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Partial Differential Equation

 A partial differential equation (PDE) is a differential 
equation that contains partial derivatives of a 
dependent variable that is a function of at least two 
independent variables.

 Example: one-dimensional heat equation:

 u(x, t) is the temperature function of x (position) and t (time) of 
a heated rod, k is a constant parameter determined by the 
material of the rod
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Linear Partial Differential Equations

 If u is a function of two independent variables x and y, 
the general form of a linear 2nd-order PDE is given by:

where A, B, C, D, …, G are functions of x and y.

 Example: one-dimensional heat propagation equation 
can be described by:
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Solving PDE for Separable Functions

 General solutions for PDE are difficult to find, so in 
practice, we only look for particular solutions.

 In addition to using initial or boundary conditions to 
constrain our solutions, we often assume that the 
solution function is separable, that is:

u(x, y) = X(x)Y(y).
Thus, we have:
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Example: Solving                          (1/4)

 Let u(x, y) = X(x)Y(y), we have XY = 4XY, or

where l is a constant because changing X won’t 
change Y/Y and changing Y won’t change X/4X.
Thus, X and Y must be solutions of

X + 4lX = 0 and Y + lY = 0.

These are the eigenvalue problem of ODE’s†.
Consider the three cases: l = 0, l = a2, and l = –a2.
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Example: Solving                          (2/4)

 Case I: l = 0.

The two equations become X = 0 and Y = 0. The 
general solutions are X(x) = c1 + c2 x and Y(y) = c3, 
respectively.

Thus, a particular solution of the PDE is
u(x, y) = X(x)Y(y) = (c1 + c2 x)c3 = C1 + C2 x.
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Example: Solving                          (3/4)

 Case II: l = –a2, a > 0.

The two equations becomes X – 4a2X = 0 and
Y – a2Y = 0. The general solutions becomes
X(x) = c1 cosh 2ax + c2 sinh 2ax and Y(y) = c3ea2y, 
respectively.

Thus, a particular solution of the PDE is
u(x, y) = X(x)Y(y) = (c1 cosh 2ax + c2 sinh 2ax)c3ea2y

= C1 ea2ycosh 2ax + C2 ea2ysinh 2ax.
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Example: Solving                          (4/4)

 Case III: l = a2, a > 0.

The two equations becomes X + 4a2X = 0 and
Y + a2Y = 0. The general solutions becomes
X(x) = c1 cos 2ax + c2 sin 2ax and Y(y) = c3e–a2y, 
respectively.

Thus, a particular solution of the PDE is
u(x, y) = X(x)Y(y) = (c1 cos 2ax + c2 sin 2ax)c3e–a2y

= C1 e–a2ycos 2ax + C2 e–a2ysin 2ax.
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Superposition Principle for PDE

 If u1, u2, …, uk are solutions of a homogeneous linear 
partial differential equation, then the linear combination

where the ci, i = 1, 2, …, k, are constants, is also a 
solution.

The property is true even when k = .
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Classification of PDE

 The linear 2nd-order partial differential equation with 
two independent variables,

where A, B, C, D, …, G are real constants, is said to be:
 Hyperbolic if B2 – 4 AC > 0,

 Parabolic if B2 – 4 AC = 0,

 Elliptic if B2 – 4 AC < 0.
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Derivation of Classical PDEs

 The derivation of the mathematical model that can be 
used to explain or predict the behavior of a physical 
phenomenon is the key to most engineering problems

 Example: the optical flow model.
The motion (dx/dt, dy/dt) of the image pixels E(x, y, t)
taken by a camera can be approximated by:

11

,0











t

E

dt

dy

y

E

dt

dx

x

E



/49

Derivation of the Heat Equation    (1/3)

 Assume that we have a heated rod:

u(x, t) is the temperature of the rod at x and time t.

 From empirical study of thermodynamics:
 The amount of heat in a element of mass m and temperature u

is Q = g mu, g is a constant parameter of the rod.

 The heat flow Qt = –KAux is the flow of heat in the direction of 
decreasing temperature, K is a constant parameter of the rod.
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Derivation of the Heat Equation    (2/3)

 The heat content in a segment of the rod is:

Q = g mu = g (ADx)u,

and the heat flow in this segment is

dQ/dt = gADx ut, when Dx  0                     (1)

 Another way to estimate the heat flow is to compute 
the difference of amount of heat entering/leaving the 
segment as Dx  0:

Qt(x+Dx, t) – Qt(x, t) = KA[ux(x+Dx, t) – ux(x, t)]         (2)
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Derivation of the Heat Equation    (3/3)

 Eq (1) and (2) should equal each other as Dx  0, thus

KA[ux(x+Dx, t) – ux(x, t)]  gADx ut, as Dx  0.

Therefore

Finally, we obtain the following heat equation:

where k = K/g is the thermal diffusivity of the rod.
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BVP of the Heat Equation             (1/3)

 The solution of a PDE involves arbitrary functions of 
some dependent variables. For example,
the partial DE

has a general solution u(x, t) = g(x), where g(x) can be 
any function of x.

Hence, the “initial condition” of a partial DE is a 
boundary function. In the case of the heated rod, we 
may have the boundary function u(x, 0) = f(x), where f(x)
is the heat function (of x) at time 0.
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BVP of the Heat Equation             (2/3)

 We may also constrain the temperature function at two 
ends of the rod and try to solve the PDE. For example,

u(0, t) = u(L, t) = 0, for all t > 0. 

A boundary value problem of the heated rod PDE may 
be as follows:
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BVP of the Heat Equation             (3/3)

 Another possible boundary condition for the heated rod 
is that no heat will flow through either end (i.e. both 
ends are heat-insulated):

ux(0, t) = ux(L, t) = 0, for all t. 

 Physical intuition tells us that if the initial condition f(x)
is a reasonable function, there exists a unique solution 
u(x, t) for the boundary value problem.

17



/49

Derivation of the Wave Equation  (1/2)

 A PDE that models the vibrations of a string can be 
derived with the following assumptions:
 A perfectly flexible uniform string with density  is stretched 

under a uniform tension force of T between x = 0 and x = L.

 Each point on the string moves only in u direction
 u(x, t) is the shape of the string at time t.

 The slope of the curve is small for all x  sin   tan = ux(x, t).
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Derivation of the Wave Equation  (2/2)

 Apply Newton’s law to the segment [x, x + Dx],

Tsin2 – Tsin1  Ttan2 – Ttan1

= T[ux(x + Dx, t) – ux(x, t)]
= (Dx)utt.

 So, division by DxT on both side yields

As Dx  0, we have uxx = (/T)utt.
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BVP of the Wave Equation

 If we set

we have the one-dimensional wave equation that 
models the free vibrations of a uniform flexible string:
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Laplacian of a 2-D Function u(x, y)

 The Laplacian of the function u(x, y) is defined as

 The Laplace’s equation 2u = 0 is often used to model 
the steady-state behavior of a 2-D (or higher 
dimensional) phenomenon (e.g., temperature of an 
object).
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Modeling of 2-D Heat/Wave Equations

 Given a 2-D thin plate with thermal diffusivity k, its 
temperature u(x, y, t) at the point (x, y) at time t
satisfies the 2-D heat equation:

 Note that ut = k2u is the 2-D extension of the 1-D heat 
equation ut = kuxx. Similarly, utt = a22u is the 2-D 
extension of the 1-D wave equation utt = a2uxx.
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Heat/Wave Eqs with Influences

 The 1-D heat/wave equation can be modified to take 
into account external and internal influences:

and

where G() may be the ambient temperature influences 
to the heated rod; and F() may represent the external, 
damping, and restoring forces of the string vibration
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Solution to the BVP of Heat Equation

 Note that the BVP of a heated rod is modelled as:

 Note that the heat equation is linear. That is, if u1 and u2

satisfy the PDE, w = c1u1 + c2u2 also satisfies the PDE.

However, a solution of the PDE must also satisfy the 
boundary conditions.
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Meeting Boundary Conditions       (1/2)

 If u1 and u2 satisfies the (homogeneous) conditions

u(0, t) = u(L, t) = 0, for all t > 0, 

w = c1u1 + c2u2 will also satisfy the condition. However, 
the general form of w may not satisfy the boundary 
condition  only a particular choice of c1 and c2 satisfy 
the non-homogeneous boundary condition:

u(x, 0) = f(x),  0 < x < L.
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Meeting Boundary Conditions       (2/2)

 In general, we must find an infinite sequence u1, u2, 
u3, …, of solutions that satisfies both the PDE and the 
homogeneous boundary conditions, and assume the 
general solution form as follows: 

Then, determine the coefficients c1, c2, c3, … that satisfy 
the non-homogeneous boundary condition.
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General Solutions of a Linear BVP

 Suppose that each of the functions u1, u2, u3, …, 
satisfies both the PDE for 0 < x < L and t > 0 and the 
homogeneous conditions, and c1, c2, c3, … are chosen 
to meet the following three criteria:
1. For 0 < x < L and t > 0, the function u(x, t) = cnun(x, t) is 

continuous and term-wise differentiable (for /t and 2/x2).

2.

3. The function u(x, t) = cnun(x, t) is continuous within, and at the 
boundary of the region 0  x  L and t  0.

Then u(x, t) is a solution of the BVP.
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Separation of Variables               (1/4)

 In solving the heated rod problem, Fourier sought for a 
sequence of solutions u1, u2, u3, …, which are 
“separable.” That is for each of ui, we have

u(x, t) = X(x)T(t),

where X(x) and T(t) are functions of x and t, 
respectively. Substitution of such u(x, t) into the heat 
equation ut = kuxx yields XT = kX"T, or

where l is a constant because changing x (or t) does 
not change T/kT (or X"/X).
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Separation of Variables               (2/4)

 Thus, the solution can be obtained by solving two 
ODEs for some common value of l:

For X(x), we have u(0, t) = X(0)T(t) = 0, u(L, t) = X(L)T(t) = 0. 
Thus X(0) = X(L) = 0 if T(t) is nontrivial.
X(x) has a nontrivial solution if and only if

and then
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Separation of Variables               (3/4)

 To solve for T(t), substituting the value l into the ODE 
for T(t) as

A nontrivial solution of Tn(t) is
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Separation of Variables               (4/4)

 Now, we have sequences of solutions to the PDE

un(x, t) = X(x)T(t) = exp(–n22kt/L2)sin(nx/L),

n = 1, 2, 3, …. Each of these functions satisfies the heat 
equation and the homogeneous conditions.
We want to find c1, c2, c3, … such that cnun(x, t)
satisfies

But this is the Fourier series of f(x) on [0, L]. Thus,
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Insulated Endpoint Conditions

 When the heated rod is insulated at both ends, the 
homogeneous boundary condition becomes
ux(0, t) = ux(L, t) = 0. We can use the separation of 
variables approach again to solve this problem.

Solving the ODE of X(x) gives us:

Similarly, solving the ODE of T(t) gives us:
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Heated Rod with Insulated Ends

 For a heated rod with zero endpoint temperatures, the 
general solution is

where {an} are the Fourier cosine coefficients of u(x, 0).

  ,cos/exp
2

),(
1

2220 





n

n L

xn
Lktna

a
txu



33



/49

Solution to the BVP of Wave Equation

 The BVP of a vibrating string is modelled as:

Here, we have two non-homogeneous boundary 
conditions.
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Problems with Two Nonzero BCs

 To solve the wave equation, we divide the system into 
two sub-problems:
 Problem A:

 utt = a2 uxx;  u(0, t) = u(L, t) = 0,  u(x, 0) = f(x),  ut(x, 0) = 0.

 Problem B:
 utt = a2 yxx;  u(0, t) = u(L, t) = 0,  u(x, 0) = 0,  ut(x, 0) = g(x).

The overall solution is the sum of the two sub-problems 
since

u(x, 0) = uA(x, 0) + uB(x, 0) = f(x) + 0 = f(x),
ut(x, 0) = {uA}t(x, 0) + {uB}t(x, 0) = 0 + g(x) = g(x).

nonzero initial offset

nonzero initial velocity
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Problem A Solution (1/3)

 By separation of variables, substitution of
u(x, t) = X(x)T(t) in utt = a2uxx yields XT = a2XT for all x
and t. Therefore, assume that

 we have a system of ODE:

The first equation is an eigenvalue problem:
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Problem A Solution (2/3)

 Substitute ln into the second equation:

The solution to the IVP is

 Hence,

satisfies all the homogeneous boundary conditions.

 Choose {An} to satisfy the non-homogeneous
boundary condition
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Problem A Solution (3/3)

 If we choose

the condition is simply the Fourier sine series 
expansion of f(x) on [0, L].

 Example: if

and g(x) = 0, the solution u(x, t) is
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d’Alembert form of Solution (1/2)

 An alternative form of solution of problem A can be 
obtained by applying trigonometric identity:

If we define

we have
u(x, t) = [F(x + at) + F(x – at)]/2.
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d’Alembert form of Solution (2/2)

 The functions F(x + at) and F(x – at) in d’Alembert form 
of Solution represents waves moving to the left and 
right, respectively, along the string with speed a.
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Problem B Solution (1/2)

 Solution for Problem B is similar to that for A, except 
that

A non-trivial solution is

Hence,
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Problem B Solution (2/2)

 Again, the coefficients {Bn} that satisfies the non-
homogeneous boundary condition

would be the Fourier sine coefficient bn of g(x) on
[0, L] divided by na/L:

Hence, we choose
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Total Solution to the Wave Equation

 The complete solution is the summation of Problem A 
and Problem B:

where
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Steady-State Temperature

 The steady-state temperature of a plate can be 
described by a function u(x, y), i.e., ut = 0. Thus, we 
have the 2-D Laplace equation:

 A boundary value problem of the Laplace equation can 
be formulated as follows (i.e. the Dirichlet problem):
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Solutions to the Laplace’s Equation

 Suppose we want to find the steady-state temperature 
u(x, y) in a thin rectangular plate with width a and height 
b. The problem can be formulated as a BVP problem 
as follows:

uxx + uyy = 0;
u(0, y) = f1(x), u(a, y) = f2(x), u(x, b) = f3(x), u(x, 0) = f4(x).

This is called the Dirichlet problem.
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 Solve the boundary value problem for the rectangle R.

uxx + uyy = 0;
u(0, y) = u(a, y) = u(x, b) = 0,
u(x, 0) = f(x).

Assume that u(x, y) = X(x)Y(y), we have XY + XY = 0.
Thus,

Example: The Dirichlet Problem    (1/4)
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Example: The Dirichlet Problem    (2/4)

 The eigenvalues and eigenfunctions of X are

As a result,

The general solution of Yn is
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Example: The Dirichlet Problem    (3/4)

 To compute the particular solution, we must solve An

and Bn using Yn(b) = 0:


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Example: The Dirichlet Problem    (4/4)

 The formal series solution is then

cn must satisfy the nonhomogeneous condition

Therefore,
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