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Partial Differential Equation

Q A partial differential equation (PDE) is a differential
equation that contains partial derivatives of a
dependent variable that is a function of at least two
iIndependent variables.

A Example: one-dimensional heat equation:

ou d0%u

at  0x2’
m u(x, 7) is the temperature function of x (position) and ¢ (time) of

a heated rod, & is a constant parameter determined by the
material of the rod
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Linear Partial Differential Equations

Q If u is a function of two independent variables x and y,

the general form of a linear 2"d-order PDE is given by:

PR N L L
0x?2 0x0y 0y?2 ox dy L=

where 4, B, C, D, ..., G are functions of x and y.

A Example: one-dimensional heat propagation equation
can be described by:

kazu(x, t) du(x,t)

dx?2 ot 0.
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Solving PDE for Separable Functions

Q General solutions for PDE are difficult to find, so in
practice, we only look for particular solutions.

Q In addition to using initial or boundary conditions to
constrain our solutions, we often assume that the

solution function is separable, that is:

u(x, y) = X(x)¥(y).
Thus, we have:
ou ou d0%u d0%u

—=X'Y, —=XY', —=X"Y, d —=XY".
dx dy 0x? an dy?

4/49




0%u ou

Example: Solving 3z=45, (1/4)
Q Let u(x, y) = X(x)Y(y), we have X"Y =4XY', or

X” _ Y! :_ﬂ,

4X Y

where A is a constant because changing X won't
change Y'/Y and changing Y won’t change X"/4X.
Thus, X and Y must be solutions of

X' +44AX=0and Y + AY=0.

These are the eigenvalue problem of ODE’sT.
Consider the three cases: 1=0, 1= &2, and 1= —¢~.

T See Section 5.2, example 2.
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Example: Solving 3z=43- (2/4)

oy

a Case |l: 1=0.
The two equations become X" =0and Y =0. The
general solutions are X(x) =c, + ¢, x and Y(y) = c,,

respectively.

Thus, a particular solution of the PDE is
u(x, y) =Xx)Y(y) =(c; t ¢, x)c; = C; + G, x.
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Example: Solving 3z=43- (3/4)

oy

Q Casell: A=—-c2, a>0.

The two equations becomes X" — 402X =0 and
Y — oY = 0. The general solutions becomes
X(x) = ¢, cosh 2ax + ¢, sinh 2ax and Y(y) = c,e®”,
respectively.

Thus, a particular solution of the PDE is

u(x, y) = X(x)Y(y) = (¢, cosh 2ax + ¢, sinh 2ax)c;e®
= C, e?”cosh 2ax + C, e®”sinh 2axx.
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0%u ou

Example: Solving 3z=43- (4/4)

oy

Q Caselll: A= a2, a> 0.

The two equations becomes X" + 4a?X =0 and
Y + &?Y = 0. The general solutions becomes
X(x) = c; cos 2ax + ¢, sin 2ax and Y(y) = c;e ??,
respectively.

Thus, a particular solution of the PDE is

u(x, y) = X(x)Y(y) = (¢, cos 2ax + ¢, sin 2ax)c;e %
=C, e *Ycos 2ax + C, e *7sin 2 ax.
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Superposition Principle for PDE

a If u, u,, ..., u, are solutions of a homogeneous linear
partial differential equation, then the linear combination

k
Z Cil,
i=1

wherethe c,i=1, 2, ..., k, are constants, is also a
solution.

The property is true even when k = .
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Classification of PDE

0 The linear 2"9-order partial differential equation with
two independent variables,
O’u O’u 0’u ou ou

A—+B +C—+D—+E—+Fu=qG,
Ox Oxoy oy Ox oy

where 4, B, C, D, ..., G are real constants, is said to be:
m Hyperbolic if BZ—4 AC> 0,
m Parabolicif B2—4 AC =0,
m Ellipticif B2-4A4C<0.

10/49




Derivation of Classical PDEs

Q The derivation of the mathematical model that can be
used to explain or predict the behavior of a physical
phenomenon is the key to most engineering problems

Q Example: the optical flow model.
The motion (dx/dt, dy/dt) of the image pixels E(x, y, 1)
taken by a camera can be approximated by:

‘
OF dx OE dy OF _0, 1
— ox di oy di o \\ ------- S
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Derivation of the Heat Equation (1/3)

O Assume that we have a heated rod:

x=0 cross section area 4

.

AA (e

heater & insulated shell, like a heat conduit

u(x, t) is the temperature of the rod at x and time +.

A From empirical study of thermodynamics:

m The amount of heat in a element of mass m and temperature u
is O = ymu, yis a constant parameter of the rod.

m The heat flow O, = -KA4u_is the flow of heat in the direction of
decreasing temperature, K is a constant parameter of the rod.

T One calorie is the amount of heat required at a pressure of one atmosphere to raise the temperature of
one gram of water by one degree Celsius 12/49




Derivation of the Heat Equation (2/3)

Q The heat content in a segment of the rod is:

O(x, 1) Qxtdx, 1)
Q = ymu = Q/QOAAX)M, _.®_.
and the heat flow in this segment is ¥ xtdr
dQ/dt = ypAAx u,, when Ax — 0 (1)

Q Another way to estimate the heat flow is to compute
the difference of amount of heat entering/leaving the
segment as Ax — O:

Q(xtAx, 1) = Q(x, 1) = KA[u (x+Ax, 1) — u (x, 1)] (2)
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Derivation of the Heat Equation (3/3)

Q Eq (1) and (2) should equal each other as Ax — 0, thus
KAlu (x+Ax, t) —u(x, t)] = ypAAx u,, as Ax — 0.
Therefore
K [u (x+Ax,t)—u_(x,1)]

— - lim =u,
70, Ax—0 Ax
Finally, we obtain the following heat equation:
2
' 0 th _ au.
Ox ot

where k= K/yp is the thermal diffusivity of the rod.
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BVP of the Heat Equation (1/3)

Q The solution of a PDE involves arbitrary functions of
some dependent variables. For example,

the partial DE
ou(x,t)

ot

has a general solution u(x, ) = g(x), where g(x) can be
any function of x.

0

Hence, the “initial condition” of a partial DE is a
boundary function. In the case of the heated rod, we
may have the boundary function u(x, 0) = f(x), where f(x)
is the heat function (of x) at time 0.
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BVP of the Heat Equation (2/3)

aQ We may also constrain the temperature function at two
ends of the rod and try to solve the PDE. For example,
u(0, H)=u(L, t)=0, for all > 0.

A boundary value problem of the heated rod PDE may
be as follows:

2
W _; T (0<x<L, 1>0)
ot Ox
u(0,t) =u(L,t)=0 (t > 0),

u(x,0) = f(x) (O<x<L).
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BVP of the Heat Equation (3/3)

a Another possible boundary condition for the heated rod
Is that no heat will flow through either end (i.e. both
ends are heat-insulated):

u(0,H)=u (L, t)=0, for all ¢

A Physical intuition tells us that if the initial condition f{x)
IS a reasonable function, there exists a unique solution
u(x, t) for the boundary value problem.
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Derivation of the Wave Equation (1/2)

a A PDE that models the vibrations of a string can be
derived with the following assumptions:

m A perfectly flexible uniform string with density pis stretched
under a uniform tension force of 7 between x=0and x= L.

m Each point on the string moves only in u direction
— u(x, 1) is the shape of the string at time +.

m The slope of the curve is small for all x — sin &= tanf = u (x, ?).

Iy

As
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Derivation of the Wave Equation (2/2)

a Apply Newton’s law to the segment [x, x + Ax],

Isin@, — Tsin6, = Ttan@, — Ttan6,
= TTu,(x + AX, 1) — u,(x, 1)
= (PAX)u,,.

Q So, division by AxT on both side yields

ux(x+Ax,t)—ux(x,t) _P,
Ax o T 7
—  As Ax —> 0, we have u_ = (o/T)u,,.
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BVP of the Wave Equation

Q If we set T

we have the one-dimensional wave equation that

models the free vibrations of a uniform flexible string:

, O’u B 0’u
ox> o

u(0,t)=u(L,t)=0,(t > 0),

u(x,0) = f(x) (0<x< L),

u,(x,0) = g(x) (0<x<L).

a (O<x<L,t>0);
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Laplacian of a 2-D Function u(x, y)

Q The Laplacian of the function u(x, y) is defined as

o'u 0O'u

Viu = + :
ox® oy’

O The Laplace’s equation VZu = 0 is often used to model
the steady-state behavior of a 2-D (or higher
dimensional) phenomenon (e.g., temperature of an
object).

21/49




Modeling of 2-D Heat/Wave Equations

Q Given a 2-D thin plate with thermal diffusivity £, its
temperature u(x, y, t) at the point (x, y) at time ¢
satisfies the 2-D heat equation:

2 2
G _f T O, k=
ot ox~ Oy co

y

a Note that u, = £V2u is the 2-D extension of the 1-D heat
equation u, = ku__. Similarly, u, = a*V?u is the 2-D
extension of the 1-D wave equation u, = a’u_..
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Heat/Wave Eqgs with Influences

a The 1-D heat/wave equation can be modified to take
into account external and internal influences:

ou
kﬁﬁ'G(X t u, ux) ——
and
62u 02u
a2
6x2+F(x t, U, Up) = T'

where G() may be the ambient temperature influences
to the heated rod; and F() may represent the external,
damping, and restoring forces of the string vibration
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Solution to the BVP of Heat Equation

O Note that the BVP of a heated rod is modelled as:

2
@—u:ka—z (O<x<L, t>0);
ot ox
u(0,6)=u(L,t)=0 (> 0),

u(x,0) = f(x) (O<x<L).

O Note that the heat equation is linear. That is, if u; and u,
satisfy the PDE, w = c,u, + ¢,u, also satisfies the PDE.

However, a solution of the PDE must also satisfy the
boundary conditions.
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Meeting Boundary Conditions (1/2)

a If u, and u, satisfies the (homogeneous) conditions
u(0,)=u(L, t)=0, for all >0,

w = c,u, + c,u, will also satisfy the condition. However,
the general form of w may not satisfy the boundary
condition — only a particular choice of ¢, and ¢, satisfy
the non-homogeneous boundary condition:

u(x, 0)=flx), 0<x<L.
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Meeting Boundary Conditions (2/2)

Q In general, we must find an infinite sequence u,, u,,
us, ..., of solutions that satisfies both the PDE and the

homogeneous boundary conditions, and assume the
general solution form as follows:

u(x,t) = i cu (x,t).

Then, determine the coefficients ¢, ¢,, c;, ... that satisfy
the non-homogeneous boundary condition.

26/49




General Solutions of a Linear BVP

a Suppose that each of the functions u,, u,, us, ...,
satisfies both the PDE for 0 <x <L and > 0 and the
homogeneous conditions, and ¢,, ¢,, c;, ... are chosen
to meet the following three criteria:

1. For 0 <x <L and >0, the function u(x, ) = 2.cu,(x, t) is
continuous and term-wise differentiable (for 6/0t and &2/0x?).

. Zlcu (x.0)= f(x) for O<x<L.

3. The function u(x, ) = 2.c,u,(x, f) is continuous within, and at the
boundary of the region 0 <x <L and ¢ > 0.

Then u(x, ¢) is a solution of the BVP.
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Separation of Variables (1/4)

A In solving the heated rod problem, Fourier sought for a
sequence of solutions u,, u,, us, ..., which are
“separable.” That is for each of u, we have

u(x, 1) = X(x)11(¢),

where X(x) and 7(¢) are functions of x and ¢,
respectively. Substitution of such u(x, ¢) into the heat
equation u, = ku__yields XT' = kX"T, or

Xﬂ T!

- =_],

X kT
where A is a constant because changing x (or ¢) does
not change T'/kT (or X"/X).
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Separation of Variables (2/4)

Qa Thus, the solution can be obtained by solving two
ODEs for some common value of A:

X"(x)+AX(x)=0,
T'(t)+ AkT () =0.
For X(x), we have u(0, /) = X(0)T(¢) = 0, u(L, t) = X(L)I(¢) = 0.
Thus X(0) =X(L) = 0 if 7(¢) is nontrivial.
X(x) has a nontrivial solution if and only if
2 _2
A =20 n=123,.

n 2 2

and then

X (x)= sin%, n=123,..
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Separation of Variables (3/4)

Q To solve for T(), substituting the value A into the ODE
for T(¢) as 2 2k

A nontrivial solution of 7 (¢) is

T.()=expl-n’z’kt/I}) n=123,..
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Separation of Variables (4/4)

a Now, we have sequences of solutions to the PDE
u,(x, 1) = X(x)T(¢) = exp(—n? 7°kt/L?)sin(nmx/L),

n=1,2,3, .... Each of these functions satisfies the heat
equation and the homogeneous conditions.
We want to find ¢, ¢,, ¢, ... such that 2.c u (x, f)
satisfies

u(x,0)= ) c, sin——f(x) O<x<L.

n=1

But this is the Fourier series of f{x) on [0, L]. Thus,

c, = :—j f(x)sm—dx n=12.3,....
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Insulated Endpoint Conditions

A When the heated rod is insulated at both ends, the
homogeneous boundary condition becomes
u (0,9 =u/(L, t)=0. We can use the separation of
variables approach again to solve this problem.

Solving the ODE of X(x) gives us:
2 2
A = an , X, (x) :cos%.
Similarly, solving the ODE of 7(¥) gives us:

—n2772kt]

T, (1) = eXp( 7
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Heated Rod with Insulated Ends

Q For a heated rod with zero endpoint temperatures, the
general solution is

u(x, t) = % + Z a, exp(— n’m’kt/ L’ )cos %,
n=l1

where {a} are the Fourier cosine coefficients of u(x, 0).
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Solution to the BVP of Wave Equation

Q The BVP of a vibrating string is modelled as:
, O’u B 0’u
ox*  or
u(0,6) =u(L,t) =0, (t > 0),
u(x,0) = f(x) (0<x< L),
u, (x,0) =g(x) (0<x<L).

a (O<x<L,t>0);

Here, we have two non-homogeneous boundary
conditions.
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Problems with Two Nonzero BCs

Q To solve the wave equation, we divide the system into
two sub-problems:
m ProblemA:
— U, = aZ
m Problem B:
—u,=a’y_; u(0,0)=u(L,t)=0, u(x,0)= Ox t(x O) g(x)

nonzero initial offset

- u(0, ) =u(L, £)=0; u(x 0) f(x) u(x,0)=0.

xx?
___________ » nonzero initial velocity

The overall solution is the sum of the two sub-problems
since

M(X, 0) - MA()C, O) + Z’lB(xa O) :f(X) +0 :f(X),

ut(x9 0) - {MA}t(xa O) + {MB}t(xa 0) =0+ g(X) - g(X)




Problem A Solution (1/3)

Q By separation of variables, substitution of
u(x, 1) = X(x)1(¢) in u,, = a*u,_yields XT" = a?X"T for all x
and ¢. Therefore, assume that

2 T2 =-A, for some A.
X a'T
— we have a system of ODE:

{X”+/1X=O, X(0)=X(L)=0

T"+Aa’T =0, T'(0)=0
The first equation is an eigenvalue problem:
2_12
A = ”Lf n=123,... and X, (x) :sin%, n=123,..
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Problem A Solution (2/3)

Q Substitute 4, into the second equation:

2_2 2
niitda

T"+

n

T =0, T'(0)=0.

!
The solution to the IVP is T,(¢) =4, COSmLm :

O Hence,
nmt . nnx

u(x,t) = Zu (x,1) = ZX ()T, (1) = ZA cos = —sin——

satisfies all the homogeneous boundary conditions.

— Choose {4,} to satisfy the non-homogeneous
boundary condition

u(x,0) = ZA sinT—f(x) 0<x<L.

n=123, ..

37/49




Problem A Solution (3/3)

2 L . NX
Q If we choose 4, =Zf0 f(x)sdex.

the condition is simply the Fourier sine series
expansion of f{x) on [0, L].

0 Example: if f(X)={ T S

bx, 0<x<L/2

u=flx)

b(L-x), L/2<x<L’ |

and g(x) =0, the solution u(x, ) is

u(x,t) =

4bL

T

2

> (1 . nrx nmt . Nux
Z —SIn—— [COS sin :
=\ N 2 L L
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d'Alembert form of Solution (1/2)

a An alternative form of solution of problem A can be
obtained by applying trigonometric identity:
nmat . N

u(x,t)zZAn CoS 7 smT

—ZA sm—(x+at)+ ZA sm—(x at).

If we define F(x)= ZAn sin%,
n=I1

we have
u(x, t) =[F(x +at) + F(x —ar)]/2
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d'Alembert form of Solution (2/2)

QA The functions F(x + af) and F(x — at) in d’Alembert form
of Solution represents waves moving to the left and
right, respectively, along the string with speed a.

u

TS

X

u

2 V4 2 Vs
(a) At time £ = 0. (a) At time ¢ = /8.

u

IO N | NN

2 Vs 2 V4
(a) At time ¢ = 7/4. (a) At time ¢t = 378.
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Problem B Solution (1/2)

Q Solution for Problem B is similar to that for A, except
that

d°’T, n’r’a’
2 T 2
dt L

T =0, T.(0)=0.

A non-trivial solution is

T (t)=B, sin n7Lzat

, n=123, ...

Hence,

- - : [ .
u(x,t) = ZXn ()T, (¢)= ZBn sin niLza sin nzzx
n=1 n=1
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Problem B Solution (2/2)

a Again, the coefficients {B } that satisfies the non-

homogeneous boundary condition

u,(x,0)= ZB @sin%—g(x) O0<x<L.

would be the Fourier sine coefficient b, of g(x) on
[0, L] divided by nma/L:
Bn@:bn —j 2(x) sm—dx

L
Hence, we choose

B =— xsm—dx
mjg() ;
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Total Solution to the Wave Equation

Q The complete solution is the summation of Problem A
and Problem B:

sin——,

u(x,t)= Z(An COS ml[f” + B sin nﬂatj ' nzz:x

where
—j f(x) sm—dx

2 L nx
B =—— x)sin —dx.
=] gsin=
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Steady-State Temperature

Q The steady-state temperature of a plate can be
described by a function u(x, y), i.e., u,= 0. Thus, we
have the 2-D Laplace equation:

O°u 0O’u B

Viu = + =
ox® oy’

0.

a A boundary value problem of the Laplace equation can
be formulated as follows (i.e. the Dirichlet problem):

( 2 2
v2u=52‘+5’;‘=0 (within R) ’
ox° Oy -
| u(x,y)=f(x,y) (f(x,y)isonC) c

J\
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Solutions to the Laplace’s Equation

Q Suppose we want to find the steady-state temperature
u(x, y) in a thin rectangular plate with width a and height
b. The problem can be formulated as a BVP problem
as follows:

Uy, U, = 0;

u(0, y) = f1(x), ua, y) = fr(x), ux, b) = f3(x), u(x, 0) = f4(x).

This is called the Dirichlet problem.
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Example: The Dirichlet Problem (1/4)

Q Solve the boundary value problem for the rectangle R.

u, tu,=0; g L .

u(0, y) =u(a, y) =u(x, b) =0, - (@

u(x, 0) = f(x). u=0 R u="0
u = flx)

Assume that u(x, y) = X(x)Y(y), we have X"Y + XY" = 0.
Thus,

X" Yy" X"+AX =0
=——=-1 - :
X Y X(0)=X(a)=0
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Example: The Dirichlet Problem

(2/4)

Q The eigenvalues and eigenfunctions of X are

2 2
A, =", X,(x)=sin——, n=123,.
a a
As a result, 22
Yn”_ > Yn :O, Yn(b):()
a

The general solution of Y, is

Y (y)=4A, cosh@Jan sinh 2.
a a
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Example: The Dirichlet Problem (3/4)

a To compute the particular solution, we must solve 4,
and B, using Y (b) =0:

Y (b)= 4 cosh + B sinh " — 0,
a a
- B =—-4 cosh@ sinh@.
a a

Therefore,

Y (y)= A, cosh Yy _ (An cosh nz sinh Mbj sinh 272
a a a a

—c sinh™PO7Y) 4 Jsinh(nab/ a).
a
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Example: The Dirichlet Problem

(4/4)

a The formal series solution is then

nix

u(x,y) = i)(n (XY, (») = icn sin 7™ ginh 20 =),

a

c, must satisfy the nonhomogeneous condition

u(x,0) = i(c sinh @j sin 2 = £(x).

a a

n=1

Therefore,

a Slnh(nﬂb /a) 0 j J(x)sm 7 -

a
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