
An Introduction to the Simple Computer Simulator

Chun-Jen Tsai 10/04/2006

The author of the textbook “Computer Science: An Overview” has designed a

simple machine language for a hypothetical computer. He also wrote a Computer

Simulator, sim.c, that can simulate the behavior of this hypothetical computer. The

simulated computer has a Program Counter register, a Instruction register, 16 data

registers, 256 main memory cells, and an ALU that can perform ADD, AND, OR,

XOR, and ROR operations. The main memory cells are used to store both the

machine program and data.

The simulator provided by the author has a command line user interface (see

Figure 1), which is not so easy to use. On the other hand, the source code of the

simulator is available to you so that you can modify it to make it become more

powerful.

Figure 1. The user interface of the command-line simulator

For our homework project, we will use a simulator with a nicer Graphical User

Interface (GUI), called SimpSim. You can download the simulator from the following

URL: http://wwwes.cs.utwente.nl/software/simpsim/index.html#download.

The program is a Windows program so you have to run it on a PC running

Microsoft Windows XP Operating Systems. Upon execution, you will see the GUI of

the simulator as shown in Figure 2.

Figure 2. The GUI of the SimpSim simulator

Before you start using the simulator, you should recall that although a CPU only

recognizes and executes the instruction code of a machine language, it is difficult for

human to write a program in instruction code directly. Therefore, when we usually use

a different form of the machine language called the assembly language.

You can use the “Open” button to load an assembly program (*.asm) or a

machine code program (*.prg) into the simulator, as shown in Figure 3.

Figure 3. Load a program into the simulator

The “Open” button

Select the “Assembly Files” type

After loading the assembly program, you will see a window of the assembly

source code. You can press the “assemble” button in the lower-right corner of the

window to convert the assembly program into machine instruction code and load the

machine code into the main memory, as shown in Figure 4.

Figure 4. Generate machine instruction code into main memory

Now, you can simulate the execution of the program by pressing the “Run”

button or the “Step” button. The “Run” button causes the machine to execute the

program until it hit the “halt” instruction (C000). The “Step” button only executes the

next instruction pointed to by the Program Counter (PC) register, so that you can trace

the execution of the program step-by-step.

Note that you can create a new program by pressing the “Asm” button. However,

it seems that the text editor of the simulator has some problem under the Chinese

version of Windows XP. If this is the case for you, you should try to use a stand-alone

text editor, such as notepad, UltraEdit, or PsPad, to edit your program.

In order to be familiar with the machine language of the simple computer, you

should read chapter 2, section 8.6 of chapter 8, and the on-line Help menu of the

SimpSim program carefully. In particular, section 8.6 of chapter 8 explains the

machine instruction with op-code “D” and “E” in great detail. A summary of all the

instructions supported by the SimpSim simulator is listed in the next page.

Press the “assemble” button to generate machine code

A Summary of the Machine Instructions of the SimpSim Simulator

The following table lists all the instructions of the simple machine language

mentioned in the textbook. Please note that, in the table, XY stands for an 8-bit bit

pattern, and X stands for a 4-bit bit pattern. Finally, R, S, and T stand for registers

(such as R0, R1, R2, etc.).

The third column of the table (Assembly Instruction) is a shorthand notation for

the machine instruction (sometimes we call this mnemonics representation of the

machine language).

Machine Instruction

Op-code Operand
Assembly Instruction Operation

1 RXY load R, [XY] Load R with the content from the

memory cell at address XY

2 RXY load R, XY Load R with the bit pattern XY

3 RXY store R, [XY] Store the content of R into the

memory cell at address XY

4 0RS move S, R Move content of R into S

5 RST addi R, S, T Add S and T and put the result in R

(R, S, and T are in two's complement

integer notation)

6 ADD addf R, S, T Add S and T and put the result in R

(R, S, and T are in floating-point

notation)

7 RST or R, S, T OR the bit patterns in S and T and put

the result in R

8 RST and R, S, T AND the bit patterns in S and T and

put the result in R

9 RST xor R, S, T XOR the bit patterns in S and T and

put the result in R

A R0X ror R, X Circularly rotate the bit pattern in R

one bit to the right X times

B RXY jmpEQ R=R0, XY Start decoding the instruction located

at address XY if the bit pattern in R is

equal to the bit pattern in register 0

C 000 halt Halt execution

D 0RS load R, [S] Load R with the content from the

memory cell whose address is in S

E 0RS store R, [S] Store the content of R into the

memory cell whose address is in S

F RXY jmpLE R<=R0, XY Start decoding the instruction located

at address XY if the bit pattern in R is

less than or equal to the bit pattern in

register 0

