
Software Engineering

National Chiao Tung University

Chun-Jen Tsai

05/09/2012

2/38

Complications of Software Design

� Software bugs have caused large scale disasters

� Software engineering → Try to find a better way to
develop and maintain a reliable software system

� Software Engineering is different from other

engineering disciplines:

UnclearPhysicsScientific Basis

UnclearMean time between Failure (MTBF)Quality Metrics

PerfectWithin toleranceRequired Performance

SometimesOften
“Off-the-shelf” parts
available

Software EngineeringTraditional Engineering

3/38

CASE Tools

� An important topic in software engineering is the
design of Computer-Aided Software Engineering

(CASE) tools for:

� Project planning – for resource (time, personnel) allocation

� Project management – for status tracking

� Documentation – for semi-automatic document generation†

� Prototyping and simulation – for fast proof-of-concept

� Interface design – for GUI development

� Programming – for program coding, version control, and
debugging

† Please google “Doxygen”

4/38

� The software life cycle is composed of three stages:

� For other products, the “modification” phase is called

maintenance (replacing old ware-out parts); in
software engineering, it’s called updates and

upgrades

The Software Life Cycle

Development Use

Modification

5/38

Software Development Phases

Specification

Design

Implementation

Testing

Collect User
Requirements

Specification

Architecture

Component
development

System integration

Hardware
platform?

Software
platform?

Software Development

Product Development

for software
components

6/38

Specification and Design Stages

� Requirement Specification:

� Based on application user requirements and some technical
specifications, perform a feasibility study

� The output of the analysis stage is the “software requirement
specification document”

� Design:

� The specification stage concentrates on what the system
should do, while the design stage concentrates on how the
system will accomplish those goals

� User interface design requires mixed knowledge of arts,
psychology, ergonomics, and programming

7/38

Implementation Stage

� Implementation stage creates system from design

� Write programs

� Create data files

� Develop databases

� In principle:

� A software analyst (software architect) is involved in
software development at the specification and design stage

� A programmer write programs that implement the design

� In practice, software architects and programmers are
interchangeable terms

8/38

Testing Stage

� Testing occurs in two forms
� Validation testing – checking to see if the system meets the

original requirements and specifications

� Defect testing – identifying and correcting errors (bugs) of
the system

� Granularity of testing:
� Module testing – test a single module

� To test a module in a system, simplified versions of other
modules (called stubs) in the system are often used

� Unit testing – test a smallest software module

� For imperative programming language, this is often a function

� Test codes are written to call the function with input at
boundary and/or singular points

� System testing – test the entire system

9/38

Software Development Models (1/2)

� Waterfall model

� Strictly following the orders of the four stages of software
development to design a complete system from scratch

� Too slow to react to a dynamic environment

� Incremental model

� Start with a simplified system, and incrementally build more-
and-more complete systems

� Iterative model

� Start with a full system with simplified modules, and
incrementally build more-and-more complete modules

A A

B

A

B

C

A0

B0

C0 A1

B1

C1 A2

B2

C2

D

10/38

Software Development Models (2/2)

� For incremental and iterative development models, the early
versions of the final system is often called prototypes

� Evolutionary prototyping – the prototypes will be refined

incrementally and eventually becomes the final system

� Throwaway prototyping – the prototypes are only used for

communication and quick verification of the design; later, a fresh

implementation will be used for the real product

� For example, rapid prototyping for UI design

� Open-source development model

� Extreme programming (XP)

� A programming project is accomplished by a team of equal

programmers cooperate in a flexible manners with repeated daily

cycles of analyzing, designing, implementing, and testing

11/38

Modularity

� Software modularity can be realized in the forms of
procedure, objects, and components
� Procedures – imperative paradigm

� Key info: procedure relations

� Objects – object-oriented paradigm

� Key info: object instances and object collaborations

� Components – reusable software units, often for object-
oriented paradigm

� Key info: component interfaces

� The goal of modular design is to minimize coupling
and maximize cohesion
� Coupling: interactions between modules

� Cohesion: internal binding within a module

12/38

Program Visualization Techniques

� It would be nice if we can use some diagrams to
describe the relations and interactions among

software modules

� Structure chart – displays relations among modules

of a procedural design:

13/38

Object-Oriented Visualization (1/2)

� In object-oriented designs, it takes more than
structure charts to describe the relations and

interactions among modules

� For object relations

14/38

Object-Oriented Visualization (2/2)

� For object interactions

time

15/38

Coupling

� Control coupling

� One module passes control to another

� Data coupling

� Sharing of data between modules

� Implicit coupling: hidden coupling may cause errors

� Global data: data accessible to all modules

� Side effects: action performed by a procedure that is not
readily apparent to its caller

16/38

Structure Chart with Data Coupling

� A structure chart can also shows data coupling

17/38

Cohesion

� Logical cohesion
� Logical similarity of actions and components in a module

� Functional cohesion
� Each component focus on performing a single activity

� Stronger than logical cohesion

� Cohesion in object oriented systems
� Entire object (i.e. the collection of data fields and methods in

an object) should be logically cohesive

� Each method (i.e. the tasks you perform in a method) should
be functionally cohesive

18/38

Example of Cohesion

� Logical and functional cohesion within an object:

19/38

Data-based Design Techniques

� Dataflow diagram

� Displays how data moves through a system

� Data dictionary

� Central repository of information about the data items
appearing throughout a software system

20/38

UML: Unified Modeling Language

� The Unified Modeling Language (UML) is a language
for specifying, visualizing, constructing, and

documenting large complex systems

� The development of UML began in late 1994 by

Grady Booch and Jim Rumbaugh of Rational

Software Corporation; Later, Ivar Jacobson of
Objectory and other companies joined the effort

� UML 1.0 and later 1.1 was officially released in 1997.
UML 2.0 is adopted in 2005.

21/38

UML Diagrams

� There are 14 types of UML 2.0 diagrams:

� Gray boxes are diagram classes;
white boxes are instances of diagrams

UML
Diagram

Structure
Diagram

Behavior
Diagram

Class
Diagram

Component
Diagram

Object
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Activity
Diagram

Interaction
Diagram

State Machine
Diagram

Use Case
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Timing
Diagram

Communication
Diagram

22/38

Use Case Diagram

� Actors in UML are the users of a system:

� Use case diagrams model the functions of systems

Customer

Add Items

Fill Order Form

Browse Catalog

Example:

Actor

use case

use case

use case

<<uses>>

<<extends>>

Relations
between
use cases

Actor

<< actor >>

System A
or

Online Shopping

Amazon.com

<<extends>>

Add Inventory

Inventory
System

<<extends>>

manager

<<uses>>

<<uses>>

<<uses>>

23/38

Another Use Case Example

24/38

Class Diagram (1/3)

� Class diagrams describe the relations (dependencies
or collaborations) among different classes

� Class definition:

� Visibility

� + means public

� – means private

� # means protected

Class Name

attribute:type = initialValue

operation(arg list): return type

Class Name

- attribute
- attribute

+ operation
+ operation
operation

25/38

� Association

� Multiplicity

� 1 means no more than one

� 0..1 means zero or one

� * means many

� 0..* means zero or many

� 1..* means one or many

Class Diagram (2/3)

Company

Employee

1

1..*

Class A Class B
explicit name

Class A Class B
role

role

Class A Class B
depends on

Class A Class B
knows a

26/38

Class Diagram (3/3)

� Composition and aggregation

� Generalization (inheritance)

Class A

Class B

A is composed of B

Class A

Class B

A is an aggregation of B

Super type

Subtype 1 Subtype 2

27/38

Example: Class Generalizations

� The concept of “generalization” in UML and
“inheritance” in O-O languages are different

� Inheritance has stronger binding between the parent class
and the derived class

� Generalization of class A into
class B does not imply that B
contains all attributes of A

28/38

� A component is a building block of the system

� Dependency of components

� Example: Program B depends on library C which uses library
A through interface API_D can be expressed as follows,

Component Diagram

Interface

Lib A

Prog B Lib C

Dependency
API_D

Component

29/38

Sequence Diagram (1/2)

� Sequence diagrams present the flow of messages
between instances, objects, or processes along time

� The time-axis of a sequence diagram progresses in
the vertical direction

� Messages flow can be synchronous (blocking) or

asynchronous (non-blocking)

30/38

Sequence Diagram (2/2)

� Call sequence

� Loop and branches

Actor
Object : Class Object : Class

[condition to exit]

loop

Time out call (non-standard)

Reply

Asynchronous flow of control

Generic flow of control

Synchronous call

Message typeArrow

Actor
Object : Class Object : Class

Life line

Active

Message

Actor
Object : Class Object : Class

alt
[condition true]

[condition false]

func2()

func1()

value

31/38

Example of Sequence Diagram

32/38

Activity Diagrams (Flow Chart)

� Activity diagrams show flow of control and data flow

� Notations:

Control/Data Flow

Action

Object

Choice

Control Fork

Control Join

Initial Node

Activity Final

33/38

Example of Activity Diagram

� File copy activity can be illustrated as follows:

Copy file

[Disk full]

[Disk not full]

file

[Cancel pressed]

Get free disk
space

Read file Write file

Display status

34/38

State Machine Diagram

� State machine diagrams describe the life cycle of an
object

� Example: a send-message object

SendMsgObject

Waiting

do: pollForEvents

Dispatching

entry: findRecipients

do: sendEvent

Logging

do: logEvent

Waiting

do: pollForEvents

Dispatching

entry: findRecipients

do: sendEvent

Logging

do: logEvent

sentEvent

loggedEvent

receivedEvent

stopEvent

State name

State actions

35/38

Design Patterns

� Design patterns are “software techniques” for solving

recurring problems†

� Examples:

� Adapter pattern: Used to adapt an existing module’s

interface to match the interface of a new system

� Decorator pattern: Used to extend the capability of an
existing module so that it can be used in a new system

� Inspired by the work of Christopher Alexander in
architecture

† E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, ISBN 0-201-63361-2, 1995.

36/38

Software Testing Strategies

� Glass-box testing

� Pareto principle – typically, only a small amount of software
modules in a large system are problematic

� Basis path testing – test data should enable testing of all
possible execution branches in a software system

� Black-box testing

� Boundary value analysis, e.g. calculation of tan(x)

� Alpha and Beta testing

an equivalent class of input data

boundary point

37/38

Documentation

� User documentation

� Printed book for all customers

� On-line help modules

� System documentation

� Source code is part of the system documentation

� Consistent coding style and naming conventions

� Comments

� Design documents – requirement specifications, algorithm

descriptions (in UML, for example), etc.

� CASE tools can help keep these up to date

� Technical documentation

� For installing, customizing, updating, etc.

38/38

Software Ownership

� Copyright of software

� Filtration criteria: what is copyrightable?

� Features covered by International Standards?

� Characteristics dictated by software purposes?

� Components in the public domain?

� Look-and-feel?

� How do we verify that two software has “substantial similarity”?

� Patents used in software

� Mathematical formulae are traditionally un-patentable

� However, some software techniques (algorithms) have become

patents → many of them are not defensible in court!

� Trade secrets

� Non-disclosure agreements are legally enforceable

