Theory of Computation

National Chiao Tung University Chun-Jen Tsai 6/13/2012

Fundamental CS Questions

- What "problems" are solvable? By machines with what capability?
 - All computers only compute functions. That is, mapping input values to output values

A function is computable if the mapping is unique and can be calculated by the computer

Turing Machines

- ☐ Turing machines are proposed by A. Turing in 1936:
 - Study the minimal computers for function computation
- □ A Turing machine is composed of
 - A control unit that can read and write symbols on a tape
 - A tape with infinite length and records symbols sequentially
 - A set of symbols that the machine can read/write/store this is called the alphabet of the machine

Turing Machine Operations

- □ A Turing machine is a state machine
 - State machine example: traffic lights

- □ Inputs at each step
 - State
 - Value at current tape position
- □ Actions at each step
 - Write a value at current tape position
 - Move read/write head
 - Change state

Example of Computations

☐ A Turing machine can add one to a binary value as

follows:

Current state	Current cell content	Value to write	Direction to move	New state to enter
START ADD ADD ADD CARRY CARRY CARRY OVERFLOW RETURN RETURN RETURN	* 0 1 * 0 1 * 0 1 1 * *	* 1 0 * 1 0 1 * 0 1 *	Left Right Left Right Right Left Left Right Right Right Right No move	ADD RETURN CARRY HALT RETURN CARRY OVERFLOW RETURN RETURN RETURN HALT

- □ Church-Turing Thesis: A Turing machine can compute any computable functions
 - This a generally accepted conjecture, not a proven theory

Universal Programming Language

- □ An universal programming language is a language that can express a program to compute any computable functions
 - Most popular programming languages are universal programming languages
- Most programming languages are feature-rich. But, what is the minimal elements a languages needs to be "universal?"

The Bare Bones Language

- ☐ Bare Bones is a simple, yet universal language
- □ Statements
 - clear name;
 - incr name;
 - decr name;
 - while *name* not 0 do; ... end;
- □ Researchers have shown that the Bare Bones can be used to compute all Turing-computable functions

Examples of Bare Bones Programs

□ Computing X×Y:

Copying "Today" to "Tomorrow"

```
clear Z;
while X not 0 do;
   clear W;
   while Y not 0 do;
    incr Z;
    incr W;
   decr Y;
   end;
   while W not 0 do;
    incr Y;
   decr W;
   end;
   decr X;
end;
```

```
clear Aux;
clear Tomorrow;
while Today not 0 do;
  incr Aux;
  decr Today;
end;
while Aux not 0 do;
  incr Today;
  incr Tomorrow;
  decr Aux;
end;
```

Non-computable Functions

□ A classical non-computable function is the "Halting Problem:"

Given the encoded version of any program, return 1 if the program will eventually halt, or 0 if the program will run forever

☐ The solution to the halting problem is important, but there is no way to compute such a function

Self-Terminating

☐ Let's consider a simple Bare Bones program:

Assign this pattern to X and execute the program.

☐ If the program terminates when the initial value is set to the encoded version of itself, then it is called a self-terminating program

Insolvability of Halting Problem (1/2)

Insolvability of Halting Problem (2/2)

Complexity of Problems

- ☐ Time-complexity of a problem is the time it takes to find the solution of a problem
 - From machine's point of view, this is equivalent to the number of machine instructions it must perform when executing *a best algorithm* that solves the problem
- \square Recall that the notation $\Theta(f(n))$ can be used to denote the time-complexity of a problem
 - $\Theta(n^2)$ means that the complexity increases as fast as a 2nd-order polynomial when the input size n increases linearly

Class P Functions

- \square Class P functions are all problems in any class $\Theta(f(n))$, where f(n) is a polynomial
- □ Intractable functions are all problems too complex to be solved practically
 - Most computer scientists consider all problems not in class P to be intractable

Class NP Functions

- □ Class NP functions are all problems that can be solved by a nondeterministic algorithm in class P
 - A nondeterministic algorithm is an "algorithm" whose steps may not be uniquely and completely determined by the process state
 - A nondeterministic algorithmic step can be executed by a hypothetical intelligent machine; for example:

"Go to the next intersection and turn either left or right to get to a drug store."

■ Whether the class NP is bigger than class P is currently unknown

Summary on Complexity

☐ A classification of computing problems are as follows:

Complexity and Cryptography

- □ In old days, encryption of a message requires the encryption key to be kept secret → not secure since both the message sender and receiver need the key
- RSA is a popular public key cryptographic algorithm that relies on the (presumed) intractability of the problem of factoring large numbers
 - Public key is used for encryption, and can be given to anyone
 - Private key is used for decryption, and is only available to the receiver

Public Key Cryptography

☐ RSA works as follows:

The keys n and e are provided to anyone who may want to encrypt a message.

For example, p = 7, q = 13: $\rightarrow n = 7 \times 13 = 91$ $\rightarrow 5 \times 29 = 2(7 - 1)(13 - 1) + 1$

Private domain

Based on the choice of two large prime numbers p and q, determine the keys n, e, and d.

The values of p, q, and d are kept private.

Encrypting the Message 10111

- \square Encrypting keys: n = 91 and e = 5
- \Box 10111_{two} = 23_{ten}
- \square 23^e = 23⁵ = 6,436,343
- □ 6,436,343 ÷ 91 has a remainder of 4
- \Box 4_{ten} = 100_{two}
- ☐ Therefore, encrypted version of 10111 is 100.

Decrypting the Message 100

- \square Decrypting keys: d = 29, n = 91
- $\Box 100_{two} = 4_{ten}$
- \Box 4^d = 4²⁹ = 288,230,376,151,711,744
- □ 288,230,376,151,711,744 ÷ 91 has a remainder of 23
- \Box 23_{ten} = 10111_{two}
- ☐ Therefore, decrypted version of 100 is 10111.