An Introduction to the Simple Computer Simulator
Chun-Jen Tsai 10/04/2006

The author of the textbook “Computer Science: An Overview” has designed a
simple machine language for a hypothetical computer. He also wrote a Computer
Simulator, sim.c, that can simulate the behavior of this hypothetical computer. The
simulated computer has a Program Counter register, a Instruction register, 16 data
registers, 256 main memory cells, and an ALU that can perform ADD, AND, OR,
XOR, and ROR operations. The main memory cells are used to store both the
machine program and data.

The simulator provided by the author has a command line user interface (see
Figure 1), which is not so easy to use. On the other hand, the source code of the
simulator is available to you so that you can modify it to make it become more

powerful.
=10l x|

Main Memory

(1}
1
2
3
4
5
6
4
9
A
B
C
D
E
F

R2:00 R3:00 R4:00 R5:00 R6:00 R7:00 PC: 00
RA:00 RB:00 RC:00 RD:00 RE:00 RF:00 IR: 0000

Type one of the following (H for help): M, R, P, C, &, G, F, Q:

Figure 1. The user interface of the command-line simulator

For our homework project, we will use a simulator with a nicer Graphical User
Interface (GUI), called SimpSim. You can download the simulator from the following

URL.: http://wwwes.cs.utwente.nl/software/simpsim/index.html#download.

The program is a Windows program so you have to run it on a PC running
Microsoft Windows XP Operating Systems. Upon execution, you will see the GUI of

the simulator as shown in Figure 2.

RISk
File Edit Run Help
Main Memory Registers i
ol e e e e T e _
00 £00:00 00 OO OO OO0 00 OO 00 OO OO OO OO0 00 OO 00 RO(00 PC{o0D =0
10 {00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R1|00 IR |oood
20 |00 00 D0 00 0O 00 00 (00 00 OO 00 00 OO 00 00 00 R2{00
30 {00 00 00 00 0O 00 00 00 00 00 00 00 0O 00 00 00 A3 (00 = gpen
40 |00 00 00 00 0O 00 00 00 00 OO 00 00 OO 00 00 00 R4{00
50 00 00 00 00 00 0O 00 00 00 00 00 00 00 (00 00 00 RS (00 [g
B0 |00 00 00 00 0O 00 00 00 00 OO 00 00 0O 00 00 00 RE {00
70 |00 00 00 00 0O 00 00 (00 00 OO 00 00 00 00 00 00 A7 {00
80 |00 00 00 00 0O 00 00 00 00 OO 00 00 0O 00 00 00 R8{00
90 {00 00 00 00 00 00 (00 00 00 00 00 00 00 00 00 00 R |00 % Bun |
40{00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 RAjOO
BO |00 00 00 00 0O 00 00 (00 00 OO 00 00 OO 00 00 00 BB {00 & oSt |
0|00 00 00 00 0O 00 00 00 00 OO 00 00 0O 00 00 00 RC{o0
0o {00 00 oo o0 oo oo 00 0o oo oo o0 o0 oo oo oo oo Apfoo [Fredk |
E0 |00 00 00 00 0O 00 00 00 00 OO 00 00 0O 00 00 00 RE{00
Fo {00 00 00 00 00 00 00 OO 0O 00 00 00 00 00 00 00 AFjoo (1 Cea

0g: 00,00 inwvalid

02: 00,00 idinwvalid

04: 00,00 invalid

0&: 00,00 iInwvalid

gg: 100,00 idnvalid =

0R: 00,00 invelid | [s | Disasm |
|Address: I [Ready

Figure 2. The GUI of the SimpSim simulator

Before you start using the simulator, you should recall that although a CPU only
recognizes and executes the instruction code of a machine language, it is difficult for

human to write a program in instruction code directly. Therefore, when we usually use

a different form of the machine language called the assembly language.

You can use the “Open” button to load an assembly program (*.asm) or a

machine code program (*.prg) into the simulator, as shown in Figure 3.

The “Open’’ button
per 28

File: Edit Run Help

Main Memory
Sl e e NS SR e el P A

00 00 00 00 00 00 |00 00 00 00
00 00 00 00 00 00 00 00 00 00
. nn nn nn nr nn i |_'|r| nr nn n.n nn
IS D: | SimpSin - & = ek E-
lexamples
wample 1.asm
D‘examplez.asm
Qexampleiasm
a0 |examplel asm BRI D)
HBRND): | Assembly Files (*asm) - R
n@: oo.6n) invalid
0R: 00,00 invalid =] [y s |) Disasm |
[Address: [Ready \

Select the “Assembly Files” type

Figure 3. Load a program into the simulator

After loading the assembly program, you will see a window of the assembly
source code. You can press the “assemble” button in the lower-right corner of the
window to convert the assembly program into machine instruction code and load the

machine code into the main memory, as shown in Figure 4.

ol x|
Main Memory Registers K2
mapatls By b e L seel ok B s ine e LE
oo [20 [oF [21 (1 22 00 23 o0 52 21 53 32 B2 10 BO o8 | mofoo pefoo | =0

10 |CO 00 00 00 OO OO0 0O 0O 0O 00 00 00 00 00 00 00 Rl |00
200100 00 (00 00 oo Elq I_JIJ IJIJ_ oo 00 00 00 00 oo R2 | 0o
7. Simple Assembler - H:\my_classnotes\ics06\SimpSim sm ol sf| oo oo A3 |00
Fle Edit Assemblel Errors Help 0o 0o R4 100

- - = oo oo RS |00
- Frogram : eramplel.asm 00 oo RE | 00

- Autior - Chon-Jen Tsar oo oo R¥ |00
- Date fHE006

oo oo A& |00
oo oo R3S |00

3
v ool 2
I () (=2
= & (13

- Thus rra machme program that compui? e sum J+2454. 415 00 oo ma oo =
- Step
load B 15 - R siores the final oop mder gg gg gg gg =
load El, 1 cRIstores | o0 oo so loo [l Bresk
load B2, 0[R2 the oop mder o0 oo aE |oo
load B3, 0 + R3 stores the sum o0 oo AF | oo [Clear...
Loopl: addi RZ, RZ Rl focesase the foop mnder by onz
addi B3, R3, R2 ; Add thender i som -g

jmpEq R2=R0, Bxit ; Check of we reached the Bst number
jmpEq RO=R0, Loop] ; Co hack and add the néct number
Exit: halt

/ij.\ = [s |) Disasm

[T
LLETT

assemble

2l Insert i

/
Press the ‘‘assemble” button to generate machine code

Figure 4. Generate machine instruction code into main memory

Now, you can simulate the execution of the program by pressing the “Run”
button or the “Step” button. The “Run” button causes the machine to execute the
program until it hit the “halt” instruction (C000). The “Step” button only executes the
next instruction pointed to by the Program Counter (PC) register, so that you can trace
the execution of the program step-by-step.

Note that you can create a new program by pressing the “Asm” button. However,
it seems that the text editor of the simulator has some problem under the Chinese
version of Windows XP. If this is the case for you, you should try to use a stand-alone
text editor, such as notepad, UltraEdit, or PsPad, to edit your program.

In order to be familiar with the machine language of the simple computer, you
should read chapter 2, section 8.6 of chapter 8, and the on-line Help menu of the
SimpSim program carefully. In particular, section 8.6 of chapter 8 explains the
machine instruction with op-code “D” and “E” in great detail. A summary of all the

instructions supported by the SimpSim simulator is listed in the next page.

A Summary of the Machine Instructions of the SimpSim Simulator

The following table lists all the instructions of the simple machine language
mentioned in the textbook. Please note that, in the table, XY stands for an 8-bit bit
pattern, and X stands for a 4-bit bit pattern. Finally, R, S, and T stand for registers
(such as RO, R1, R2, etc.).

The third column of the table (Assembly Instruction) is a shorthand notation for

the machine instruction (sometimes we call this mnemonics representation of the

machine language).

Machine Instruction

Assembly Instruction Operation
Op-code Operand

1 RXY load R, [XY] Load R with the content from the
memory cell at address XY

2 RXY load R, XY Load R with the bit pattern XY

3 RXY store R, [XY] Store the content of R into the
memory cell at address XY

4 ORS move S, R Move content of R into S

5 RST addiR, S, T Add S and T and put the result in R
(R, S, and T are in two's complement
integer notation)

6 ADD addfR,S, T Add S and T and put the result in R
(R, S, and T are in floating-point
notation)

7 RST orR, S, T OR the bit patterns in S and T and put
the result in R

8 RST andR, S, T AND the bit patterns in S and T and
put the result in R

9 RST xorR, S, T XOR the bit patterns in S and T and
put the result in R

A ROX ror R, X Circularly rotate the bit pattern in R
one bit to the right X times

B RXY jmpEQ R=RO, XY Start decoding the instruction located
at address XY if the bit pattern in R is
equal to the bit pattern in register 0

C 000 halt Halt execution

D ORS load R, [S] Load R with the content from the
memory cell whose address is in S

E ORS store R, [S] Store the content of R into the
memory cell whose address is in S

F RXY jmpLE R<=R0, XY Start decoding the instruction located
at address XY if the bit pattern in R is
less than or equal to the bit pattern in
register 0

