
Theory of Computation

National Chiao Tung University

Chun-Jen Tsai

6/13/2012

2/20

Fundamental CS Questions

� What “problems” are solvable? By machines with
what capability?

� All computers only compute functions. That is, mapping input
values to output values

� A function is computable if the mapping is unique and can be
calculated by the computer

computer...
...inputs outputs

3/20

Turing Machines

� Turing machines are proposed by A. Turing in 1936:

� Study the minimal computers for function computation

� A Turing machine is composed of

� A control unit that can read and write symbols on a tape

� A tape with infinite length and records symbols sequentially

� A set of symbols that the machine can read/write/store – this
is called the alphabet of the machine

4/20

Turing Machine Operations

� A Turing machine is a state machine

� State machine example: traffic lights

� Inputs at each step

� State

� Value at current tape position

� Actions at each step

� Write a value at current tape position

� Move read/write head

� Change state

Green yellow

red

time out

time outtime out

5/20

Example of Computations

� A Turing machine can add one to a binary value as
follows:

� Church-Turing Thesis: A Turing machine can
compute any computable functions
� This a generally accepted conjecture, not a proven theory

6/20

Universal Programming Language

� An universal programming language is a language
that can express a program to compute any

computable functions

� Most popular programming languages are universal
programming languages

� Most programming languages are feature-rich. But,

what is the minimal elements a languages needs to
be “universal?”

7/20

The Bare Bones Language

� Bare Bones is a simple, yet universal language

� Statements
� clear name;

� incr name;

� decr name;

� while name not 0 do; … end;

� Researchers have shown that the Bare Bones can be

used to compute all Turing-computable functions

8/20

Examples of Bare Bones Programs

� Computing X×Y: Copying “Today” to “Tomorrow”

9/20

Non-computable Functions

� A classical non-computable function is the “Halting
Problem:”

Given the encoded version of any program, return 1 if
the program will eventually halt, or 0 if the program

will run forever

� The solution to the halting problem is important, but
there is no way to compute such a function

10/20

Self-Terminating

� Let’s consider a simple Bare Bones program:

� If the program terminates when the initial value is set

to the encoded version of itself, then it is called a self-

terminating program

11/20

Insolvability of Halting Problem (1/2)

A

12/20

Insolvability of Halting Problem (2/2)

A

13/20

Complexity of Problems

� Time-complexity of a problem is the time it takes to
find the solution of a problem
� From machine’s point of view, this is equivalent to the

number of machine instructions it must perform when
executing a best algorithm that solves the problem

� Recall that the notation Θ(f(n)) can be used to denote
the time-complexity of a problem
� Θ(n2) means that the complexity increases as fast as a 2nd-

order polynomial when the input size n increases linearly

14/20

Class P Functions

� Class P functions are all problems in any class Θ(f(n)),
where f(n) is a polynomial

� Intractable functions are all problems too complex to
be solved practically

� Most computer scientists consider all problems not in class P
to be intractable

15/20

Class NP Functions

� Class NP functions are all problems that can be
solved by a nondeterministic algorithm in class P

� A nondeterministic algorithm is an “algorithm” whose steps
may not be uniquely and completely determined by the
process state

� A nondeterministic algorithmic step can be executed by a
hypothetical intelligent machine; for example:

“Go to the next intersection and turn either left or right
to get to a drug store.”

� Whether the class NP is bigger than class P is

currently unknown

16/20

Summary on Complexity

� A classification of computing problems are as follows:

For example,

the halting problem

17/20

Complexity and Cryptography

� In old days, encryption of a message requires the

encryption key to be kept secret → not secure since
both the message sender and receiver need the key

� RSA is a popular public key cryptographic algorithm

that relies on the (presumed) intractability of the

problem of factoring large numbers

� Public key is used for encryption, and can be given to
anyone

� Private key is used for decryption, and is only available to
the receiver

18/20

Public Key Cryptography

� RSA works as follows:

For example, p = 7, q = 13:

→ n = 7 × 13 = 91
→ 5 × 29 = 2(7 – 1)(13 – 1) + 1

19/20

Encrypting the Message 10111

� Encrypting keys: n = 91 and e = 5

� 10111two = 23ten

� 23e = 235 = 6,436,343

� 6,436,343 ÷ 91 has a remainder of 4

� 4ten = 100two

� Therefore, encrypted version of 10111 is 100.

20/20

Decrypting the Message 100

� Decrypting keys: d = 29, n = 91

� 100two = 4ten

� 4d = 429 = 288,230,376,151,711,744

� 288,230,376,151,711,744 ÷ 91 has a remainder of 23

� 23ten = 10111two

� Therefore, decrypted version of 100 is 10111.

