Software Engineering

(} National Chiao Tung University
Chun-Jen Tsai

05/09/2012

Complications of Software Design

a Software bugs have caused large scale disasters

Q Software engineering — Try to find a better way to
develop and maintain a reliable software system

a Software Engineering is different from other
engineering disciplines:

Traditional Engineering Software Engineering
i diie sl ol Often Sometimes
available
Required Performance Within tolerance Perfect
Quality Metrics Mean time between Failure (MTBF) Unclear
Scientific Basis Physics Unclear

2/38

CASE Tools

d An important topic in software engineering is the
design of Computer-Aided Software Engineering
(CASE) tools for:

m Project planning — for resource (time, personnel) allocation

Project management — for status tracking

Documentation — for semi-automatic document generationt

Prototyping and simulation — for fast proof-of-concept

Interface design — for GUI development

Programming — for program coding, version control, and
debugging

T Please google “Doxygen” 3/38

The Software Life Cycle

d The software life cycle is composed of three stages:

Development

Use

-

Modification

5

d For other products, the “modification” phase is called

maintenance (replacing old ware-out parts); in
software engineering, it's called updates and

upgrades

4/38

Software Development Phases

Product Development

Collect User
Requirements

Software Development

Specification

Specification Hardware

platform?

A

Design
Architecture

A 4

: for software
! components

Implementation

Software
platform?

Component
v ! development

Testing

System integration

5/38

Specification and Design Stages

0 Requirement Specification:

m Based on application user requirements and some technical
specifications, perform a feasibility study

m The output of the analysis stage is the “software requirement
specification document’

d Design:

m The specification stage concentirates on what the system
should do, while the design stage concentrates on how the
system will accomplish those goals

m User interface design requires mixed knowledge of arts,
psychology, ergonomics, and programming

6/38

Implementation Stage

a Implementation stage creates system from design
m Write programs
m Create data files
m Develop databases

A In principle:

m A software analyst (software architect) is involved in
software development at the specification and design stage

m A programmer write programs that implement the design

A In practice, software architects and programmers are
interchangeable terms

7/38

Testing Stage

d Testing occurs in two forms

m Validation testing — checking to see if the system meets the
original requirements and specifications

m Defect testing — identifying and correcting errors (bugs) of
the system
a Granularity of testing:

m Module testing — test a single module

o To test a module in a system, simplified versions of other
modules (called stubs) in the system are often used

m Unit testing — test a smallest software module
o For imperative programming language, this is often a function

o Test codes are written to call the function with input at
boundary and/or singular points

m System testing — test the entire system

8/38

Software Development Models (1/2)

d Waterfall model

m Strictly following the orders of the four stages of software
development to design a complete system from scratch

m 00 slow to react to a dynamic environment
a Incremental model
m Start with a simplified system, and incrementally build more-

and-more complete systems B (B0
® @

d lterative model

m Start with a full system with simplified modules, and
incrementally build more-and-more complete modules

Gre ~@o— &e

9/38

Software Development Models (2/2)

O For incremental and iterative development models, the early
versions of the final system is often called prototypes

m Evolutionary prototyping — the prototypes will be refined
incrementally and eventually becomes the final system

m Throwaway prototyping — the prototypes are only used for
communication and quick verification of the design; later, a fresh

implementation will be used for the real product
o For example, rapid prototyping for Ul design

O Open-source development model

O Extreme programming (XP)

m A programming project is accomplished by a team of equal
programmers cooperate in a flexible manners with repeated daily
cycles of analyzing, designing, implementing, and testing

10/38

Modularity

a Software modularity can be realized in the forms of
procedure, objects, and components
m Procedures — imperative paradigm
o Key info: procedure relations
m Objects — object-oriented paradigm
o Key info: object instances and object collaborations
m Components — reusable software units, often for object-
oriented paradigm
o Key info: component interfaces
d The goal of modular design is to minimize coupling
and maximize cohesion
m Coupling: interactions between modules
m Cohesion: internal binding within a module

11/38

Program Visualization Techniques

Q It would be nice if we can use some diagrams to
describe the relations and interactions among
software modules

Q Structure chart — displays relations among modules
of a procedural design:

ControlGame

bl W N

Serve Return ComputePath UpdateScore

12/38

Object-Oriented Visualization (1/2)

A In object-oriented designs, it takes more than
structure charts to describe the relations and
interactions among modules

d For object relations

Class Objects
PlayerClass
B 1n5tﬁﬁ'fia_9f_ﬂr PlayerA
skill e
Attributes —
| endurance e S =
fﬂstanceefh" PlayerB
[serve
Methods —
_ returnVolley

13/38

Object-Oriented Visualization (2/2)

d For object interactions

PlayerA PlayerB Judge Score

avaluateServe

———

i |
| 1

|
i ..4 :
,-"'f : : :
SR i returnVolley | f
PlayerA calls the i | l
method evaluateServe | evaluateReturn | :
in Judge. i I P |
|] | |
\,returnVolley | i |
™ I | |
| | | |
| evaluateReturn | | |
i T > |
| | | updateScore |
| |] ..-I
| I |
| I |

time

14/38

Coupling

a Control coupling
m One module passes control to another

d Data coupling
m Sharing of data between modules

Q Implicit coupling: hidden coupling may cause errors
m Global data: data accessible to all modules

m Side effects: action performed by a procedure that is not
readily apparent to its caller

15/38

Structure Chart with Data Coupling

d A structure chart can also shows data coupling

ControlGame

o e X
<
,3\60‘0(\1
<X

Serve Return ComputePath UpdateScore

16/38

Cohesion

d Logical cohesion
m Logical similarity of actions and components in a module

d Functional cohesion
m Each component focus on performing a single activity
m Stronger than logical cohesion

a Cohesion in object oriented systems

m Entire object (i.e. the collection of data fields and methods in
an object) should be logically cohesive

m Each method (i.e. the tasks you perform in a method) should
be functionally cohesive

17/38

Example of Cohesion

d Logical and functional cohesion within an object:

Object

Each method
within the object is
functionally cohesive

Perform
action A

Perform
action C

Perform
action B

Each object is only logically cohesive

18/38

Data-based Design Techniques

Q Dataflow diagram
m Displays how data moves through a system

,a{\ent reco rO’S.

qments Process HOSpItal
Q? Payments Files
Y%
Patient
Process
bjg Bills

a Data dictionary

m Central repository of information about the data items
appearing throughout a software system

19/38

UML: Unified Modeling Language

a The Unified Modeling Language (UML) is a language
for specitying, visualizing, constructing, and
documenting large complex systems

a The development of UML began in late 1994 by
Grady Booch and Jim Rumbaugh of Rational

Software Corporation; Later, Ivar Jacobson of
Objectory and other companies joined the effort

a UML 1.0 and later 1.1 was officially released in 1997.
UML 2.0 is adopted in 2005.

20/38

UML Diagrams

a There are 14 types of UML 2.0 diagrams:
m Gray boxes are diagram classes;

UML
Diagram

white boxes are instances of diagrams

S I~ '

Behavior
Diagram

Activity
Diagram

i Structure
Diagram
| |
Class Component Object
Diagram Diagram Diagram
Profile qu[rrnposite Deployment Package
. ucture . ;
Diagram Diagram Diagram Diagram

Interaction
Diagram

i State Machine

Diagram

Use Case
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Timing
Diagram

Communication
Diagram

21/38

Use Case Diagram

a Actors in UML are the users of a system:

i << actor >>
or

System A

Actor

d Use case diagrams model the functions of systems

Example: > Add ltems

;Ot <<uses>>
Online Shopping
Actor <<uses>>
N > Fill Order Form
Customer

. <<extends>>
Relations >
between A (Browse Catalog
use cases Amazon.com <
<<uses>>
> Add Inventory

<<extends>>
<<extends>>
Cusocase :
<<uses>>
Inventory
System

manager

i

i

22/38

Another Use Case Example

Physician

<

Administrator

Hospital Records System

Retrieve Medical
Record

T——__ Update Medical

Record

Retrieve Laboratory
Results

Update Laboratory
Results

Retrieve Financial

/ Records

[T™—_ Update Financial

Records

/

Nurse

Laboratory
Technician

23/38

Class Diagram (1/3)

a Class diagrams describe the relations (dependencies

or collaborations) among different classes

Q Class definition:

Class Name

attribute:type = initialValue

operation(arg list): return type

Q Visibility
m + means public
m — means private
m # means protected

Class Name

- attribute
- attribute

+ operation
+ operation
operation

24/38

Class Diagram (2/3)

O Association

explicit name
Class A < Class B
Class A role Class B
role
a Multiplicity

m 1 means no more than one
m 0..1 means zero or one

m * means many

m 0..” means zero or many

m 1.. means one or many

depends on
Class A Class B
k
Class A [----—-titeoo> Class B
Company
1
1.."
Employee

25/38

Class Diagram (3/3)

O Composition and aggregation

Class A

A is composed of B T

Class A

Class B

? A is an aggregation of B

Class B

d Generalization (inheritance)

Super type

L%

Subtype 1

Subtype 2

26/38

Example: Class Generalizations

d The concept of “generalization” in UML and
“inheritance” in O-0O languages are different

m |Inheritance has stronger binding between the parent class
and the derived class

m Generalization of class A into SRR
class B does not imply that B e
contains all attributes of A AT
7 patien N

reportPatientAddress

/ v*

PatientFinancialRecord PatientMedicalRecord
accountBalance allergies
insuranceCompany

reportPaymentHistory reportMedicalHistory 27/38

Component Diagram

ad A component is a building block of the system

3]

Component

5«-_ " Interface

d Dependency of components

m Example: Program B depends on library C which uses library
A through interface APIl_D can be expressed as follows,

3]

Lib A

AplD\‘/ P Dependency

Lib C E Y Prog B E

28/38

Sequence Diagram (1/2)

d Sequence diagrams present the flow of messages
between instances, objects, or processes along time

d The time-axis of a sequence diagram progresses in
the vertical direction

ad Messages flow can be synchronous (blocking) or
asynchronous (non-blocking)

29/38

Sequence Diagram (2/2)

Q Call sequence

X

Acltor

|
1

Object : Class

Object : Class

T
|
funct() |

O Loop and branches

L

Object : Class

Object : Class

I
loop

I
|
!
|

[condition to exit]

Arrow Message type
_— Synchronous call
E— Generic flow of control
S Asynchronous flow of control
D S Reply

@ Time out call (non-standard)

Object : Class

Object : Class

\ 4

al

t

[condition true]

I
|
I
!
!

[condition false]

30/38

Example of Sequence Diagram

i b o~
Designates the -~

interact
type

sd serve

ion fragment

self : PlayerClass

1
]

1
evaluateServe

: PlayerClass

'
8.

Judge

Score

| |
| 1
loop . ! [validPlay == true]
. |)
1 1 | .
I 1 i &
| | 1
alt : ! [fromServer == true] :
&l : | returnVolley | ‘ ol
i 1 et 1 1/
| 1 | | /,V
| | | evaluateReturn | w
______________ e e L e R e b R
1 | 1 / |
: ! [fromServer == false] :
:‘ returnVolley : : :
o | 1 | 1
I | I |
| evaluateReturn | _: :
| | o :
T T I |
|
updateScore
Lt
|
|

Designates the
condition

= controlling the

interaction
fragment

31/38

Activity Diagrams (Flow Chart)

a Activity diagrams show flow of control and data flow

m Notations:
——» Control/Data Flow 5 I: Control Fork
Action —> .
C) H Control Join
Object P Initial Node

%E Choice @ Activity Final

32/38

Example of Activity Diagram

Qa File copy activity can be illustrated as follows:

I Copy file

Get free disk
space

(Readfie }—>| iile (—>(Writefie }—
¢ [Disk not full] @
[Disk full] (Display status)

[Cancel pressed]

33/38

State Machine Diagram

O State machine diagrams describe the life cycle of an

object

O Example: a send-message object

SendMsgObiject

Waiting \ stopEvent

—>
do: pollForEvents wgedEvent

Logging

receivedEvent Edo; logEvent

|

State name ---{-___

State actions ----__

Dl >{

"> Dispatching sentEvent

entry: findRecipients
do: sendEvent

©

34/38

Design Patterns

d Design patterns are “software techniques” for solving
recurring problemsT

d Examples:

m Adapter pattern: Used to adapt an existing module’s
interface to match the interface of a new system

m Decorator pattern: Used to extend the capability of an
existing module so that it can be used in a new system

Q Inspired by the work of Christopher Alexander in
architecture

T E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, ISBN 0-201-63361-2, 1995. 35/38

Software Testing Strategies

a Glass-box testing

m Pareto principle — typically, only a small amount of software
modules in a large system are problematic

m Basis path testing — test data should enable testing of all
possible execution branches in a software system

Q Black-box testing
m Boundary value analysis, e.g. calculation of tan(x)

A ,
ji/boundary point

| o

/ . an equivalent class of input data

m Alpha and Beta testing w

36/38

Documentation

O User documentation
m Printed book for all customers
m On-line help modules
O System documentation
m Source code is part of the system documentation
o Consistent coding style and naming conventions
e Comments

m Design documents — requirement specifications, algorithm
descriptions (in UML, for example), etc.

m CASE tools can help keep these up to date

O Technical documentation
m For installing, customizing, updating, etc.

37/38

Software Ownership

O Copyright of software

m Filtration criteria: what is copyrightable?
o Features covered by International Standards?
o Characteristics dictated by software purposes?
o Components in the public domain?
o Look-and-feel?
m How do we verify that two software has “substantial similarity”?

O Patents used in software

m Mathematical formulae are traditionally un-patentable

m However, some software techniques (algorithms) have become
patents — many of them are not defensible in court!

O Trade secrets
m Non-disclosure agreements are legally enforceable

38/38

