Computer Graphics

National Chiao Tung University Chun-Jen Tsai 06/1/2012

Computer Graphics

- □ Computer graphics (CG) is a research topic about authoring and rendering of any visual data, including:
 - Presentation of text
 - Construction of graphics and charts
 - Design of GUI
 - Editing of photographs
 - Creation of animated motion pictures
- ☐ Today, GC is most often used to refer to 3D graphics

3D Graphics Problem

- ☐ The field of 3D graphics deals with converting 3D shapes into 2D pictures (images)
 - The process involves simulation of the photographic process to convert a "digitally encoded scene" to a "picture"

3D Graphics Paradigm

Modeling Problems

- ☐ The modeling step in computer graphics tries to solve the following problems
 - Modeling the shape of a 3D object
 - Modeling the surface characteristics
 - Modeling of the entire scenes

Modeling Shape of an Object (1/2)

- □ How do we describe a 3D object?
 - 3D shape can be described by a collection of flat surfaces called planar patches, each of which is a solid polygon
 - The collection of these polygons is called a polygonal mesh

```
% resolution of the drawing grid
n = 12:
a = 0.2;
                            % the diameter of the small tube
c = 0.6;
                            % the diameter of the bulb
t1 = pi/4 : pi/n : 5*pi/4;
                           % parameter along the tube
t2 = 5*pi/4 : pi/n : 9*pi/4; % angle around the tube
u = pi/2 : pi/n : 5*pi/2;
[X, Z1] = meshgrid(t1,u);
[Y, Z2] = meshgrid(t2,u);
% The bulb
r = sin(Y) .* cos(Y) - (a + 1/2) * ones(size(Y));
x2 = c * sin(Z2) .* r;
y2 = -c * cos(Z2) .* r;
z2 = ones(size(Y)) .* cos(Y);
surf(x2,y2,z2,Y);
```

the precise mathematical description (in Matlab language) of a polygonal mesh

a rendered polygonal mesh of quadrangles

Modeling Shape of an Object (2/2)

- □ In general, complex objects cannot be described by a simple 3D mathematical function
- We can use many "piecewise smooth" functions to describe the contour and shape of a complex object
 - Bezier curves and Bezier surfaces

Shape Modeling Techniques

- □ Geometric modeling
 - e.g., the hot-air balloon model
- ☐ Brute force digitizing of a real 3D object
 - e.g., 3D laser scanning of a real object
- ☐ Procedural modeling (fractals or particle systems)
 - e.g., growing a mountain using a recursive rule (operations)

Modeling Surface Characteristics

- ☐ Surface characteristics of a surface patch is the "reaction" of the patch to incoming light rays
- ☐ The model has parameters:
 - The frequencies of the incoming light
 - The incidence angle
 - The position on the surface

- ☐ The output of the model:
 - The frequencies and angles of the out-going light at every points on the surface

Texture Maps for Surface Modeling

■ We can encode the color of a surface patch at the vertex only

☐ Another technique is to use a texture map to describe the colors at every points on the surface

color of other points on the

surface are interpolated from the neighboring vertices

Modeling Entire Scenes

- □ A scene can be described by a scene graph that contains the following information
 - Light sources
 - Background descriptions
 - Foreground object descriptions (including their motions)
- □ In short, a scene graph describes a virtual world

Rendering

- ☐ Given a virtual camera, rendering is the process of projecting the objects in a scene onto the projection plane of the camera
- □ In computer graphics, the process is achieved using a "rendering pipeline," which can be implemented in hardware or software
- ☐ The rendering process is composed of many steps
 - View volume determination
 - Clipping
 - Scan conversion (rasterization)
 - Hidden surface removals
 - Shading

View Volume and Clipping

Scan Conversion

□ A 3D patch is projected onto a digital image

Hidden Surface Removal

☐ If part of a 3D object is covered by other objects, the non-visible part should not be displayed

- □ Common techniques for hidden surface removal
 - The painter's algorithm (patch-based technique)
 - The z-buffer method (pixel-based technique)

Shading

- ☐ For each surface patch which is visible in the 2D image, we have to determine the *appearance* of each pixels as well, this process is called shading
- □ Common shading techniques
 - Flat shading
 - Gouraud shading
 - Phong shading

Ray Tracing

☐ To render a complete scene with complex objects, a interesting technique is called ray-tracing

Animation (1/2)

- □ Computer animation is the technology to use a computer to display successive pictures of a dynamic scene at more than 24 picture per second
 - Each picture is called a frame
 - Today, the standard for smooth animation is to display at least 60 frames per second
- ☐ An animation begins with a story board, which is a sequence of hand-drawing pictures that tells a story:

Animation (2/2)

- ☐ Given a storyboard, artists will refine the pictures in a storyboard into detail frames, called key frames
 - Key frames have much less than 30 frames per second, for animation, we must fill in the gaps between key frames

■ Can we use computers to do this "in-betweening" for us?

Kinematics and Dynamics

□ Kinematics – based on geometry

If joint 1 rotate 10°, and joint 2 rotate 3°, what is the motion at the end point?

□ Dynamics – based on physics

Given the mass and center of mass of each object, if we apply some force (torque) on joint 1 & 2, how would the objects move?

Animation Techniques Today

- □ Although kinematics and dynamics problems can be solved mathematically using physic theories, today's animation studios don't really do it this way
- ☐ Techniques used in animation studio:
 - By animation artist using drawing software artists draw key frames, computers interpolate the remaining frames
 - By manipulation of skeletal structure models and motion captures of real subject (e.g. human beings) need computational vision technologies