Data Abstractions

@ National Chiao Tung University
Chun-Jen Tsai

05/23/2012

Concept of Data Structures

d How do we store some conceptual structure in a
linear memory?

a For example, an organization chart:

President
Vice-President Vice-President Vice-President
of Sales of Finance of Services
Regional Regional Regional Regional Regional
Sales Sales Sales Service Service

Manager Manager Manager Manager Manager

2/32

Basic Data Structures

a As discussed in Programming Language, arrays and
structures are two aggregate data types directly
supported by most programming languages

d Some other commonly used data types are

m List
o Stack (Last-In-First-Out, LIFO)
o Queue (First-In-First-Out, FIFO)
m [ree

> We have to find an efficient way to implement these data types!
(By implement we mean mapping of these data types to the
memory cells of a computer)

3/32

Terminology for Lists

3 A list is a collection of data whose entries are
arranged sequentially

d The beginning of a list is called the head; and the
end of a list is called the tail

head
g

. Bob
LBt+ Devon
Maurice — iail

4/32

Terminology for Stacks

O A stack is a list in which entries are removed and
inserted only at the head

O Data are entered into a stack in a last-in-first-out
(LIFO) manner

a Insert an item at the top of a stack is push, removing
an item from the top of a stack is pop

push \ /” pop
B e

a stack of books

bottom ———»

5/32

Terminology for Queues

d A queue is a list in which entries are removed at the
head and are inserted at the tall

O Data are entered into a stack in a first-in-first-out
(FIFO) manner

head

LT
m/z%%%\i . QDDD cave

tail

6/32

Terminology for Trees (1/2)

O A tree is a collection of data whose entries have a
hierarchical organization

d Each entry in a tree is called a node
d The root is the node at the top of the tree

d A leaf (or terminal) is a node at the bottom of the
free

d The parent of a node is the node immediately above
the specified node; a child of a node is a node
iImmediately below the specified node

7/32

Terminology for Trees (2/2)

d The ancestors of a node is the node’s parent, parent
of parent, etc.

d The descendent of a node is the node’s children,
children of children, etc.

d The siblings of a node is all the nodes that share the
same parent with that node

d A binary tree is a tree in which every node has at
most two children

d The depth of a tree is the number of nodes in the
longest path from the root to the leaf

8/32

Example: A Tree

/

‘

N\

Subtree

I Terminal (or leaf) nodes

Root node

n

Siblings

9/32

Characteristics of Data Structures

Q Static data structure:
m [he size of the data structure does not change

d Dynamic data structure:
m The size of the data structure can change

d Pointer:

m The address of a data item in memory cell; a pointer is used
to locate a data item in memory

/L

A Farewell to Arms
by Ernest Hemingway

Pointer

[

For Whom the Bell Tolls
by Ernest Hemingway

Pointer
] L

The Sun Also Rises
by Ernest Hemingway

Pointer

T j L

S

10/32

Storing Arrays

0 Homogeneous arrays are usually stored in
contiguous memory blocks

Addressesg[X X +1 X+2 x+3 X+4 x+5 x+6

Memory—': K 1
cells

|
Readings[1]

Readings [2]

0 Heterogeneous arrays (structures) can be stored in
contiguous blocks or non-contiguous blocks using
pointers

Struct {

char Name[8];

int Age;

float SkillRating;
} Employee;

11/32

Storing Two Dimensional Arrays

d Memory cells are in one-dimensional order, to store a
two-dimensional array, some mapping must be done:

m Row-major: data entries are stored row-by-row
e Address polynomial: A[i, j1=y+ ¢ X (i-1) + (j—1)

Machine's memory

Conceptual array

1
Row1:

T]
Row 2 |

R:ow:3 |

Row 4 |
[

T
|
1

i

w

T
Rlow
1

LI |
4

A

—1

Entry from 4th column in Row 3

m Column-major: data entries are stored column-by-column
o Address polynomial: A[i, j1=m + (i-1) + r X (j—1)

Note: m is the address of the first data item, i is the row index, j is the column index,
¢ is the number of columns, and r is the number of rows

12/32

Storing Heterogeneous Arrays

d Two ways to store a heterogeneous array

Employee
| |
Employee.Name Employee.Age Employee.SkillRating
— N
| / \
Addresses: x X+ 25 X+ 26

a. Array stored in a contiguous block

| _— Employee.Name

Pointers — P Employee.Age

_'__—‘————__,______‘___-__ . .
Employee.SkillRating

b. Array components stored in separate locations

13/32

Storing Lists

a A list which Is stored in a homogeneous array is
called a contiguous list

a A list in which each node points to the next one is
called a linked list
m A head pointer is a pointer to the first entry of the list

m A nil pointer is a special value used to indicate the end of
the list

h?
data link data link—— ... — data nil

14/32

Manipulating Link Lists (1/2)

d Deleting an entry

Head pointer

Deleted entry

Name Pointer
Old pointer
e > |
v Name Pointer J
fName Pointer
New pointer NIL

15/32

Manipulating Link Lists (2/2)

A Inserting an entry

Head pointer

Pointer

New entry
Name Pointer
New pointer New pointer
v Name Pointer_ w Name
----------------------------------- e R R Rt
Old pointer

J

fl\.lame

Pointer

NIL

16/32

Storing Stacks and Queues (1/2)

d Both stacks and queues can be stored using same
mechanisms as those for lists

a For example, for stacks contiguous lists can be used:

Stack’s Reserved block of memory cells
I

base \I |

T T T 1 T T T 1
) Stack entries \
Ll 1] I

| |
I
J Space for growth

Stack pointer

17/32

Storing Stacks and Queues (2/2)

ad We can also uses a contiguous list to store queues:

MWV M)
S -
Head 1 Head _J B
pointer pointer
C
Tail] Tail -
pointer pointer "
NWA AAWA
a. Empty queue b. After inserting entries A, B, and C
M/ M/
B
Head J Head .
pointer | | C pointer C
D D
Tail > Tail 2
pointer " pointer d’ E
ANWA AWA
c. After removing A and d. After removing B and 18/32

inserting Cand D inserting E

Circular Queues

d Queues are often stored as circular queues t00:

m Stored in an array where the first entry is considered to
follow the last entry

m Prevents a queue from crawling out of its allotted storage
space

19/32

Storing a Binary Tree

d Again, we can use linked structure or contiguous
array to store a binary tree:
3 Linked structure

m Each node contains a data cell and two child pointers
m Accessed through a pointer to root node

Cells containing Left child Right child
the data pointer pointer

a Contiguous array

A[1] = root node

A[2],A[3] = children of A[1]
A[4],A[5],A[6],A[7] = children of A[2] and A[3]

20/32

Linked Binary Tree

d The conceptual and actual organization of a binary
tree using a linked storage system are as follows:

Conceptual tree
/ A \
/ B\ C
D E

F

Actual storage organization

Root pointer

[¢

B |

B
o ¢/

> A

NIL

o [«

NIL NIL F NIL NIL

_—

m

NIL NIL

21/32

Binary Tree Array

d A binary tree stored in a contiguous array:

B/A\C
P NN

Conceptual tree

F

Actual storage organization

2 3 4 5 6 7
A B & D E F
I 7 | | |
Root node / /
Nodes in 2nd Nodes in 3rd

level of tree level of tree

22/32

Drawbacks of Using Arrays for Trees

a A sparse, unbalanced tree shown in its conceptual
form and as it would be stored without pointers:

e
~

D

N

E

Conceptual tree

Actual storage organization

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
A B C D E
/ | ; [; | ; |

root 2nd level 3rd level 4th level

23/32

Manipulating Data Structures

A Ideally, a data structure should be manipulated solely
by pre-defined procedures.

m Example: A stack typically needs at least push and pop
procedures

m The data structure along with these procedures constitutes a
complete abstract tool

ad Example: print a linked list

procedure PrintList (List)
CurrentPointer « head pointer of List.
while (CurrentPointer is not NIL) do
(Print the name in the entry pointed to by CurrentPointer;
Observe the value in the pointer cell of the List entry
pointed to by CurrentPointer, and reassign CurrentPointer
to be that value.)

24/32

Ordered Tree

a An ordered is a tree where the noses are sorted (e.qg.
from left-to-right):

/ \
N N
SN/ AN

Tree Traversal (1/2)

d Traversing a binary ordered tree is just like
performing a binary search

26/32

Tree Traversal (2/2)

O We can print a search tree in alphabetical order using

tree traversal as well:

/ F\

B / I:)\E
A/ \C

|
1. Print the left 2. Print

branch in the root
alphabetical node
order

G/H \J
/

3. Print the
right branch in
alphabetical order

27/32

Inserting a Node

a. Search for the new entry until its absence is detected

A Inserting the
entry ‘M’ into
the ordered
binary tree

b. This is the position in which the new entry should be attached
/H \
E /N \
B G K P
/ \ 28/32
J M

User-Defined Data Types

Q Objected-oriented paradigm allows the definition of a
new data type and its valid operations. For example,
a stack of integers in Java and C# is as follows:

class StackOfIntegers
{private int[] StackEntries = new int[20];
private int StackPointer = 0;

public void push(int NewEntry)
{if (StackPointer < 20)
StackEntries [StackPointer++] = NewEntry;

}

public int pop ()
{if (StackPointer > 0) return StackEntries[--StackPointer];
else return 0;

}
}

29/32

Data Accessing in Machine Code

d Immediate addressing:
m Instruction contains the data to be accessed

A Direct addressing:
m Instruction contains the address of the data to be accessed

A Indirect addressing:

m Instruction contains the address (location) of memory
cells that has the address of the data to be accessed

m Such a memory cell is often called a “pointer”

30/32

Ex: Machine in Appendix C (1/2)

d Loading data from memory via indirect addressing;
with a memory cell as the pointer

Address in
instruction .
CPU tells where Main memory
pto'”tsr_ IS Pointer stored
stored in
Register 5 !nstruction in memory at address AA
Instruction AA
Data register | Pointer indicates
“.‘ location of Data
. Bus
: D5 AA

/) e

Data transfered
to register during
execute phase of
machine cycle

31/32

Ex: Machine in Appendix C (2/2)

d Loading data from memory via indirect addressing;
with a register as the pointer

CPU Main memory

Instruction
indicates

Instruction in

instruction which Data t!'ansferegl
Register 4 register register to register during
contains execute phase of
< 1’ pointer machine cycle
D504 Bus

Register 5

. Data

Data | ¢--—-—-———-—»c---------

Pointer indicates
location of Data

32/32

