

E;: [0,0.5) = [0, 1); E,(x)=2x
E,:[0.5,1) = [0, 1); E,(x)=2(x—0.5).

3Q As interval narrows, we have one of three cases
1. [™, u™] c [0, 0.5) — output 0, then perform E, rescale
2. [I™, u™] c [0.5, 1) — output 1, then perform E, rescale
3. 1™ €]0,0.5), u™ €[0.5, 1) — output undetermined

17/31

Implementation Key Points

3a Principle

m Scale and shift simultaneously x, upper bound, and lower
bound will gives us the same relative location of the tag.

d Encoder

m Once we reach case 1 or 2, we can ignore the other half of
[0,1) by sending all the prefix bits so far to the decoder

m Rescale tag interval to [0, 1) by using E,(x) or E,(x).

a Decoder
m Scale the tag interval in sync with the encoder

18/31

Tag Generation with Scaling (1/3)

a Consider X(a,) =i, encode 1 3 2 1, given the model:

Given 4= {1,2,3}, Fy(1)=0.8, F,(2) = 0.82, Fy(3) = 1,

(D=0, u®=1.

Input: 1321

[V = [0 4 (u©® — [O)F (0) =0
u® = [0 + 4O — [OYF (1) =0.8
Output:

(D, uD) & [0, 0.5)
(D, uD)y &z [0.5, 1)
— get next symbol

Input: *321
[® =0.656, u® =0.8
[[®, u®) < [0.5, 1) = Output: 1

E, rescale:

[=2x(0.656 — 0.5) =0.312
u® =2x(0.8-0.5)=0.6
Output: 1

19/31

Tag Generation with Scaling (2/3)

Input: **21

[=12+ W - [P)F(1) =0.5424
u® =12 + (u® - [P)F(2) = 0.54816
[[®), u®) c [0.5, 1) — Output: 11

E, rescale:

[=2%(0.5424 — 0.5) = 0.0848
u® =2x(0.54816 — 0.5) = 0.09632
[[®), u®) < [0, 0.5) — Output: 110

E, rescale:

[® =2x0.0848 = 0.1696

u® = 2x0.09632 = 0.19264

[[®), u®) < [0, 0.5) — Output: 1100

E, rescale:

[®) =2x0.1696 = 0.3392

u® =2x0.19264 = 0.38528

[[®), u®) < [0, 0.5) — Output: 11000

E, rescale:

[® =2x0.3392 = 0.6784

u® = 2x0.38528 = 0.77056

[[®), u®) < [0.5, 1) — Output: 110001

E, rescale:

[=2%(0.6784 — 0.5) = 0.3568
u® =2x(0.77056 — 0.5) = 0.54112
Output: 110001

20/31

Tag Generation with Scaling (3/3)

d The final symbol ‘1" in the input sequence results in:

Input: ***1

(D =13+ W - [D)F,(0) =0.3568
u® =13 + (u® - [M)F(1) = 0.504256
Output: 110001

a End-of-sequence symbol can be a pre-defined value
in [[™, u™). If we pick 0.5,, as EOST, the final output
of the sequence is 11000110...0.

Q Note that 0.110001 =2-1 + 22+ 29

=(.765625.

T The number of bits for the EOS symbol shall be the same as the decoder word-length. 545,

Tag Decoding Example (1/2)

O Assume word length is set to 6, the input sequence is

110001 100000.

Input tag: 110001100000
Output: 1

" =(0.765625 — 0)/(0.8 — 0) = 0.9579
Fy(2)=0.82<1<1=F,3)

Output: 13

[@ =0+ (0.8 — 0)xF,(2) = 0.656,

u® =0+ (0.8 —0)xFy3)=0.8

E, rescale:

[® =2%(0.656 — 0.5) =0.312
u® =2x(0.8-0.5)=0.6
Update tag: *10001100000

Input tag: *10001100000

" =(0.546875 - 0.312)/(0.6 — 0.312) = 0.8155
Fy(1)=0.8<1 <0.82=Fy(2)

Output: 132

[®=0.5424, u® = (0.54816

E, rescale:

[=2x(0.5424 — 0.5) = 0.0848
u® =2x(0.54816 — 0.5) = 0.09632
Update tag: **0001100000

22/31

Tag Decoding Example (2/2)

E, rescale: E, rescale:

1(3) 2%0.0848 = 0.1696 (3) = 2x%(0.6784 — 0.5) =0.3568
u® = 2x0.09632 = 0.19264 u® =2x%(0.77056 — 0.5) = 0.54112
Update tag: ***001100000 Update tag: ******]100000

E, rescale: Now, since the final pattern 100000 is the

1(3) 2x0.1696 = 0.3392 EOS symbol, we do not have anymore input bits.
u® =2x0.19264 = 0.38528
Update tag: ****01100000 The final digit is 1 because the final interval is in
Fy(0)=0<[®<u® <0.8=Fy(1)

E, rescale: Output: 1321

1(3) 2x0.3392 = 0.6784
u® =2x0.38528 = 0.77056
Update tag: *****1100000

23/31

Rescaling in Case 3

Qa If the limits of the interval contains 0.5, i.e.,
[€[0.25, 0.5), u™ €[0.5, 0.75), we can perform
rescaling by E;: [0.25, 0.75) — [0, 1); E;(x) =2(x —0.25).

A If we decide to perform E, rescaling, what output do
we produce for an E; rescale operation?
m Recall that, for E,, 0 is sent, and for E,, 1 is sent

m For E;, it depends on the non-E; rescale operation after it.
That is, we can keep count of consecutive E, rescales and
issue the same number of zeros/ones after the first
encounter of E,/E, rescale operation.

For example, E;E;E;E, — 1000.

» Only used to properly rescale
the intervals at the decoder!

24/31

Integer Implementation

O Assume that the interval limits are represented using
integer word length of n, thus

n times n times n—1 times

[0.0, 1.0) — [00...0, 11...1), and 0.5 — 10...0.

Q Furthermore, if symbol j occurs n; times in a total of
n,., Symbols, then the CDF can be estimated by
Fy(k)=CC(k)/n,,,, where CC(k) is the cumulative

" k
count defined by cctr=3n,

Thus, interval limits are:
[=17 [@ =19 $ 1)) CC(x, 1)/ 1y |
u™ = 17 [@ =1 L)X CC(x,) 1y |1,

25/31

Encoder (Integer Implementation)

Initialize / and u.
Get symbol.

(u—1+1)x Cum_Count(x — 1)

<1+
Total _Count
(u—1+1) x Cum_Count(x)
u «— [+ —1

Total_Count

while (MSB of u and [are both equal to b or E; condition holds)
if (MSB of u and [are both equal to b)

{

send b

shift / to the left by 1 bit and shift O into LSB

shift u to the left by 1 bit and shift 1 into LSB

while(Scale3 > 0)

{

send complement of b

) decrement number of digits for E; scaling operations

}

if (E5 condition holds)

{
shift [to the left by 1 bit and shift O into LSB
shift u to the left by 1 bit and shift 1 into LSB
complement (new) MSB of / and u
increment Scale3

26/31

Decoder (Integer Implementation)

Initialize / and u.
Read the first m bits of the received bitstream into tag ¢.

k=0

while (t—1+ 1) x Total_Count — 1 > Cum_Count (k)
u—1+1

k—k+1

Decode symbol x.
(u—101+1)x Cum_Count(x — 1)

Total _Count
- (u—1+1)x Cum_Count(x) [
| < P
. Total Count

[<— [+

while (MSB of u and [are both equal to b or E; condition holds)
if (MSB of u and [are both equal to b)

{

shift / to the left by 1 bit and shift O into LSB

shift u to the left by 1 bit and shift 1 into LSB

shift 7 to the left by 1 bit and read next bit from received bitstream into LSB
}

if (E; condition holds)
{
shift / to the left by 1 bit and shift O into LSB
shift u to the left by 1 bit and shift 1 into LSB
shift 7 to the left by 1 bit and read next bit from received bitstream into LSB
complement (new) MSB of [, u, and ¢

27/31

Binary Arithmetic Coders

d Most arithmetic coders used today are binary coders,
l.e., the alphabet = {0, 1}
d For non-binary data sources, you must apply a

“binarization” process to turn the messages into
binary messages before coding

0 Because there are only two letters in the alphabet,
the probability model consists of a single number.

m Easier to adopt context-sensitive probability models

m Easier to adopt “quantized” probabilities for simplification of
calculations

28/31

Arithmetic vs. Huffman Coding

a Average code length of m symbol sequence:
m Arithmetic code: HX) <[, < HX) + 2/m
m Extended Huffman code: H(X) <[, < H(X) + 1/m

d Both codes have same asymptotic behavior

a Extended Huffman coding requires large codebook
for m" extended symbols while AC does not

A In general,
m Small alphabet sets favor Huffman coding
m Skewed distributions favor arithmetic coding

a Arithmetic coding can adapt to input statistics easily

29/31

Adaptive Arithmetic Coding

3 In arithmetic coding, since coding of each new
iIncoming symbol is based on a probability table, we
can update the table easily as long as the transmitter
and receiver stays in sync

a Adaptive arithmetic coding:

m [nitially, all symbols are assigned a fixed initial probability
(e.g. occurrence count is setto 1)

m After a symbol is encoded, update symbol probability (i.e.
occurrence count) in both transmitter and receiver

m Note that the occurrence count may overflow, we have to
rescale the count before this happens. For example:

c=|_c/2—|.

30/31

Applications: Image Compression

O Compression of pixel values directly

Total Size Compression Ratio Compression Ratio

Image Name Bits/Pixel (bytes) (arithmetic) (Huffman)
Sena 6.52 53.431 1.23 1.16
Sensin 7.12 58,306 1.12 1.27
Earth 4.67 38,248 1.71 1.67
Omaha 6.84 56,061 1.17 1.14

O Compression of pixel differences

Total Size Compression Ratio Compression Ratio
Image Name Bits/Pixel (bytes) (arithmetic) (Huffman)
Sena 3.89 31,847 2.06 2.08
Sensin 4,56 37,387 1.75 1.73
Earth 3.92 32,137 2.04 2.04

Omaha 6.27 51,393 1.28 1.26

31/31

