
Introduction to Subversion:

a Version Control System

2012/05/19

Che-Hsien Chou

About Homework #4

� Goal: Learn how to use a version control

system to maintain software projects.

� Detail:

� You should study the concept of version control

system, and its server-client model.

� A hands-on test will be used to test your

knowledge of using Subversion to manipulate

different versions of a Visual Studio project

workspace.

What is Subversion?

� A free open-source version control system.

� Manage files and directories, and the changes made

to them, over time.

� Home Page: http://subversion.tigris.org

� The original subversion project does not provide

GUI.

TortoiseSVN(1/2)

� A Windows GUI version of Subversion.

� We will use TortoiseSVN in the fllowing.

� Download and install TortoiseSVN at

http://tortoisesvn.tigris.org

� If successfully installed, right-click anywhere in the

explorer will show the svn options.

TortoiseSVN(2/2)

Subversion System Architecture

Subversion server

repository

Client A

Client B
Client C

Project

Local Working Copy

Local Working Copy

Local Working Copy

sort.c

search.c

retrieve.c

updated

Subversion’s Features

� Directory versioning
� Track changes to the whole directory trees over time.

� True version history
� Add, delete, copy, and rename both files and directories.

� Atomic commits
� A collection of modifications either goes into the repository

completely, or not at all.

� Versioned metadata
� Each file and directory has a set of properties—keys and

values associated with it.

� Consistent data handling
� Identically for both text and binary files.

The Problem of File-Sharing

� The Lock-Modify-Unlock Solution
� Only one person changes a file at a time.

� Administrative problems.

� Unnecessary serialization.

� A false sense of security.

� The Copy-Modify-Merge Solution (Subversion)
� Each user’s client contacts the project repository and

creates a personal working copy.

� Users then work simultaneously and independently,
modifying their private copies.

� Finally, the private copies are merged into a new, final
version.

Fundamental Concepts of Subversion

� The Repository

� Working Copies

� Revisions

The Repository

� A central store of data.

� Store information in the

form of a filesystem

tree—a typical hierarchy

of files and directories.

� Remember every change

ever written to it.

� Track changes to data

over time.

/

Calc

Paint

Makefile

Button.c

Integer.c

Makefile

Brush.c

Canvas.c

Repository: Basics

� Subversion uses URLs to identify versioned

files and directories in Subversion repositories.

� “One repository, one project” or “one repository,

multiple projects”

� Please refer to Chapter 6 of the book “Version

Control with Subversion” for understanding of

advanced Subversion server options†.

� To practice, we use local directory to create a

repository in the following.
† http://svnbook.red-bean.com/index.en.html

Repository: Create

� To create a new repository, we first create a new

directory. eg. C:\repos

� Right-click the new directory C:\repos and press

“Create repository here.”

� Now C:\repos is a new empty repository.

Repository: Repository Browser

� We can use the repository browser provided by

TortoiseSVN to browse all projects in a repository.

� To connect to a repository

� Google svnserve server

� http://nctu-20012-spring-ics.googlecode.com/svn/trunk/ nctu-

20012-spring-ics-read-only

� Local repositroy

� file:///C:/repos

Repository: Create Folder

� As an example, we first create three folder in the

repository.

� Right-clicking the repository directory in the repository

browser show all functions we need to create, add, delete,

and import files.

� We now create trunk, branch, and tag folders.

� Note that “add folder” and “add file” adds existing files and

folders into the repository. In other hand, “create folder”

creates empty folder in the repository.

Repository: Import and Add

� Let’s assume we have an existing project “CS demo” including

some source codes, now we try to add this project into the

repository and put it in the trunk folder. This can be done using

either “import” or “add”.

� Import : copy an unversioned tree of files into a repository

� Right-click the “CS demo” folder in your explorer and press import

� Select the trunk folder by pressing the button “…”

� Press “OK”, the importing results will be shown when all operations are done.

� Add file and add folder: add files, directories, or symbolic links

� Open the repository browser.

� Right-click the trunk folder and press “Add file” or “Add folder”

� Select file or folder we want to import.

Import (1/4)

Import (2/4)

Import (3/4)

Import (4/4)

Add File (1/2)

Add File (2/2)

Working Copies

� Come out of the repository.

� An ordinary directory tree on your local system.

� Your own working copy is your own private work
area.

� Subversion will never incorporate other people’s
changes, nor make your own changes available to
others, until you explicitly tell it to do so.

� The working administrative directory (.svn) includes
information which helps Subversion recognize
which files contain unpublished changes, and which
files are out-of-date with respect to other’s work.

Revisions

� An svn commit operation publishes changes to any

number of files and directories as a single atomic

transaction.

� Each time the repository accepts a commit, this

creates a new state of the filesystem tree, called a

revision.

� Each revision is assigned a unique natural number.

� Subversion’s revision numbers apply to entire trees,

not individual files.

Checkout a Working Copy

� Create a private working copy from remote repository.

� The repository browser also provide the checkout

function.

� You can save the local working copy in any directory

on your own computer.

� When checking out, you can choose any revision.

� HEAD revision: the latest revision in the repository.

� The “Show log” button shows the revision history and help

us to find the revision we want.

Checkout (1/4)

Checkout (2/4)

Checkout (3/4):Show Log

Checkout (4/4):Complete

Make Changes

� Now we can modify the source code in out
own local working copy.

� A modified file has a “!” on it.

� Change to your working copy directory

� If we add any new file in the working copy, there
will be a “?” on it.

� To add the new file when committing, right-click
this file and mark the file as added (a “+” sign
will be shown) by selecting “add”.

Update Your Working Copy

� You can update to the latest version anytime by

right-clicking the project folder and pressing “SVN

update”.

� Note that you can also update your working copy to any

revision.

� You can also update to an older version by “update

to revision.”

� To prevent any error, we should update our local

working copy before committing.

Update

Conflict

Why Conflict?
repos

CS demo CS demo1

1.Checkout

to CS demo

repos

CS demo CS demo1

2.Checkout

to CS demo1

Abc…

Abc…

Abc…

Abc… Abc…

repos

CS demo CS demo1

3.Make changes

and Commit

Ade…

Abc… Ade…

repos

CS demo CS demo1

4.Make other changes

and Update

Ade…

Acc… Ade…

Conflict

Merge Others’ Changes

� After “svn update”, you cannot commit if you get a

conflict

� A conflict means that others already commit some

changes on files which you just modified.

� Deal with a conflict

� Merge the conflicted text “by hand”.

� Copy one of the temporary files on top of your working

file.

� Run svn revert filename to throw away all of your local

changes.

TortoiseMerge

� TortoiseMerge is a tool helping us to resolve the

conflict

� Right-click the conflict file and select “Edit Conflicts”

� Check the difference between yours and the new version.

� The upper toolbar provides some solutions to resolve the

conflict. We can also modify the file by typing in the

“merged” window.

� Note that “diff” and “diff with previous version” functions

are also useful to track the difference between versions

Edit Conflicts

Tortoise Merge

Merging conflicts by hand
� Open the source file via any editor

Commit your changes

� After resolving all conflicts, now

we can commit the modified files.

Commit (1/2)

Commit (2/2)

Branching, tagging, and merging
/

trunk

tags

nweb.c

client.c

Realease-1.0

Release-1.2

branches

John

Mary

Branching, tagging, and merging

� Trunk: the main line of development is going to take

place.

� Branch: a line of development that exists

independently of another line, yet still shares a

common history if you look far enough back in time.

Branching and Tagging

� To create a branch or a

tag, select “Branch/tag”

option.

� You can specify a

revision to create the

new branch/tag.

Create a New Branch

Switching

� After successfully creating a new branch/tag, any

local changes will still commit to the original

position (trunk).

� To work on a specific branch, we should first switch

to the branch.

� Now the further changes will be committed to the

branch.

Switch (1/2)

Switch (2/2)

Revision Graph (1/2)

� The revision graph shows the revision tree,

which presents the version history.

� The number represents revision, all

branches/tags will be shown and we can

easily see which revision a branch/tag is

created from.

Revision Graph (2/2)

Update To An Old Version

� If we want to revert to an older version in the

repository, select “update to revision…”

� If you are not sure which revision to use, “show log” may

help. You can find what changes have done and some

comments there.

� Note that another function called “Revert” let us

revert to pre-modified version in our local records.

Update To Revision

Log Manager

Update to a specific revision

Recommended Reading

� http://www.cs.ubc.ca/~vailen/svn_howto.htm

� http://www.shokhirev.com/nikolai/programs/

SVN/svn.html

