Programming Languages

(} National Chiao Tung University
Chun-Jen Tsai

05/4/2012

Programming Language

A Programming Language (PL) is a language that can
“precisely describe” an algorithm to a computer so
that it can execute the algorithm:

program

—_

=

2/40

Design Considerations

Q There are two extremes in designing a PL.:
m Use human language
m Use machine code
O Human languages as programming languages
m Imprecise
m Inefficient (for computer as well as human)
m Easyto use
m Hard to debug
O Machine instruction code as programming languages
Precise
Efficient for computers
Verbose to use
Hard to debug

3/40

Assembly Language

d Since machine codes are too hard to remember,
each processor manufacture designs an “easy-to-
remember” names for each op-code

d Assembly language —a mnemonic system for
representing machine instruction codes
m Mnemonic names for op-codes
m Names for all reqisters
m |dentifiers: descriptive names for memory locations, chosen
by the programmers
a Assembly language is referred to as the 2nd
generation of programming language

4/40

Assembly Language Characteristics

d One-to-one correspondence between machine
instructions and assembly instructions
m Programmer must think like the machine

a Inherently machine-dependent

O Before execution by a computer, we must translate a
machine language program into machine codes by
an assembler

5/40

Assembly Language Example

Machine language program Assembly language program
156C LD R5, [Price]
166D LD R6, [ShippingCharge]
5056 assembler ADDI RO, R5 R6
30CE <i: | ST RO, [TotalCost]
C000 HLT

’

x| ORG 6Ch

T RO OaE e T EE R .~ | Price db 25
. Definition of mnemonics: v _ _

| ShippingCharge db 5
' LD means “load” i TotalCost db 00
. ADDI means “Integer addition”

ST means “store”

L HLT means “halt”

 ORG means “origin”

db means “define byte”

__

6/40

Third Generation Languages

a Uses high-level primitives
d Machine independent (mostly)

d Early examples:
m FORTRAN — for numerical computations
m COBOL - for financial computations and database systems

d Each primitive corresponds to a short sequence of
machine instruction codes

d Can be translated into machine codes by a compiler

7/40

Language Translators

d There are several kinds of programming language
translators

m Assemblers

o perform one-to-one mapping from assembly code to machine
code

m Compilers

o perform translation from a high-level (machine-independent)
statement to an equivalent short sequence of machine codes

m Interpreters

o perform translation and execution of high-level statements at
the same time; note that there is no intermediate machine code
being generated

8/40

Formal Languages

d Programming languages are “formal languages”
since they are artificial languages defined precisely
by grammars

a Natural (human) languages are not precisely defined
by grammars, instead, grammars are created
afterwards to “summarize” the language usage

m Esperanto is an “formal” human language artificially
developed in late 1870s.

9/40

Timeline of Programming Languages

! !
I I
1950 1960 1970 1980 1990 2000

! LI%P l Scheme ! I
l _—* Func't'n.“al
| 1 1 | |
| | | | I |
C
: ! ' ! . T+| Object-oriented
| I I Smalltalk ! Visual Basic | Java |
| I 1 | | |
Machine ! FORTRAN | Basic cl IAda ' |)
. Imperative
Languages : COBOL AL lDL APL I Pascal
| I Gpss I Prolog
| ' i) Declarative
|
I

- ae

10/40

Programming Paradigms (1/2)

Q Imperative (procedural) programming language
m A program is a sequence of commands
m Earliest way of programming

A Functional programming language
m A program is a description of a data flow (connections of

functional units)
ba?allﬂce E’fldiil debits
sum sum
diff @
A program in LISP programming language:

A 4

A

new (diff (sum old_balance credits) (sum debits))
balance

11/40

An “algorithm”

Programming Paradigms (2/2)

d Declarative programming language

m Describes conditions that satisfy the intended solution;
the specific steps needed to arrive at that solution are up to
an unspecified interpreter

m Only works for a specific domain of problems (e.g. for
knowledge-based inference)
a Object-oriented programming language
m A “data-centric” programming language
m Operations are attached to data

m A program is composed of a list of objects, each annotated
by a list of permissible operations of that object

12/40

Imperative Programming Language

d The imperative programming paradigm is the most
intuitive and effective way of expressing our
commands to computers

Program

The first part consists of

Data _____ declaration statements
describing the data that is

manipulated by the program.

The second part consists
of imperative statements
describing the action to
be performed.

Commands

13/40

Example of Data Declaration

d Variable (data) declarations in C, C++, C#, and Java
are as follows:
m Scalar data declaration:

float Length, Width;
int Price, Tax, Total;
char Symbol;

m Aggregate data declarations:

int Scores[2][9]; > array

Struct {
char Name[8];
int Age; > structure (heterogeneous array)
float SkillRating;

} Employee; 14/40

Memory Layout of Aggregate Data

a A two-dimensional array with two rows and nine
columns: Scores

Scores (2,4) in \ Scores [1]1 [3]inC

FORTRAN where and its derivatives
indices start at one. where indices start
at zero.

3d A structure: Employee

Name Age Skill
Rating

15/40

Elements of an Imperative PL

A An imperative programming language provides
statements to:
m Express constants and literals
m Assign values to variables

m Control the execution sequence of the program
« Conditional control
o Looping control

m Commenting the program
m Call procedural units

16/40

Procedural Calls (1/2)

a Procedural calls for imperative languages:

Calling
program unit

Procedure

Procedure is
/ executed.

Control is
transferred
to procedure.

Calling program
unit requests
procedure.

Calling program

unit continues. \

Control is returned to
calling environment when
procedure is completed.

17/40

Procedural Calls (2/2)

d Description of a procedure in C:

Starting the head with the term The formal parameter list. Note
“void" is the way thata C that C, as with many programming
programmer specifies that the languages, requires that the data
program unit is a procedure type of each parameter be specified.
rather than a function. We will

learn about functions shortly.

/

void ProjectPopulation (float GrowthRate)

This declares a local variable

{ int Year; named Year.

Population[0] = 100.0;
for (Year = 0; Year =< 10; Year++)

}

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

Population[Year+1l] = Population([Year] + (Population[Year] * GrowthRate) ;

18/40

Parameter Passing Methods

d There are several ways to pass a parameter from the
calling program unit to the called procedure:
m Call-by-value (passed by value in the textbook)
m Call-by-reference (passed by reference in the textbook)
m Call-by-name

e not mentioned in the textbook, and not popular anymore
« similar to macro expansion in C/C++, but it's a real function call

int x =1, yv = 2;

my_func ()
{

f1(x, x+y);
} Thisis equal to x = x+vy;
_.-¥ and 3 will be assigned to p and x.
£f1(p, Q) ’
{

I |__.» Here, 5 will be assigned to s.

i ct

w'o -
S8

\ roT 19/40

Call by Value & Call by Reference

a Call by value

a. When the procedure is called, a copy of the data is given to
the procedure

Calling environment Procedure’s environment

s5-— T—»s

b. and the procedure manipulates its copy.

Calling environment Procedure’s environment

c. Thus, when the procedure has terminated, the calling
environment has not been changed.

Calling environment

Q Call by reference

a. When the procedure is called, the formal parameter becomes
a reference to the actual parameter.

Calling environment Procedure’s environment

Actual Formal

5

b. Thus, changes directed by the procedure are made to the
actual parameter

Calling environment Procedure’s environment

Actual Formal

6 o e

c. and are, therefore, preserved after the procedure has
terminated.

Calling environment

Actual
6

Function Calls

d A function is a special type of procedure that returns
a value:

The function header begins with

the type of the data that will
/ be returned.

/
float CylinderVolume (float Radius, float Height)

Declare a
{ float Volume; [5calvariable

named Volume.

Volume = 3.14 * Radius * Radius * Height;

\ Compute the volume of

return Volume; the cylinder.

\Terminate the function and
} return the value of the

variable Volume.

21/40

Translating Program to Executable

A A compiler translates a program into machine codes
via the following steps:

Source Lexical Parser Code . Object
’ ’ > generator ’ program

program analyzer

/

Lexical analyzer converts alpha-numerical symbols in the source program to
tokens; for example, if each token is specified by a 16-bit number, a lexical analyzer

may perform the following conversion:

x_coord + y_coord * 7 — 0\0_0_3} 1001 0001 1002 0002 1003 2001

The first byte specifies the type of token, The remaining bvtes compose an
0 — variables, 1 — operators, 2 — constants . 9 by P
index to the token value tables

position =

22/40

Syntax Diagram

d The parsing process is based on a set of rules that
define the syntax of the programming language
m The rules are called grammar
m The rules can be expressed by syntax diagrams

a A syntax diagram of the “if-then-else” statement is as
follows:

Boolean

expression —» then —» Statement —» else —»» Statement T

23/40

Algebraic Expression Syntax

Expression
Expression
—» Term
Term
Term
—» Factor)

Factor

XX
|

24/40

Example of Parsing An Expression

d The parser generates a parse tree for a statements
X+yXZ.

Term Expression
Fact Term
Factor x Term

25/40

Ambiguous Parse Trees

Q For “if B1 then if B2 then S1 else S2” we could have
two possible parse trees:

Statement Statement
// \ /
if : then Statement glge Statement Boolean
expression expression then Statement
B/ \) // / \\
if Raaleay then = Statement Boolean
expression expression then Statement else Statement
B2 S1 32 51 sz

26/40

Code Generation and Optimization

d Once the parse tree

is done, one must /
generate machine
codes for each
sub-tree or node,
for example, in
bottom-up manner

Factor

A/I\
load y into R1 \

Q Code optimization is a

AN

Expression

~
N

Factor |

multiply RO with R1 and
save the result into R2

load z into RO

technique for finding the best way to generate codes

27/40

Concurrent Programming

a Concurrent programming is the simultaneous
execution of multiple processes/threads

m |f the computing system has only one CPU, simultaneous
execution can be simulated using time-sharing techniques

m |f the computing system has multiple CPUs, each
process/threads will be assigned to one CPU for execution
d The difference between processes and threads can
be loosely defined as follows:
m Program (static) — Process (runtime)
m Procedure (static) —» Thread (runtime)

28/40

Spawning A Thread (in a Process)

Main Proc.
code _?

L
I o
thread 2

thread 1

data

— _
—

Both threads access/modify the same data space

This whole thing is still
considered as a single
process space

29/40

Spawning A Process

d Spawning (or forking) of a process is done as follows:

code 2
code 1 l
v
| exact copy >
data
data
S— /

—

Both processes are running in the main memory at the same time

30/40

Object-Oriented Programming

d An object-oriented (OQO) language composed of a
hierarchical structure of objects
m Class: the static definition of an objects
m Object: an active substance inside a running process

3 An OO program is composed of the declaration of
different types of static description of substances (i.e.
classes), and how these substances are created
(become active) and interact with each others

—— O In OO terminology, an object is an instance of a class

31/40

OO View of Physical World

lecture room

globe
teacher desk

body

blackboard
mouth

eraser

)
chalk pen

!

An object-oriented human J7
description of the lecturing process

writing tools

32/40

Object-Oriented Terminologies

d Data Encapsulation
m Access to the internal components of an object are restricted

m You can use an object, but you cannot modity its behavior
and internal data

A Inheritance

m Define new classes in terms of previously defined classes

m Facilitate hierarchical structure of an object-oriented process
ad Polymorphism

m Implementation details of the behaviors (or operators) of an
object are interpreted by the object that perform that
behavior

33/40

Functional Programming

3 Principle of functional programming:

m The value of an expression depends only on the values of its
sub-expressions, if any

d Any language must be defined in some sort of
notation, called meta-language or defining language
m Meta-language tends to be a functional description

a Functional programming becomes popular due to the
invention of LISP, a list processing language, by John
McCarthy in 1958

34/40

Features of a Functional Language

3 In functional language, program and data can be
treated almost the same:
m (it seems that you liked me)
m Unification of code and data is an important concept in many
modern languages
3 Lots of parentheses are used to modify the structure
of a program:

m (it seems that you liked me)
and
((it seems that) you (liked) me)
are different

m Some people jokingly call LISP: Lots of Silly Parentheses

35/40

Example: Differentiation

Qd Differentiation can be computed in LISP as follows:

(define s (make—-sum '(u v w)))
' I S L by 4 1
(d 'V V) e . 0
(d 'v 'w) oo
(d 'V 'S) ——— > (+ O 1 O)
(d'v "(* v (+ u v w)))

(+ (* 1 (+ uvw)) (*v (+ 01 0))))

d The function “d” is defined using the rules:

d(x, x) =1
d(x, not x) = 0
d(x, E;, + E,) = d(x, E;) + d(x, E,)
d(x, E; * E,) = d(x, E))*E, + E; * d(x, E,)

36/40

Declarative Programming

Q Declarative programming is also referred to as Logic
programming:
m The use of facts and rules to represent information
m The use of deduction to answer queries

A In declarative programming, the programmer supplies
facts and rules; while the computer use deduction to
find the answer

d The language that makes declarative programming
well-known is Prolog, developed in 1972

m The application domain for Prolog is similar to that for LISP:
artificial intelligence, expert systems, etc.

37/40

Prolog Language Elements

a In Prolog, all statements must be facts or rules
Q Fact:

B predicateName (arguments)

m Example: parent (Bill, Mary)

d Rule:
m conclusion :- premise (note that : - stands for “if”)
m Example: wise(x) :- old(x)

m Example: faster (x,z) :- faster(x,y),faster(y, z)

38/40

Deduction Methods

O Resolution

m Combining two or more statements to produce a new,
logically equivalent statement

POR Q R OR -Q

N

PORR

O Unification
m Assigning a value to a variable in a statement

39/40

Example of Deduction

d Resolving the statements:
(POR Q), (ROR -Q), =R, =P

PORO ROR -Q

PORR

empty clause

40/40

