
Data Abstractions

National Chiao Tung University

Chun-Jen Tsai

05/23/2012

2/32

Concept of Data Structures

� How do we store some conceptual structure in a
linear memory?

� For example, an organization chart:

3/32

Basic Data Structures

� As discussed in Programming Language, arrays and
structures are two aggregate data types directly

supported by most programming languages

� Some other commonly used data types are

� List

� Stack (Last-In-First-Out, LIFO)

� Queue (First-In-First-Out, FIFO)

� Tree

We have to find an efficient way to implement these data types!

(By implement we mean mapping of these data types to the

memory cells of a computer)

4/32

Terminology for Lists

� A list is a collection of data whose entries are
arranged sequentially

� The beginning of a list is called the head; and the
end of a list is called the tail

Jill

Bob

Devon

Maurice

List

head

tail

5/32

Terminology for Stacks

� A stack is a list in which entries are removed and
inserted only at the head

� Data are entered into a stack in a last-in-first-out
(LIFO) manner

� Insert an item at the top of a stack is push, removing

an item from the top of a stack is pop

push pop

top

a stack of books bottom

6/32

Terminology for Queues

� A queue is a list in which entries are removed at the
head and are inserted at the tail

� Data are entered into a stack in a first-in-first-out
(FIFO) manner

enter
leave

head

tail

7/32

Terminology for Trees (1/2)

� A tree is a collection of data whose entries have a
hierarchical organization

� Each entry in a tree is called a node

� The root is the node at the top of the tree

� A leaf (or terminal) is a node at the bottom of the
tree

� The parent of a node is the node immediately above

the specified node; a child of a node is a node
immediately below the specified node

8/32

Terminology for Trees (2/2)

� The ancestors of a node is the node’s parent, parent
of parent, etc.

� The descendent of a node is the node’s children,
children of children, etc.

� The siblings of a node is all the nodes that share the

same parent with that node

� A binary tree is a tree in which every node has at

most two children

� The depth of a tree is the number of nodes in the

longest path from the root to the leaf

9/32

Example: A Tree

10/32

Characteristics of Data Structures

� Static data structure:

� The size of the data structure does not change

� Dynamic data structure:

� The size of the data structure can change

� Pointer:

� The address of a data item in memory cell; a pointer is used
to locate a data item in memory

11/32

Storing Arrays

� Homogeneous arrays are usually stored in
contiguous memory blocks

� Heterogeneous arrays (structures) can be stored in

contiguous blocks or non-contiguous blocks using
pointers

Struct {

char Name[8];

int Age;

float SkillRating;

} Employee;

12/32

Storing Two Dimensional Arrays

� Memory cells are in one-dimensional order, to store a
two-dimensional array, some mapping must be done:

� Row-major: data entries are stored row-by-row

� Address polynomial: A[i, j] = χ + c × (i–1) + (j–1)

� Column-major: data entries are stored column-by-column

� Address polynomial: A[i, j] = m + (i–1) + r × (j–1)

Note: m is the address of the first data item, i is the row index, j is the column index,

c is the number of columns, and r is the number of rows

13/32

Storing Heterogeneous Arrays

� Two ways to store a heterogeneous array

14/32

Storing Lists

� A list which is stored in a homogeneous array is
called a contiguous list

� A list in which each node points to the next one is
called a linked list

� A head pointer is a pointer to the first entry of the list

� A nil pointer is a special value used to indicate the end of
the list

data link data link data nil…

head

15/32

Manipulating Link Lists (1/2)

� Deleting an entry

16/32

Manipulating Link Lists (2/2)

� Inserting an entry

17/32

Storing Stacks and Queues (1/2)

� Both stacks and queues can be stored using same
mechanisms as those for lists

� For example, for stacks contiguous lists can be used:

18/32

Storing Stacks and Queues (2/2)

� We can also uses a contiguous list to store queues:

19/32

Circular Queues

� Queues are often stored as circular queues too:

� Stored in an array where the first entry is considered to
follow the last entry

� Prevents a queue from crawling out of its allotted storage
space

empty

head tail

Data 1 Data 2Data 4 empty Data 3

20/32

Storing a Binary Tree

� Again, we can use linked structure or contiguous
array to store a binary tree:

� Linked structure
� Each node contains a data cell and two child pointers

� Accessed through a pointer to root node

� Contiguous array
� A[1] = root node

� A[2],A[3] = children of A[1]

� A[4],A[5],A[6],A[7] = children of A[2] and A[3]

� …

21/32

Linked Binary Tree

� The conceptual and actual organization of a binary
tree using a linked storage system are as follows:

22/32

Binary Tree Array

� A binary tree stored in a contiguous array:

23/32

Drawbacks of Using Arrays for Trees

� A sparse, unbalanced tree shown in its conceptual
form and as it would be stored without pointers:

24/32

Manipulating Data Structures

� Ideally, a data structure should be manipulated solely
by pre-defined procedures.
� Example: A stack typically needs at least push and pop

procedures

� The data structure along with these procedures constitutes a
complete abstract tool

� Example: print a linked list

25/32

Ordered Tree

� An ordered is a tree where the noses are sorted (e.g.
from left-to-right):

26/32

Tree Traversal (1/2)

� Traversing a binary ordered tree is just like
performing a binary search

27/32

Tree Traversal (2/2)

� We can print a search tree in alphabetical order using
tree traversal as well:

28/32

Inserting a Node

� Inserting the
entry ‘M’ into

the ordered

binary tree

29/32

User-Defined Data Types

� Objected-oriented paradigm allows the definition of a
new data type and its valid operations. For example,

a stack of integers in Java and C# is as follows:

30/32

Data Accessing in Machine Code

� Immediate addressing:

� Instruction contains the data to be accessed

� Direct addressing:

� Instruction contains the address of the data to be accessed

� Indirect addressing:

� Instruction contains the address (location) of memory

cells that has the address of the data to be accessed

� Such a memory cell is often called a “pointer”

31/32

Ex: Machine in Appendix C (1/2)

� Loading data from memory via indirect addressing;
with a memory cell as the pointer

32/32

Ex: Machine in Appendix C (2/2)

� Loading data from memory via indirect addressing;
with a register as the pointer

