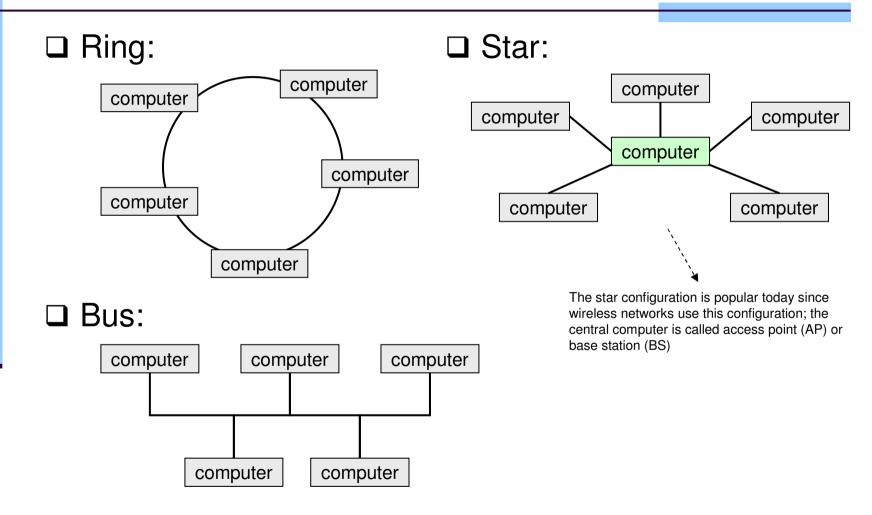

Networking and Internet

National Chiao Tung University Chun-Jen Tsai 3/30/2012

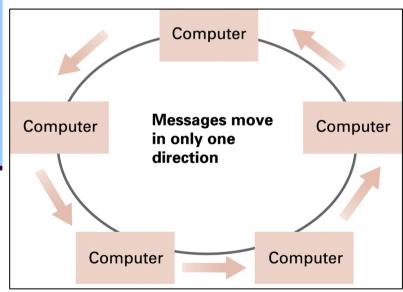
A Networked World

☐ The world is connected by heterogeneous networks:


Service Network Classifications

- □ Broadcasting Networks (TV Networks)
 - Satellite Networks
 - Terrestrial Networks
 - Cable Networks
- Communication Networks
 - Public Switched Telephone Networks (PSTN)
 - Mobile Networks (2G, 3G)
- □ Computer Networks (using Internet Protocol)
 - Ethernet
 - Integrated Service Digital Network (ISDN)
 - Asymmetric Digital Subscriber Line (ADSL)

Network Geographic Classifications


- □ Local area network (LAN)
 - Small scale, usually within a diameter of a few kilometers (e.g., a company, lab, or school)
 - High speed (> 100 mega bits-per-second)
 - Complete ownership by a single organization
- Metropolitan Area Network (MAN)
 - Medium scale, say, within a city
 - "Broadband" speed (around 1~10 mbps)
 - Examples: ADSL or Cable Modem
- Wide area network (WAN)
 - Large scale, may cover entire country or across countries
 - Usually low speed (< 1 mbps)

Network Topologies

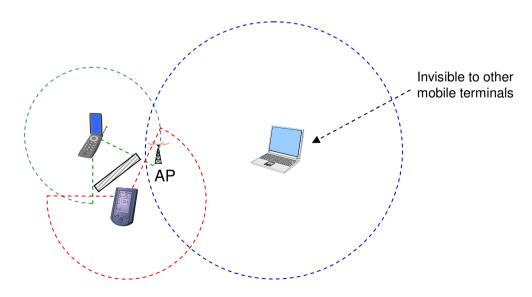
Communication over a Network

- ☐ The topology of a network determines its communication protocols
- □ A network protocol is a set of rules for computers in a network to perform data exchange

Ring Network

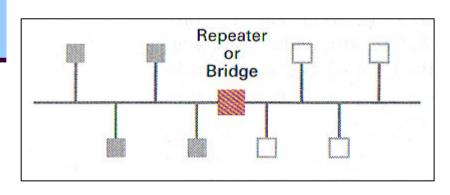
Bus Network

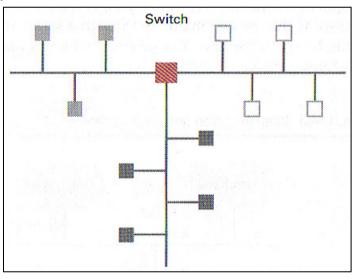
Token Ring Protocol[†]


- □ Developed by IBM in 1970
- ☐ The computer that receives the "token" message can become the originating computer of a data message
- □ Data messages are transmitted in one direction
 - Each computer on the ring topology forwards the message to the next one
 - Only the destination machine keeps a copy of the data message before it forward the message
 - The originating computer of the message will not forward it again when it received the message

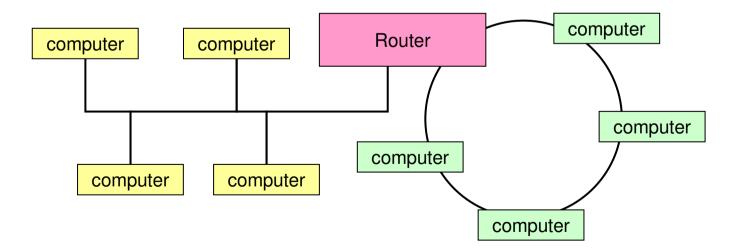
Ethernet Protocol for Bus Network

- ☐ Ethernet protocol uses the rule called "Carrier Sense, Multiple Access with Collision Detection (CSMA/CD)"
 - Each computer on the network has an address ID
 - Any messages are broadcasted to all computers on the network
 - A computer only keeps the message addressed to it
 - If more than one computers try to send messages at the same time, they will all detect the "collision" and stop sending messages
 - They will try again later, after a random period of waiting


Wireless Protocol

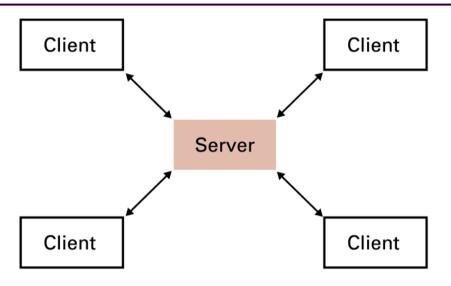

- □ Wireless network uses Carrier Sense, Multiple Access with Collision Avoidance (CSMA/CA) protocol
 - A "newcomer" must wait until it does not "hear" any messages before it can *request* to use the channel
 - To avoid the "hidden terminal problem," the newcomer must wait for the AP to grant its request before it sends messages

Combining Networks (1/2)


- ☐ To connect two or more smaller networks to form a big network, we need some special devices
 - Repeater a device that passes signals between two networks back-and-forth
 - Bridge a device similar to a repeater, but it only performs "meaningful" message-forwarding
 - Switch a bridge with multiple connections

Combining Networks (2/2)

- □ A router is a device (maybe a computer) that connects two (possibly heterogeneous) networks together
 - The two networks may be using different protocols and address IDs


Interprocess Communication Model

- □ Client-server model
 - One server, many clients
 - Server must execute continuously
 - Client initiates communication
 - Example: print server, file server

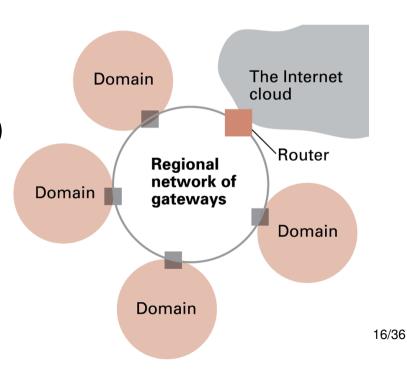
- □ Peer-to-peer model
 - Two hosts communicating as equals
 - Peer hosts can be short-lived
 - Peer-to-peer *network* is a misuse of the terminology

Client/Server Model vs. P2P Model

a. Server must be prepared to serve multiple clients at any time.

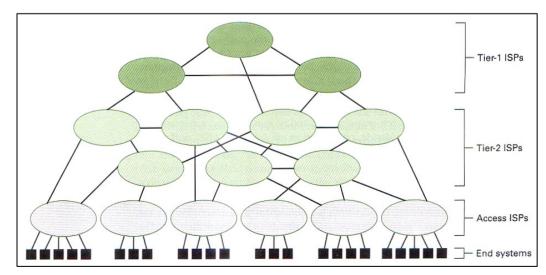
b. Peers communicate as equals on a one-to-one basis.

Distributed Systems


- ☐ A distributed system is a system with software units that run on different computers across the network
 - Each software unit is a process running on a host (i.e. a computer on the network)
 - Distributed processes usually have to perform data exchange, remote invocation, synchronization, etc.
 - Various distributed computing models
 - Cluster computing tightly-coupled, supercomputer style
 - Grid computing loosely-coupled, SETI@HOME style
 - Cloud computing hyping-based, scammer style

The Internet

- □ The Internet: one internet spanning the world
 - Started by DARPA in 1970's
 - Today involves millions of machines
- ☐ The Internet is a packet-switched network. That is, all the data are transmitted on a packet-by-packet basis
 - Another type of network is called circuit-switched, which means a virtual connection will be established before the transmission of data


Internet Architecture

- ☐ The Internet is a collection of domains
 - Each domain is a network or a set of inter-connected networks controlled by a single organization
 - Domains must be registered through ICANN, Internet Corporation for Assigned Names & Numbers
- □ A gateway is a router connecting a domain to the rest of the Internet (referred to as the *cloud*)

Strategies for Internet Connections

- ☐ There are several ways to connect your computers to the Internet:
 - For a large organization, you can lease direct connections
 - Example: TANet run by Ministry of Education in Taiwan
 - For a small organization, you can link your domain to the domain of an Internet Service Provider (ISP)
 - There are three levels: Tier-1 ISPs, Tier-2 ISPs, Access ISPs

Internet Addressing

- □ Each machine on a network must have a unique address: for the Internet, this is called the Internet Protocol (IP) address
 - For IPv4, an IP address is a 32-bit identifier for a machine
 - For IPv6, an IP address is 128 bits
- □ IP address is often written in dotted decimal notation
 - IPv4 example: 140.113.39,164
 - IPv6 example: identifies the host identifies the domain

fe80::3153:525f:6964:8d84

or

fe80:0000:0000:0000:3153:525f:6964:8d84

Internet Textural Addressing

- ☐ IP addresses are difficult for human to remember
- □ Each IP may have an equivalent mnemonic address, which is composed of a domain name and a host name (e.g. bsd1.cs.nctu.edu.tw)
 - Domain name is the part assigned by a registrar
 - Top level domain (TLD) is the classification of domain owner (for example, .com and .tw)
 - A domain name server (DNS) on the network translates the mnemonic addresses to binary IP addresses
 - Host name is assigned by domain administrator
 - Domain owner must run a name server in order for other computers to find your computer

Internet Applications

- ☐ Electronic mail (e-mail)
- ☐ File Transfer Protocol (FTP)
- ☐ Telnet and Secure Shell
- □ Voice-over-IP (VoIP)
- World Wide Web

World Wide Web (WWW)

- □ The WWW application model is a model of servers spreading hypertext (or hypermedia) documents over the Internet
- □ A web site is a server hosting all hypertext documents controlled by one organization or individual
- □ HTML is the most popular language of hypertext documents

World Wide Web Implementation

- □ Web server:
 - provides access to documents on its machine as requested
- ☐ Browser:
 - allows user to access web pages
- ☐ Hypertext Transfer Protocol (HTTP):
 - communication protocol used by browsers and web servers
- ☐ Uniform Resource Locator (URL):
 - unique address of a document on the web

Hypertext Document Format

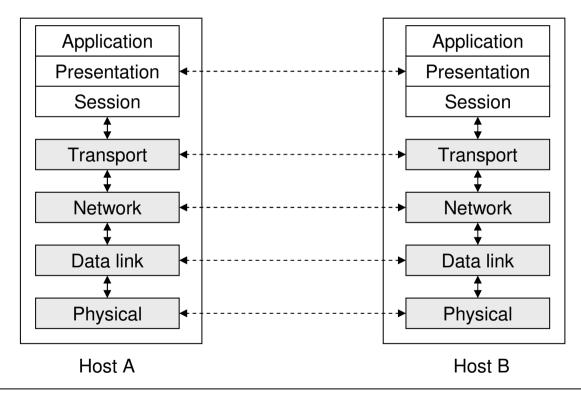
- ☐ Entire document is printable characters
- ☐ Contains tags to control display, links to other documents (or contents), and dynamic functions

```
Tag indicating
    beginning of
                      <html>
    document
                      <head>
    Preliminaries
                      <title>demonstration page</title>
                      </head>
                      <body>
Part of the page that
will be displayed
                      <h1>My Web Page</h1>
by browser
                      Click here for another page.
                      </body>
Tag indicating
                      </html>
end of document
```

A Hyper-Linked Web Page

```
<html>
              <head>
              <title>demonstration page</title>
              </head>
              <body>
              <h1>My Web Page</h1>
              Click
Anchor tag
containing -
                 <a href="http://crafty.com/demo.html">
parameter
                 here
Closing
                 </a>
anchor tag
                 for another page.
              </body>
              </html>
```

Extensible Markup Language (XML)

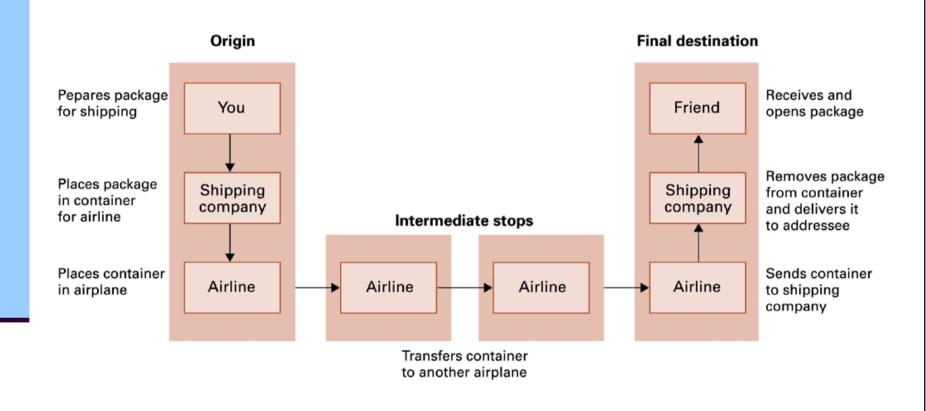

- □ Due to the success of HTML, some people decided to design a general presentation language similar to HTML, the result is the XML designed by W³C
- ☐ XML: a language for constructing markup languages similar to HTML
 - XML has been extensively used for all kinds of presentation languages on the Internet (e.g. SMIL or SVG)
 - XML has been adopted as general configuration languages as well (e.g. for MS Visual Studio or Apple Quicktime server)
 - Microsoft uses XML, Open Office XML (OOXML), for all its MS Office file formats since Office 2007

Dynamic Web Pages

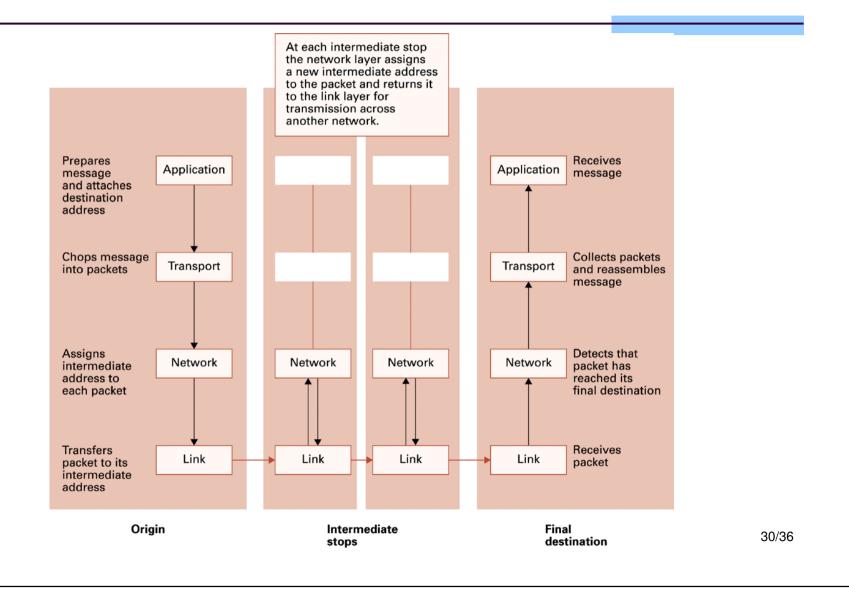
- □ To create multimedia-rich interactive web pages, you may require client-side activities and server-side activities
- ☐ Client-side activities can be created using Java applets, Javascript, Macromedia Flash, etc.
- ☐ Server-side activities can be created using:
 - Common Gateway Interface (CGI)
 - Sun's JavaServer Pages (JSP) or Microsoft's Active Server Pages (ASP)
 - PHP Hypertext Processor

ISO Network Models

■ Most networks are designed using layered approach (ISO 7-layer model†):

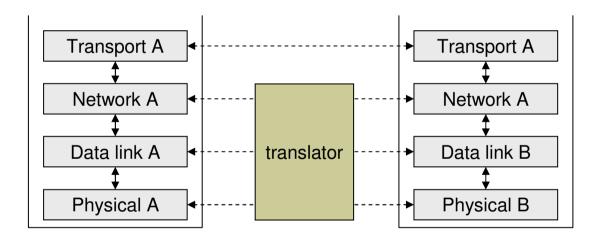


[†] This model is beyond the scope of the course


Internet Protocols

- ☐ The Internet, just like the ISO 7-layer model, is also using a layered protocol approach
- ☐ The Internet only have four layers
 - Application layer:
 - Example: browser
 - Transport layer:
 - TCP reliable transport
 - UDP unreliable transport
 - Network layer:
 - Internet Protocol (IP)
 - Handles routing through the internet
 - Link layer: handles actual transmission of packets
 - Token ring or Ethernet

Package-Shipping Example



Send a Message through the Internet

ISO Internetworking

☐ To connect two networks together, one need a host that can handle translation of one protocol to another:



☐ The translator can be called bridge, router, or gateway, based on their functions

Port Number

- □ A computer have a unique IP address; all applications running in this computer shares the same IP address
- When an Internet packet arrives at an IP addresses, which application on the computer will receive it?
 - Answer, port numbers are used to identify a particular application at an IP address
 - Each packet will be delivered to a IP:Port address that belongs to an application

Choosing between TCP and UDP

Network Security

- □ Integrity of machine exposed to internet can be attacked by
 - Viruses and worms
 - Trojan horses
 - Spywares (sniffing) and phishing
 - Denial of service attacks
 - Spamming
- □ Defense techniques
 - Firewall
 - Virus and spam filters
 - Proxy server

Privacy of Communication

- ☐ In the old days, most data send over the Internet were unprotected
 - A network sniffer can be used to collect your private data
- ☐ Today, encryptions are used to protect your privacy
 - Secure versions of network protocols such as FTPS, HTTPS, and SSL are used to transmit data with encryption
 - You can also encrypt data by yourself using public key encryption system such as the PGP system

Public Key Encryption Concept

- □ Before you do encryption, you must generate a pair of keys called the public key and the private key[†]
- □ You broadcast your public key to everyone who wants to send you a message so that your friend can encrypt the message using your public key
 - Certificate authorities may be needed to ensure the correctness of a public key
- ☐ The encrypted message can only be decoded using the private key, which is available only to you