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Outline of the Course†

 Introduction to differential equations (Chapter 1)

 First-order differential equations (Chapter 2)

 Higher-order differential equations (Chapter 4)

 Modeling with Higher-order differential equations (Chapter 5)

 The Laplace transform  (Chapter 7)  midterm around this point!

 Systems of linear 1st-order differential equations (Chapter 8)

 Power series methods (Chapter 6)

 Fourier series methods (Chapter 11)

 Partial differential equations (Chapter 12)
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Textbook and Grading Policy

 Textbook:
 Dennis G. Zill, Differential Equations with Boundary-Value 

Problems, 9th edition, 2018, Cengage Learning.
(高立圖書代理, 顔俊杰 0921-456030)

 An alternative textbook:
Dennis G. Zill, Differential Equations with Modeling 
Applications, 11th edition, 2018, Cengage Learning.
(華泰文化, 蕭瑀倢 0933-838337)

 Grading is based on
 Pop Quizzes (25%) – from homework assignments

 Mid-terms exam (35%) – on 11/4/2019

 Final exam (40%) – on 1/6/2020
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Before You Move On …

 Homework #0: Check out the following video:

Raffaello D'Andrea’s TED talks

The astounding athletic power of quadcopters.
Jun 2013

I will be asking you questions on this video in our next class!
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Differential Equations

 Definition:
An equation containing the derivatives of one or more 
dependent variables, with respect to one or more 
independent variables, is said to be a differential 
equation (DE).

 Example:

21.0)( tetfx  xt
dt

dx
2.0 te

dt

dx t 2.0
21.0 

In this course, given a blue equation (behavior of a phenomenon),
you want to find out the red equation (the governing rule) behind it
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Why Differential Equations

 For dynamic phenomena, we want to predict their long-
term behavior by observing and measuring their short-
term behavior
 Long-term behavior of a dynamic system is defined by its 

underlying rule  hard to measure

 Short-term behavior of a dynamic system is described by its 
changing characteristics (derivatives)  easier to measure
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Classification of DE by Type

 Ordinary differential equation (ODE): an equation 
contains only ordinary derivatives of one or more 
dependent variables with respect to a single 
independent variable

 Partial differential equation (PDE): an equation 
involving the partial derivatives of one or more 
dependent variables of two or more independent 
variables
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Classification of DE by Order

 The order of a differential equation is the order of the 
highest derivative in the equation.

 An nth-order ODE with one dependent variable can be 
expressed in the general form:
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a real-valued function of n+2 variables
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Normal Form of ODE

 F() can be expressed in general in the normal form:

where f is a real-valued function with n+1 variables.

For example, the normal forms of the first order and the 
2nd-order ODEs are:
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Classification of DE by Linearity

 An nth-order ODE, F, is said to be linear if F is linear in 
y, y', …., y(n).  That is, F can be expressed as:

where ai(x), i = 0, …, n depend on the independent 
variable x only

 Example:
 (y – x)dx + 4xdy = 0
 y" – 2y' + y = 0
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Nonlinear ODE

 A differential equation with nonlinear functions of the 
dependent variable or its derivatives.

 Examples: If y is the dependent variable,
 (1 – y)y' + 2y = ex

 d2y/dx2 + sin y = 0

 y(4) + y2 = 0
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Solution of an ODE

 Definition: a solution of an ODE is a function y(x), 
defined on an interval I and possessing at least n
derivatives that are continuous on I, which when 
substituted into an nth-order ODE reduces the equation 
to an identity.

 That is, a solution y(x) of F satisfies:

F(x, y(x), y(x), y(x), …, y(n) (x)) = 0,  x  I.

 If an ODE has a solution y(x) = 0, x I, then it is called 
the trivial solution of the ODE.
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All Roads Lead to Rome

 If we have a function y:

Then,

Thus, it doesn’t matter what the constant C is,
is a solution of the DE dy/dx = 2xy.

 Often, a differential equation alone has many solutions; 
more information is required to resolve ambiguity

.,)(
2

RCCexy x 

    .222
22

xyCexxeC
dx

dy xx 
2xCey 
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Solution is not Guaranteed

 Expressing a phenomenon as a differential equation 
does not guarantee that it has a solution. Obviously,

(y)2 + y2 = –1

has no (real-valued) solution.
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Interval of Definition

 A solution of an ODE includes a function y(x) and the 
interval of definition, I.

 I is usually referred to as the interval of definition, the 
interval of existence, the interval of validity, or the 
domain of the solution.

 I can be an open interval (a, b), a closed interval [a, b], 
an infinite interval (a, ), and so on.
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Solution Curve

 The graph of a solution y(x) of an ODE is called a 
solution curve.  Since y(x) is a differentiable function, it 
is continuous on its interval of definition.

 There maybe a difference between the graph of y(x)
and the graph of the solution of the ODE.

y = 1/x, x≠0 y = 1/x, (0,∞) 
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Explicit and Implicit Solutions

 Definition: A solution in which the dependent variable 
is expressed solely in terms of the independent 
variable and constants is called an explicit solution.

 Definition: An equation G(x, y) = 0 is said to be an 
implicit solution of an ODE on an interval I provided 
that there exists at least one function y that satisfies the 
relation as well as the differential equation on I.

17



/38

Verification of an Implicit Solution

 Example:
The relation x2＋y2 = 25 is the implicit solution of the 
differential equation dy/dx = –x/y on the interval
–5 < x < 5

Verification:
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Solving for Explicit Solution

 One can solve an implicit solution for explicit solutions.  
In the previous example,

Implicit solution             Explicit solution 1 Explicit solution 2
x2＋y2 = 25 55,25 2

1  xxy 55,25 2
2  xxy
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Families of Solutions

 A solution to a 1st-order DE containing an arbitrary 
constant represents a set G(x, y, c) = 0 of solutions is 
called a one-parameter family of solutions.

 For nth-order DE, an n-parameter family of solutions 
can be represented as

G(x, y, c1, c2, …, cn) = 0.
If the parameters c1, c2, …, cn are resolved, then it’s 
called a particular solution of the DE.

 Example:
y – cx = 0 is a family of
solutions of xy′ – y = 0.  

y

x

c < 1

c = 1
c > 1
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Singular Solutions

 Definition: A singular solution is a solution that cannot 
be obtained by specializing any of the parameters in 
the family of solutions.

 Example:
Both y = x4/16 and y = 0 are solutions of dy/dx = xy1/2 on 
the interval (–, ).  The ODE possesses the family of 
solutions y = (x2/4 + c)2.  However, y = 0 is not in the 
family of solutions.
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General Solutions

 Definition: If every solution of an nth-order ODE
F(x, y, y, y, …, y(n)) = 0 on an interval I can be obtained 
from an n-parameter family of equations
G(x, y, c1, c2, …, cn) = 0 by appropriate choices of the 
parameters ci, i = 1, 2, …, n, we then say that the n-
parameter family of equation is the general solution of 
the D.E.
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Example: Two-Parameter Family

 The functions x = c1cos4t and x = c2sin4t, where c1 and c2

are arbitrary constants, are solutions of x" + 16x = 0.

For x = c1cos4t, the first two derivatives w.r.t. t are
x' = –4c1 sin 4t and x" = –16c1cos4t.

Substituting x" and x' into the DE gives

x" + 16x = –16c1cos4t + 16(c1cos4t) = 0.

Similarly, for x = c2sin4t, we have

x" + 16x = –16c2sin4t + 16(c2sin4t) = 0.

Their linear combinations are a family of solutions.
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Example: Piecewise Solutions

 One can verify that y = cx4 is a solution of xy' – 4y = 0 on 
the interval (–, ).  The following piecewise defined 
solution is a particular solution of the ODE:

 This particular solution
cannot be obtained by
a single choice of c.
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Initial Value Problem

 Definition:
On some interval I containing x0, the problem:

Solve:

Subject to: y(x0) = y0, y(x0) = y1, …, y(n–1)(x0) = yn–1, 

where y0, y1, …, yn–1, are arbitrarily specified real 
constants, is called an initial value problem (IVP).
The values of y(x) and its first n – 1 derivatives at x0 are 
called initial conditions.
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First Order IVP

 A first order IVP tries to solve dy/dx = f(x, y), subject to 
y(x0) = y0.  In geometric term, we are seeking a solution 
so that the solution curve passes through the 
prescribed point (x0, y0).

y

(x0, y0)

x

solutions of the DE

I
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Second Order IVP

 A second order IVP tries to solve d2y/dx2 = f(x, y, y), 
subject to y(x0) = y0, y(x0) = y1.  In geometric term, we 
are seeking a solution so that the solution curve not 
only passes through the prescribed point (x0, y0), but 
also with a slope y1 at this point.

y
solutions of the DE

I

m = y1

x

(x
0
, y

0
)
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Example: 1st-Order IVPs

 It is easy to verify that y = cex is a one-parameter family 
of solutions of the simple first-order equation y' = y on 
the interval (–, ). If y(0) = 3, we have

3 = ce0 = c

 y = 3ex is a solution of IVP:
y' = y, y(0) = 3. x

y

(0, 3)

(1, –2)
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Existence of Unique Solution

 Two key questions of solving an IVP are:
 Do solutions exist for the differential equation?

 Given an initial condition, is the solution unique?

 Examples:
 The IVP y' = 1/x, y(0) = 0 has no solution. By integration, we 

have y(x) = ln |x| + c; but ln |x| is not defined at 0!

 The IVP dy/dx = xy1/2, y(0) = 0 has at least two solutions: y = 0
and y = x4/16.

29



/38

Example: Multiple IVP Solutions (1/2)

 Consider the IVP dy/dx = xy1/2, y(0) = 0:
The DE has a constant solution y = 0 and a family of 
solution

The IVP has infinite solutions:
For any a  0,

.
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Example: Multiple IVP Solutions (2/2)

 Consider only the case c  0,
let c = –b, b  0:
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Existence and Uniqueness Theorem

 Theorem: Let R be a rectangular region in the xy-plane 
defined by a  x  b, c  y  d, that contains the point
(x0, y0) in its interior.  If f(x, y) and f/y are continuous 
on R, there exist some interval I0: x0–h < x < x0+h, h > 0,
contained in a  x  b, and a unique function y(x)
defined on I0 that is a solution of the first-order initial-
value problem:
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Example:

 Again, let’s revisit the IVP: dy/dx = xy1/2, y(0)=0.
Since

f(x, y) = xy1/2,
and

f/y = x/(2y1/2),

they are continuous in the upper half-plane defined by 
y > 0.  Therefore, for any (x0, y0),  y0 > 0, there is an 
interval centered at x0 on which the given DE has a 
unique solution.

However, There is no unique solution for the IVP since 
f/y is undefined at (0, 0).
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DE as Mathematical Models

Hypotheses Mathematical
formulation in DE

34

Turn hypotheses
into equations

Explicit
solution (model)

Compare model
to observations

Solving DE

Predict outputs
from the model

Real-world 
phenomenon 

and
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Natural Growth and Decay Models

 The differential equation

is a widely used model for natural phenomena whose 
rate of change over time is proportional to its current 
population  what is the solution?

 If a population has birth and death rates b and d, 
respectively. The differential change in size P(t) of the 
population changes is
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Falling Bodies

 Newton’s second law of motion: F = ma

 Question: what is the position s(t) of the rock
relative to the ground at time t?

Acceleration of the rock: d2s/dt2

 

Model: d2s/dt2 = –g, s(0) = s0, s'(0) = v0.

Solution: s(t) = –gt2/2 + v0t + s0

mg
dt

sd
m 

2

2

g
dt

sd


2

2

building

s0
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rock
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ground
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Torricelli’s Model of a Draining Tank

 Torricelli’s Law of draining tank:

Derivation: Torricelli assumes that
a drop of water from the surface
escapes the hole at the speed

hole area a

y(t)V(t)

37
Note: In Torricelli’s law, 0 ≤ c ≤ 1 is a constant parameter related to the viscosity of the liquid.

Leaking water



/38

 If i(t) = dq/dt is the electric current across the circuit, the 
voltage drops across different electric components are:

 Inductor:

 Resister:

 Capacitor:

 Kirchhoff’s second law of circuits:

Voltage drop = Impressed Voltage, that is:

Series Circuit
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