
Data Manipulation

National Chiao Tung University

Chun-Jen Tsai

03/09/2012

2/34

Computer Architecture

� Central Processing Unit (CPU) contains

� Arithmetic/Logic Unit (ALU)

� Control Unit

� Registers

� Cache Memory

� Bus

� Main Memory

� I/O devices

CPU

main
memory

I/O devices

Controllers

bus

processor core

3/34

Register

� A register is a special memory cell inside the CPU
that can store an n-bit data

� For modern CPUs, n is usually 8, 16, 32, or 64

� Registers are used to store intermediate computation results

� An n-bit register is composed of a group of n flip-flops

� Example: a 3-bit register:

read/write
control

output bits

input bits

The truth table of the

flip-flop is

Don’t care11

110

001

Previous value00

QRS

Q

S

R

Note: is denoted as , it is called a NOR gate. is a 2-to-1 multiplexor.

0

0

0

0

0

0

4/34

Bus

� A bus is a collection of wires to connect a computer’s
CPU, memory, and I/O devices

� Information (0’s and 1’s) are transmitted among the CPU,
memory, and devices via the bus following some
handshaking rules

CPU

I/O

Device

Main

Memory

System

Controller

bus

5/34

Stored Program Concept

� A program is a sequence of instructions that
implements an algorithm

� A program is just a special type of data and can be
stored in main memory

� Program memory and data memory can be shared or
separate; e.g. separate memory architecture:

CPU

program
memory

bus

data
memory

6/34

What Do Instructions Look Like

� When you ask other people to do something, you use
human languages (Chinese, English, etc.)

� However, human languages are too cumbersome
and too ambiguous for computers to decode and

execute!

� Machine languages must be

� Concise – easy to decode

� Precise – each instruction can be executed in only one way

Note: There are computers that can follow instructions given in simple human languages,

but it may not be worth doing it this way

7/34

Machine Language

� A machine instruction is an instruction coded as a bit
pattern directly recognizable by the CPU

� A machine language is the set of all instructions
recognizable by a CPU

� Each CPU has its own machine language, called the
Instruction Set Architecture (ISA) of the CPU

� The bit-pattern of a machine instruction can be
divided into two parts: op-code field and operand field

8/34

Parts of a Machine Instruction

� Op-code field

� Specifies which machine operation to execute

� One per instruction

� Operand field (a.k.a. addressing mode field)

� Data and addresses related to this operation

� Number of operands varies depending on op-code

� Example: the instruction that asks CPU to add data2

and data6 and store the result in data7 can be coded
in a 16-bit number as follows:

ADD data7 data2 data6

4 bits op-code 4 bits 4 bits 4 bits

9/34

Instruction Lengths

� A machine language can use fixed-length coding or
variable-length coding of all its instructions

� Fixed-length coding: easier for the CPU to decode, usually
allows fewer instructions in the language

� Variable-length coding: harder for the CPU to decode, but
allows a richer set of instructions

10/34

Machine Language and Architecture

� Machine language reflects the architecture of the
CPU, there are two major types of design philosophy:
RISC and CISC

� Reduced Instruction Set Computer (RISC)
� CPU only executes a small set of simple instructions

� However, CPU executes these simple instructions really fast

� Usually use fixed-length coding of instructions

� Complex Instruction Set Computer (CISC)
� CPU executes many complex and powerful instructions

� Complex instructions takes longer to execute, but an
algorithm implemented in CISC machine language requires
less instructions than that of RISC’s

� Usually use variable-length coding of instructions

11/34

Machine Instruction Types

� The instructions of a machine language can be
classified into three groups:

� Data Transfer: copy data between CPU registers and/or
main memory cells

� Arithmetic/Logic: use existing data values (stored in registers
or main memory cells) to compute a new data value

� Control: direct the execution flow of the program

12/34

Example: A Simple CPU

� The textbook describes a simple CPU architecture

Central Processing Unit

Control Unit

00

Program Counter

Instruction Register

Registers

00

20

5A

07

�
�
�

0

1

2

F

ALU

ADD

XOR

�
�
�

ROR

Main memory

35

A7

00

00

01

04

00

address cells

FF

C002

0003

�
�
�

bus

13/34

Example: An Instruction

Op-code Operand

0011 0101 1010 0111

3 5 A 7

Actual bit pattern (16 bits)

Hexadecimal form (4 bits)

Op-code 3 means to store
the contents of a register
in a memory cell

This part of the operand
identifies the register whose
contents are to be stored

This part of the operand
identifies the address of
the memory cell that is to
receive data

Note: The complete instruction set is listed in Appendix C of the textbook

14/34

Example: Program in Machine Codes

15/34

Program Execution

� Controlled by two special-purpose registers

� Program counter: address of next instruction

� Instruction register: current instruction

� Each machine cycle of program execution is

composed of three steps:

� Fetch – copies memory cells addressed by the program
counter to the instruction register and increment the program
counter to the next instruction in main memory

� Decode – decodes the bit pattern in the instruction register
to determine the operation required and the related
operands

� Execute – performs the operation specified by the instruction

16/34

Program Flow Control

� Some instructions change the next instruction to be
fetched based on some condition

� Example: conditional jump instruction

17/34

Running a Program in Main Memory

CPU

Control Unit

A0

Program Counter

Instruction Register

Registers

00

00

00

00

�
�
�

0

1

2

F

ALU

ADD

XOR

�
�
�

ROR

Main memory

15

6C

50

A0

A1

A4

56

address cells

A5

16A2

6DA3

�
�
�

C0A8

00A9

30A6

6EA7

�
�
�

Program counter contains the
address of the first instruction

Program is
stored in main
memory
beginning at
address A0

bus

18/34

Fetch Step (1/2)

19/34

Fetch Step (2/2)

20/34

Decode and Execution

� To understand how execution and decode is done
inside a CPU, we need a more detail architecture

diagram of a CPU than the one illustrated in the

textbook

(Note: next three slides are beyond the scope of this
course, but is good for your understanding of CPU)

21/34

Internal Structure of a Realistic CPU

CPU

Register bank

Program Counter

⋅ ⋅ ⋅

Register 0

Register 1

Register 2

Register F

ALU

Data Out Register

Address Out Register

Data In Register

Instruction
Decode

and

Control

Incrementer

Main
memory

memory cell
address

data from a celldata to a cell

512F

Instruction

Register

22/34

Concept of “Data Path”

� In previous chapter, we mentioned that a function can
be implemented using a “circuit of gates:”

� Each function (or data processing circuit) can also be
referred to as a “data path”

� A general purpose computer can control its data path
based on the instructions it receives

a

output

b

c

Circuit

23/34

Execution of an Instruction

� After decoding of an “add” instruction, the data path
of a CPU may become as follows:

CPU

Program Counter

Register 0

Register 1

Register 2

⋅ ⋅ ⋅

Register F

+

Data Out Register

Address Out Register

Data In Register

Instruction

Decode

and

Control

Memory

+2

Computation of
R1 = R2 + RF

512F

datapath

24/34

Arithmetic/Logic Operations

� The Arithmetic/Logic Unit (ALU) of a CPU is the
muscle that performs data manipulation

� Three types of operations are supported by ALU:

� Logic: AND, OR, XOR, NOT

� Rotate and Shift: rotate (a.k.a. circular shift), logical shift,
arithmetic shift

� Arithmetic: add, subtract, multiply, divide

25/34

Rotation (Circular Shift)

26/34

Logical Shift and Arithmetic Shift

� There is only one way to do an n-bit left shift

� There are two ways to do n-bit right shift

� Logical right shift

� Arithmetic right shift

10100011
Left shift by two bits

10001100

10100011
Right shift by two bits

00101000

10100011
Right shift by two bits

11101000

Right shift by two bits
0000100000100011

27/34

I/O Subsystem of a Computer

28/34

Communicating with Devices (1/2)

� Controller is an intermediary device that handles
communication between the computer and a device

� CPU transfers data to/from the device using
addresses

� Dedicated instruction I/O: CPU uses dedicated I/O
addresses to communicate with device controllers; often
these addresses are called “I/O ports”

� Memory-mapped I/O: CPU uses main memory addresses to
communicate with device controllers

29/34

Communicating with Devices (2/2)

� Direct memory access (DMA)
� A controller can access main memory directly when CPU is

not using the bus; this capability is called DMA

� Sometimes, we design a special circuit just to move data
around inside the system, we also call this circuit a DMA

� Von Neumann Bottleneck
� If the CPU fetches both the instructions and data through a

single bus connected to a memory device, the performance
of the CPU would be limited by the performance of the BUS
and the memory device

� Handshaking
� The process of controlling the transfer of data between

components connected via a bus

30/34

Memory Mapped I/O Example

I/O address
(an empty memory cell

that does not really exist

in main memory device)

31/34

Data Communication Terminologies

� Modem (modulation-demodulation):

� In communication systems, modulation is a process that
“pack” data (analog or digital) to a carrier signal (like packing
goods in a truck) for transmission of data in the real world

� In computer terminology, “modem” is a device that perform
this operation when the carrier is a telephone line

� Serial communication: transfers one bit at a time

� Parallel communication: transfers multiple bits

simultaneously

� Multiplexing: interleaving of data so that different data

can be transmitted over a single communication path

32/34

Improving CPU Architecture

� Pipelining: overlap steps of the CPU operation cycles

� Parallel processing: execute multiple operations

simultaneously

� Parallel processing can be performed within a CPU

or across CPUs

time

Fetch 1 Decode 1 Execute 1

Fetch 2 Decode 2 Execute 2

Fetch 3 Decode 3 Execute 3

t
0

t
1

t
2

t
3

t
4

33/34

Multiprocessor Systems

� A single processing unit execute one instruction a
time, which is called Single-Instruction stream Single-

Data stream (SISD) architecture

� If multiple processing units (multi-CPU, multi-core, or

multi-ALU) are connected to the main memory, we

have parallel processing architecture:

� Multiple-Instructions stream Multiple-Data stream (MIMD):
different instructions are issued at the same time to operate
on different data

� Single-Instruction stream Multiple-Data stream (SIMD):
one instruction is issued to operate on different data

34/34

Multi-CPU, Multi-Core, Multi-ALU

� Multi-CPU Architecture:

� Multi-Core Architecture:

� Multi-ALU Architecture:

main
memory

bus

CPU

main
memory

bus

Core 1 Core 2

other stuff

CPU 1

Core

other stuff

CPU 2

Core

other stuff

main
memory

bus

Registers

other stuff

Instruction Fetch,

Decode, and Control

ALU 1 ALU 2

Registers

IF, ID, & Ctrl.

ALU Note: “other stuff” could be interface

logic, cache, MMU, timer, … etc.

