
Programming Languages

National Chiao Tung University

Chun-Jen Tsai

05/4/2012

2/40

Programming Language

� Programming Language (PL) is a language that can
“precisely describe” an algorithm to a computer so

that it can execute the algorithm:

Algorithm

data output

program

3/40

Design Considerations

� There are two extremes in designing a PL:

� Use human language

� Use machine code

� Human languages as programming languages

� Imprecise

� Inefficient (for computer as well as human)

� Easy to use

� Hard to debug

� Machine instruction code as programming languages

� Precise

� Efficient for computers

� Verbose to use

� Hard to debug

4/40

Assembly Language

� Since machine codes are too hard to remember,
each processor manufacture designs an “easy-to-

remember” names for each op-code

� Assembly language – a mnemonic system for

representing machine instruction codes

� Mnemonic names for op-codes

� Names for all registers

� Identifiers: descriptive names for memory locations, chosen
by the programmers

� Assembly language is referred to as the 2nd

generation of programming language

5/40

Assembly Language Characteristics

� One-to-one correspondence between machine
instructions and assembly instructions

� Programmer must think like the machine

� Inherently machine-dependent

� Before execution by a computer, we must translate a

machine language program into machine codes by
an assembler

6/40

Assembly Language Example

Machine language program Assembly language program

assembler

Definition of mnemonics:

LD means “load”
ADDI means “Integer addition”
ST means “store”
HLT means “halt”
ORG means “origin”
db means “define byte”

156C

166D

5056

30CE

C000

LD R5, [Price]

LD R6, [ShippingCharge]

ADDI R0, R5 R6

ST R0, [TotalCost]

HLT

;

ORG 6Ch

Price db 25

ShippingCharge db 5

TotalCost db 00

7/40

Third Generation Languages

� Uses high-level primitives

� Machine independent (mostly)

� Early examples:
� FORTRAN – for numerical computations

� COBOL – for financial computations and database systems

� Each primitive corresponds to a short sequence of
machine instruction codes

� Can be translated into machine codes by a compiler

8/40

Language Translators

� There are several kinds of programming language
translators

� Assemblers

� perform one-to-one mapping from assembly code to machine

code

� Compilers

� perform translation from a high-level (machine-independent)

statement to an equivalent short sequence of machine codes

� Interpreters

� perform translation and execution of high-level statements at

the same time; note that there is no intermediate machine code

being generated

9/40

Formal Languages

� Programming languages are “formal languages”
since they are artificial languages defined precisely

by grammars

� Natural (human) languages are not precisely defined

by grammars, instead, grammars are created

afterwards to “summarize” the language usage

� Esperanto is an “formal” human language artificially
developed in late 1870s.

10/40

Timeline of Programming Languages

11/40

Programming Paradigms (1/2)

� Imperative (procedural) programming language

� A program is a sequence of commands

� Earliest way of programming

� Functional programming language

� A program is a description of a data flow (connections of
functional units)

sum sum

diff

old
balance

credits debits

new
balance

(diff (sum old_balance credits) (sum debits))

An “algorithm”

A program in LISP programming language:

12/40

Programming Paradigms (2/2)

� Declarative programming language

� Describes conditions that satisfy the intended solution;
the specific steps needed to arrive at that solution are up to
an unspecified interpreter

� Only works for a specific domain of problems (e.g. for
knowledge-based inference)

� Object-oriented programming language

� A “data-centric” programming language

� Operations are attached to data

� A program is composed of a list of objects, each annotated
by a list of permissible operations of that object

13/40

Imperative Programming Language

� The imperative programming paradigm is the most
intuitive and effective way of expressing our

commands to computers

Data

Commands

Program

The first part consists of
declaration statements
describing the data that is
manipulated by the program.

The second part consists
of imperative statements
describing the action to
be performed.

14/40

Example of Data Declaration

� Variable (data) declarations in C, C++, C#, and Java
are as follows:

� Scalar data declaration:

� Aggregate data declarations:

float Length, Width;

int Price, Tax, Total;

char Symbol;

int Scores[2][9];

Struct {

char Name[8];

int Age;

float SkillRating;

} Employee;

array

structure (heterogeneous array)

15/40

Memory Layout of Aggregate Data

� A two-dimensional array with two rows and nine
columns:

� A structure:

16/40

Elements of an Imperative PL

� An imperative programming language provides
statements to:

� Express constants and literals

� Assign values to variables

� Control the execution sequence of the program

� Conditional control

� Looping control

� Commenting the program

� Call procedural units

17/40

Procedural Calls (1/2)

� Procedural calls for imperative languages:

18/40

Procedural Calls (2/2)

� Description of a procedure in C:

19/40

Parameter Passing Methods

� There are several ways to pass a parameter from the
calling program unit to the called procedure:

� Call-by-value (passed by value in the textbook)

� Call-by-reference (passed by reference in the textbook)

� Call-by-name

� not mentioned in the textbook, and not popular anymore

� similar to macro expansion in C/C++, but it’s a real function call

int x = 1, y = 2;

my_func()
{

f1(x, x+y);
}

f1(p, q)
{

int s;
p = q;
s = q;

}

This is equal to x = x+y;
and 3 will be assigned to p and x.

Here, 5 will be assigned to s.

20/40

Call by Value & Call by Reference

� Call by value � Call by reference

21/40

Function Calls

� A function is a special type of procedure that returns
a value:

22/40

Translating Program to Executable

� A compiler translates a program into machine codes
via the following steps:

Lexical analyzer converts alpha-numerical symbols in the source program to

tokens; for example, if each token is specified by a 16-bit number, a lexical analyzer

may perform the following conversion:

position = x_coord + y_coord * 7 → 0003 1001 0001 1002 0002 1003 2001

The first byte specifies the type of token,
0 – variables, 1 – operators, 2 – constants

The remaining bytes compose an

index to the token value tables

23/40

Syntax Diagram

� The parsing process is based on a set of rules that
define the syntax of the programming language

� The rules are called grammar

� The rules can be expressed by syntax diagrams

� A syntax diagram of the “if-then-else” statement is as

follows:

24/40

Algebraic Expression Syntax

25/40

Example of Parsing An Expression

� The parser generates a parse tree for a statements

x + y × z:

26/40

Ambiguous Parse Trees

� For “if B1 then if B2 then S1 else S2” we could have
two possible parse trees:

27/40

Code Generation and Optimization

� Once the parse tree
is done, one must

generate machine

codes for each
sub-tree or node,

for example, in
bottom-up manner

� Code optimization is a

technique for finding the best way to generate codes

load z into R0

load y into R1

multiply R0 with R1 and

save the result into R2

28/40

Concurrent Programming

� Concurrent programming is the simultaneous
execution of multiple processes/threads

� If the computing system has only one CPU, simultaneous
execution can be simulated using time-sharing techniques

� If the computing system has multiple CPUs, each
process/threads will be assigned to one CPU for execution

� The difference between processes and threads can

be loosely defined as follows:

� Program (static) → Process (runtime)

� Procedure (static) → Thread (runtime)

29/40

Spawning A Thread (in a Process)

Main
code

data

Proc.

Both threads access/modify the same data space

This whole thing is still
considered as a single
process space

thread 1
thread 2

30/40

Spawning A Process

� Spawning (or forking) of a process is done as follows:

code 1

data

code 2

data

Both processes are running in the main memory at the same time

�

exact copy

31/40

Object-Oriented Programming

� An object-oriented (OO) language composed of a
hierarchical structure of objects

� Class: the static definition of an objects

� Object: an active substance inside a running process

� An OO program is composed of the declaration of

different types of static description of substances (i.e.
classes), and how these substances are created

(become active) and interact with each others

� In OO terminology, an object is an instance of a class

32/40

OO View of Physical World

lecture room

desk
globe

human

chalk

eraser

blackboard

writing tools

mouth

body

speak

An object-oriented
description of the lecturing process

teacher

pen

write

33/40

Object-Oriented Terminologies

� Data Encapsulation

� Access to the internal components of an object are restricted

� You can use an object, but you cannot modify its behavior
and internal data

� Inheritance

� Define new classes in terms of previously defined classes

� Facilitate hierarchical structure of an object-oriented process

� Polymorphism

� Implementation details of the behaviors (or operators) of an
object are interpreted by the object that perform that
behavior

34/40

Functional Programming

� Principle of functional programming:

� The value of an expression depends only on the values of its
sub-expressions, if any

� Any language must be defined in some sort of
notation, called meta-language or defining language

� Meta-language tends to be a functional description

� Functional programming becomes popular due to the
invention of LISP, a list processing language, by John

McCarthy in 1958

35/40

Features of a Functional Language

� In functional language, program and data can be
treated almost the same:

� (it seems that you liked me)

� Unification of code and data is an important concept in many
modern languages

� Lots of parentheses are used to modify the structure

of a program:

� (it seems that you liked me)
and
((it seems that) you (liked) me)
are different

� Some people jokingly call LISP: Lots of Silly Parentheses

36/40

Example: Differentiation

� Differentiation can be computed in LISP as follows:

� The function “d” is defined using the rules:

(define s (make-sum '(u v w)))

(d 'v 'v)

(d 'v 'w)

(d 'v 's)

(d 'v '(* v (+ u v w)))

1
0

(+ 0 1 0)

(+ (* 1 (+ u v w)) (* v (+ 0 1 0))))

d(x, x) = 1

d(x, not x) = 0

d(x, E
1
+ E

2
) = d(x, E

1
) + d(x, E

2
)

d(x, E
1
* E

2
) = d(x, E

1
)*E

2
+ E

1
* d(x, E

2
)

37/40

Declarative Programming

� Declarative programming is also referred to as Logic
programming:

� The use of facts and rules to represent information

� The use of deduction to answer queries

� In declarative programming, the programmer supplies

facts and rules; while the computer use deduction to
find the answer

� The language that makes declarative programming
well-known is Prolog, developed in 1972

� The application domain for Prolog is similar to that for LISP:
artificial intelligence, expert systems, etc.

38/40

Prolog Language Elements

� In Prolog, all statements must be facts or rules

� Fact:
� predicateName(arguments)

� Example: parent(Bill, Mary)

� Rule:
� conclusion :- premise (note that :- stands for “if”)

� Example: wise(x) :- old(x)

� Example: faster(x,z) :- faster(x,y),faster(y,z)

39/40

Deduction Methods

� Resolution

� Combining two or more statements to produce a new,
logically equivalent statement

� Unification

� Assigning a value to a variable in a statement

40/40

Example of Deduction

� Resolving the statements:
(P OR Q), (R OR ¬Q), ¬R, ¬P

