
Algorithms

National Chiao Tung University

Chun-Jen Tsai

04/13/2012

2/33

Algorithm

� An algorithm is an ordered set of unambiguous,
executable steps that defines a terminating process

� “Ordered” does not imply “sequential” → there are parallel
algorithms

� An algorithm is an abstract concept

� There can be several physical implementations of an
algorithm (using same or different programming languages)

� Given same input, different implementations of an algorithm
should produce the same output

� For example, an algorithm is like a story, and an
implementation is like a book on the story

3/33

Terminology Clarification

� What is the differences between an algorithm, a
program, and a process?

� Read the last paragraph of Sec 5.1 of the textbook carefully!

� A program is a formal representation of an algorithm, which
can be executed by a computer

� A process is the activity of executing an algorithm (or
equivalently, a program)

4/33

Algorithm Representation (1/2)

� We must find a way to separate an algorithm from the
actual implementation, but still present it precisely

� In 1950’s~1970’s, flowcharts is very popular in
describing an algorithm

→ too cumbersome for
sophisticated design

� Today, we usually use a pseudocode language (not a
programming language) to describe an algorithm

start

condition

perform A perform B

Halt

Y

N

5/33

Algorithm Representation (2/2)

� Theoretically, any languages (e.g. English) can be
used as a pseudocode language to describe

algorithms

� In practice, a good pseudocode language must avoid

any ambiguities

� A language with a small set of well-defined building blocks
(called primitives) can removes ambiguity

� Each primitive is a single operation you can apply to the data

6/33

� Origami is a
complicated

procedure

� Key question:

What operations

can we perform
at each step?

Example: Origami

7/33

Origami Primitives

� Primitives defined
in our programming

language limit our

implementation
of an algorithm

8/33

Pseudocode Example

� Pseudocode primitives

� Assignment: name ← expression;

� Conditional selection: if (condition) then (action)

� Repeated execution: while (condition) do (action)

� Procedure: procedure name (parameters)

� Example:

procedure Greetings

Count ← 3;

while (Count > 0) do

(

print the message “Hello”;

Count ← Count – 1;

)

9/33

Algorithm Discovery

� The techniques to discover an algorithm to solve real
world problem often requires specific domain

knowledge that you won’t learn in Computer Science

→ to launch a rocket, you must know physics well!

� However, a big algorithm is usually composed of

many small “standard algorithms” which you will learn
in Computer Science curriculum

� For example, “sorting numbers” is a crucial small algorithm
for many large problems

10/33

Polya’s Problem Solving Phases

� In 1945, G. Polya defined four problem solving
phases

� Phase 1: Understand the problem

� Phase 2: Devise a plan for solving the problem

� Phase 3: Carry out the plan

� Phase 4: Evaluate the solution for accuracy and for its
potential as a tool for solving other problems

11/33

A Sample Problem

� Person A is charged with the task of determining the ages of
B’s three children.
� B tells A that the product of the children’s ages is 36.

� A replies that another clue is required.

� B tells A the sum of the children’s ages.

� A replies that another clue is needed.

� B tells A that the oldest child plays the piano.

� A tells B the ages of the three children.

How old are the three children?

12/33

Techniques for Problem Solving

� Work the problem backwards (reverse-engineering)

� Look for solutions of an easier, related problem

� Stepwise refinement (top-down methodology)
� Popular technique because it produces modular programs

� Breaking a big problem into smaller ones (bottom-up
methodology)
� The solution of each small problem must be unit-tested

before integrating it into the big solution

13/33

Iterative Structures in Algorithms

� It often happens that an algorithm contains repeated
actions, each action is similar to previous one

� Example: sequential search

procedure Search (List, TargetValue)

if (List empty) then

(Declare search a failure;)

else

(

Select the first entry in List to be TestEntry;

while (TargetValue > TestEntry and

there remain entries to be considered)

do (Select the next entry in List as TestEntry;)

if (TargetValue = TestEntry) then

(Declare search a success;)

else

(Declare search a failure;)

)

14/33

Two Variants of Iterative Structure

� Iterative structure can be implemented using one of
two methods

� Loop structure

� Recursive structure

� An iterative structure is composed of two parts

� Body of repetition

� Repetitive control

15/33

Components of Repetitive Control

� Initialize:

� Establish an initial state that will be modified toward the
termination condition

� Test:

� Compare the current state to the termination condition and
terminate the repetition if equal

� Modify:

� Change the state in such a way that it moves toward the
termination condition

16/33

Loop Structure

The while loop: The repeat loop:

(body of repetition)

(body of repetition)

17/33

Example: Sorting (1/2)

� Sorting the list:
Fred, Alex, Diana,

Byron, and Carol

alphabetically

� The example

given here uses
insertion sort

18/33

Example: Sorting (2/2)

� The pseudo code of insertion sort

procedure Sort(List)

N ← 2;

while (the value of N does not exceed the length of List) do

(

Select the Nth entry in List as the pivot entry;

Move the pivot entry to a temporary location, leaving a hole;

while (there is a name above the hole greater than the pivot) do

(move the name above the hole down into the hole, leaving

a hole above the name;)

Move the pivot entry into the hole in List;

N ← N + 1;

)

19/33

Recursive Structures

� Recursive structures provides an alternative to the
iterative structures

� Example: binary search

Goal: find John

20/33

Pseudo Code of Binary Search (1/2)

� The pseudo code of binary search can be described
elegantly using recursive structure:

procedure Search(List, TargetValue)

if (List empty) then

(Report that the search failed;)

else

(

Select the middle entry in List to be the first TestEntry;

if (TargetValue = TestEntry) then

(Report that the search succeeded;)

else

(

if (TargetValue < TestEntry) then

(Search(List
top
, TargetValue);)

else

(Search(List
bottom

, TargetValue);)

)

)

21/33

Pseudo Code of Binary Search (2/2)

Alice

Bob

Carol

David

Elaine

Fred

George

Harry

Irene

John

Kelly

Larry

Mary

Nancy

Oliver

Irene

John

Kelly

Larry

Mary

Nancy

Oliver

Search(ListBottom, “John”)

Irene

John

Kelly

Search(Listtop, “John”)

22/33

Recursive Control

� Note that, in a recursive structure, repetitive control is
achieved by first testing the termination condition

before recursive calls

procedure my_function(parameters)

if (termination condition is true) then

(

Ends body of repetition

)

else

(

Perform recursive calls

)

23/33

Algorithm Efficiency

� Question: when the number of input data grows
linearly, what is the growth of the number of

operations of an algorithm?

→ The answer to this question is the complexity of
the algorithm

� Since the number of operations for processing a set

of data depends on both the size of the data and the
data pattern, an algorithm’s best case, worst case,

and average case complexity can be quite different

24/33

Example: Insertion Sort (1/2)

� Applying the insertion sort in a worst-case situation

25/33

Example: Insertion Sort (2/2)

� Graph of the worst-case analysis of the insertion sort
algorithm

26/33

Complexity Measure

� The complexity of an algorithm can be classified

using the bit-theta notation, Θ, of the input data size n

� Θ(f(n)) means that if the input data size is n, the
number of operations, c(n), of the algorithm grows at

the same speed of f(n), within constant factors.

That is, given constants k1 ≥ k2 > 0, as n → ∞,

k2⋅f(n) ≤ c(n) ≤ k1⋅f(n)

� For example, the complexity of insertion sort is Θ(n2)

and the complexity of binary search is Θ(log2 n)

27/33

Software Verification

� Once we have designed an algorithm, the next logical
question to ask is:

How do I prove the correctness of the algorithm?

� Software verification’s goal is to prove that an
algorithm works by a formal procedure instead of

intuitive arguments

28/33

Example: Chain Separating (1/3)

� A traveler has a gold chain of seven links. He must stay at an
isolated hotel for seven nights. The rent each night consists of
one link from the chain.

� What is the fewest number of links that must be cut so that the

traveler can pay the hotel one link of the chain each morning

without paying for lodging in advance?

� One possible solution:

� Key question: is this the correct answer?

29/33

Example: Chain Separating (2/3)

� In fact, the problem can be solved by using one
single cut!

30/33

Example: Chain Separating (3/3)

� How do we prove that the 2nd answer is optimal?

� Proof:

� On the first morning, a single link must be given to the hotel;
at least one cut is needed

� Since our solution uses only one cut and there can be no
other solution using less than one cut, we have found the
optimal solution

31/33

Software Verification

� Proof of correctness of algorithm is composed of
several steps

� First, some conditions are true before the execution of the
algorithm; these conditions are called preconditions

� Then, some statements, called assertions, throughout the
algorithm must be established

� At the end, an assertion must specify the desired output of
the algorithm

� If, given the preconditions, each identified assertion is true
when the execution reaches that particular point, then the
algorithm is correct

32/33

Example of Assertions

� An assertion at a point in a loop that is true every
time that point in the loop is reached is known as

loop invariant

Loop invariant for the
insertion sort:

“Every time we reach here,
the first N-1 position are
sorted”

33/33

Software Testing

� Formal algorithm verification techniques have not
been powerful enough to apply to general algorithms

� Most programs today are “verified” by testing under
various conditions (called test points), nevertheless,

there is no guarantee that a “tested” program is

correct under any circumstances

