Theory of Computation

(} National Chiao Tung University
Chun-Jen Tsai

6/13/2012

Fundamental CS Questions

0 What “problems” are solvable? By machines with
what capability?

m All computers only compute functions. That is, mapping input
values to output values

inputs

—>
—»

—>

computer

outputs

m A function is computable if the mapping is unique and can be
calculated by the computer

2/20

Turing Machines

d Turing machines are proposed by A. Turing in 1936:
m Study the minimal computers for function computation

a A Turing machine is composed of
m A control unit that can read and write symbols on a tape
m A tape with infinite length and records symbols sequentially

m A set of symbols that the machine can read/write/store — this
is called the alphabet of the machine

Control
unit

Ta pe\ l/Read/write head

3/20

Turing Machine Operations

a A Turing machine is a state machine

m State machine example: traffic lights time out
A Inputs at each step e out @ time out
m State

m Value at current tape position

d Actions at each step

m Write a value at current tape position
m Move read/write head
m Change state

4/20

Example of Computations

d A Turing machine can add one to a binary value as
follows:

Current state Current cell Value Direction to move New state
content to write to enter
START * * Left ADD
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD * * Right HALT
CARRY 0 il Right RETURN
CARRY 1 0 Left CARRY
CARRY & 1 Left OVERFLOW
OVERFLOW * * Right RETURN
RETURN 0 0 Right RETURN
RETURN 1 1 Right RETURN
RETURN * * No move HALT

d Church-Turing Thesis: A Turing machine can
compute any computable functions
m This a generally accepted conjecture, not a proven theory

5/20

Universal Programming Language

d An universal programming language is a language
that can express a program to compute any
computable functions

m Most popular programming languages are universal
programming languages

d Most programming languages are feature-rich. But,
what is the minimal elements a languages needs to
be “universal?”

6/20

The Bare Bones Language

0 Bare Bones is a simple, yet universal language
d Statements

B clear name;
B incr name;
B decr name;

B while name not 0 do; .. end;

O Researchers have shown that the Bare Bones can be
used to compute all Turing-computable functions

7/20

Examples of Bare Bones Programs

O Computing XxY: Copying “Today” to “Tomorrow”
clear Z; clear Aux;
while X not 0 do; clear Tomorrow;
clear W; while Today not 0 do;
while Y not 0 do; incr Aux;
incr Z; decr Today;
incr W; en@i
decr Y; while Aux not 0 do;
end; %ncr Today;
while W not 0 do; incr Tomorrow;
incr Y: decr Aux;
' end;
decr W;
end;
decr X;

end;

8/20

Non-computable Functions

d A classical non-computable function is the “Halting
Problem:”

Given the encoded version of any program, return 1 if

the program will eventually halt, or O if the program
will run forever

d The solution to the halting problem is important, but
there is no way to compute such a function

9/20

Self-Terminating

d Let’s consider a simple Bare Bones program:

Encode the
program as
v one long bit W e 0 5
Wh . 1 X t O d : pattern USIng
e ene °i ASCIL
incr X; >
end; 0111011101101000...0110010000111011

Assign this pattern to X
and execute the program.

a If the program terminates when the initial value is set
to the encoded version of itself, then it is called a self-
terminating program

10/20

Insolvability of Halting Problem (1/2)

First: Propose the existence
of a program that,

given any encoded
version of a program

Proposed
program

!

will halt with variable
X equal to 1 if the
input represents a
self-terminating
program, or with X
equal to 0 otherwise.

Then: If such a program exists,
we could modify it by

adding a
while-end
structure

Proposed
program

while X

not 0 do:

end;

to produce
a new
program

Now: If this new program were

self-terminating and

we started it with
its own encoding

as its input
execution would
reach this point
with X equal to 1,
Proposed
program
while X
not 0 do;
end;

s0 execution
would become
trapped in this
loop forever;

i.e., if the new program is

self-terminating, then it
is not self-terminating.

11/20

Insolvability of Halting Problem (2/2)

However: If this new program were
not self-terminating and

we started it with
its own encoding

as its input,
execution would
reach this point
with X equal to 0,
Proposed
program
while X
not 0 do;
end;
[

so this loop
would be skipped

and execution
would halt;

i.e., if the new program
is not self-terminating,
then it is self-terminating

Consequently:

The existence of

the proposed
program

Proposed
program

would
lead to

—

the existence of
a new program

Proposed
program

while X
not 0 do;
end;

that is neither
self-terminating
nor not self-
terminating

so the existence of the proposed
program is impossible.

12/20

Complexity of Problems

a Time-complexity of a problem is the time it takes to
find the solution of a problem

m From machine’s point of view, this is equivalent to the
number of machine instructions it must perform when
executing a best algorithm that solves the problem

Q Recall that the notation ®(f(n)) can be used to denote
the time-complexity of a problem

m O(n?) means that the complexity increases as fast as a 2nd-
order polynomial when the input size n increases linearly

13/20

Class P Functions

a Class P functions are all problems in any class O(f(n)),
where f(n) is a polynomial

A Intractable functions are all problems too complex to
be solved practically

m Most computer scientists consider all problems not in class P
to be intractable

14/20

Class NP Functions

d Class NP functions are all problems that can be
solved by a nondeterministic algorithm in class P

m A nondeterministic algorithm is an “algorithm” whose steps
may not be uniquely and completely determined by the
process state

m A nondeterministic algorithmic step can be executed by a
hypothetical intelligent machine; for example:

“Go to the next intersection and turn either left or right
to get to a drug store.”

O Whether the class NP is bigger than class P is
currently unknown

15/20

Summary on Complexity

a A classification of computing problems are as follows:

Solvable problems Unsolvable problems
I I

| | |

NP problems

|

| 7

\\ \\ \\

Polynomial Nonpolynomial For example,

problems problems the halting problem

16/20

Complexity and Cryptography

A In old days, encryption of a message requires the
encryption key to be kept secret — not secure since
both the message sender and receiver need the key

ad RSA is a popular public key cryptographic algorithm
that relies on the (presumed) intractability of the
problem of factoring large numbers

m Public key is used for encryption, and can be given to
anyone

m Private key is used for decryption, and is only available to
the receiver

17/20

Public Key Cryptography

3 RSA works as follows:
Public domain Private domain

Based on the choice of
two large prime numbers
p and q, determine the
keys n, e, and d.

The keys n and e are
provided to anyone who
may want to encrypt

a message.

v

The values of p, g, and d
are kept private.

For example,p=7,q=13:
—>n=7x13 =91
—>5%x29=2(7-1)(183—-1) + 1

18/20

Encrypting the Message 10111

d Encrypting keys:n=91ande=5

Q 10111, = 23,

a 23¢ = 23° = 6,436,343

d 6,436,343 - 91 has a remainder of 4

a4, =100,

d Therefore, encrypted version of 10111 is 100.

19/20

Decrypting the Message 100

a Decrypting keys: d =29, n = 91

d 100y, = 4

Q 49 = 429 = 288,230,376,151,711,744

a 288,230,376,151,711,744 - 91 has a remainder of 23
a23,,=10111,,

d Therefore, decrypted version of 100 is 10111.

20/20

