
BLuEMan: A Stateful Simulation-based Fuzzing Framework for Open-Source
RTOS Bluetooth Low Energy Protocol Stacks

Wei-Che Kao
National Yang Ming Chiao Tung University

Yen-Chia Chen
National Yang Ming Chiao Tung University

Yu-Sheng Lin
National Yang Ming Chiao Tung University

Yu-Cheng Yang
National Yang Ming Chiao Tung University

Chi-Yu Li
National Yang Ming Chiao Tung University

Chun-Ying Huang
National Yang Ming Chiao Tung University

Abstract
Bluetooth Low Energy (BLE) is a dominant wireless commu-
nication technology widely used in low-power, short-range
applications. Its broad adoption and inherent security vulner-
abilities in certain implementations have prompted numer-
ous efforts to identify flaws in BLE protocol stacks. Despite
these efforts, many existing fuzz testing methods face sub-
stantial limitations in scalability and applicability. To address
these challenges, we propose BLuEMan, a simulation-based
fuzzing framework that integrates a Real-Time Operating
System (RTOS) with a software-based physical layer simula-
tor. BLuEMan executes the actual BLE protocol stack while
simulating interactions between BLE targets. This design en-
sures scalability for rapid testing across various targets while
maintaining high applicability to various platforms. Our eval-
uation demonstrates that BLuEMan achieves fuzzing rates
up to 18.0 and 162.3 times faster than typical simulation-
based and platform-based approaches, respectively. Moreover,
BLuEMan has uncovered four new vulnerabilities in BLE
protocol stacks, all of which have been reported and assigned
CVEs. This approach provides valuable insights into efficient
vulnerability discovery for BLE protocol stack developers.

1 Introduction

The rapid expansion of the Internet of Things (IoT) and wear-
able devices has driven a significant increase in demand for
wireless communication technologies. In particular, most
short-range communication for these battery-constrained de-
vices relies on Bluetooth Low Energy (BLE), a low-power
communication technology. According to market research
from the Bluetooth Special Interest Group [9], annual ship-
ments of Bluetooth devices have reached billions, with over
80% of them supporting the BLE protocol. This widespread
adoption highlights the popularity and critical role of BLE in
modern technological ecosystems.

The widespread adoption of BLE devices has brought sig-
nificant attention to their security vulnerabilities. Research

has uncovered vulnerabilities in Bluetooth protocol stacks
across different versions, with some flaws enabling Denial-
of-Service (DoS) attacks and code execution. Prominent ex-
amples include the Blueborne [5], BlueFrag [21], and Bleed-
ingbit [4] vulnerabilities, which have been shown to allow
malicious actors to exploit affected devices. These security
issues highlight the critical need for effective detection meth-
ods within the Bluetooth protocol, driving numerous stud-
ies [15, 16, 18, 20, 23, 28, 31] to develop fuzz testing method-
ologies specifically tailored for Bluetooth stacks.

However, current fuzz testing solutions for BLE devices
face limitations in scalability and applicability. Broadly, these
solutions can be categorized into two approaches: platform-
based approach and emulation-based. Platform-based ap-
proaches rely on specific hardware or dedicated OS environ-
ments to conduct fuzzing tests. While they offer high fidelity
through direct interaction with actual platforms, they lack scal-
ability for testing across target platforms. Emulation-based
methods simulate the behavior of hardware or system envi-
ronments, providing scalability for testing, but they often fall
short in fully replicating the behavior of real targets and are
typically restricted to specific systems or hardware chipsets.

To address the requirements for scalability and applicability
in fuzz testing BLE protocol stacks, we propose BLuEMan, a
stateful simulation-based full-stack fuzzer designed for open-
source BLE stack implementations. BLuEMan leverages a
Real-Time Operating System (RTOS) to execute the actual
BLE protocol stack, ensuring both high fidelity and scalability.
It incorporates a software-based physical layer simulator to
simulate interactions between BLE targets. This framework
supports various RTOS platforms with high applicability, in-
cluding Zephyr [37], NimBLE [3], and BTstack [7], as well
as all BLE stacks ported to these environments.

BLuEMan is also distinguished by its high compatibility,
flexibility, traceability, and portability: (1) Compatibility: The
framework compiles into a single ELF executable, allowing
seamless integration with existing debugging, instrumentation,
and state monitoring tools. (2) Flexibility: By introducing a
stackable mutation architecture, BLuEMan can fuzz different

1

protocol layers and support customized protocols, making it
highly adaptable. (3) Traceability: Using a novel Man-In-The-
Middle (MITM) architecture, BLuEMan deploys a packet
interceptor that facilitates comprehensive fuzz testing and
enables fine-grained traceability. (4) Portability: BLuEMan
leverages a Linux Foundation-backed open-source framework
and supports BLE protocol stacks portable to the Nordic
NRF52/53/54-series development boards with BLE hardware.

We evaluated BLuEMan by comparing it against prior
notable Bluetooth fuzzers. BLuEMan demonstrated supe-
rior speed and flexibility, primarily due to its reliance on
a physical-layer simulator. Specifically, it achieves fuzzing
rates up to 18.0 and 162.3 times faster than typical simulation-
based (BTFuzz [23]) and platform-based (SweynTooth [16])
approaches, respectively. In addition, BLuEMan’s field-aware
mutation method outperforms traditional AFL-based muta-
tion in edge coverage, yielding improvements ranging from
6.14% to 256.49% on the standard BLE stack.

More importantly, BLuEMan identified four new vulnera-
bilities across different layers of the BLE protocol stack, all of
which have been assigned CVEs. We dedicated approximately
three months collaborating with the developers involved to
validate the identified vulnerabilities, reproduce them on their
platforms, and ensure they were properly patched. This work
offers valuable insights into efficient vulnerability discovery
for BLE protocol stack developers.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the necessary BLE background. Section 3
presents an overview of BLuEMan’s objective, design, and
real-world impact. Sections 4, 5, and 6 design, implement,
and evaluate BLuEMan, respectively. Section 7 discusses the
limitations and potential extensions. Section 8 presents related
work, and Section 9 concludes the paper.

2 BLE Primer

BLE is a low-energy, short-range wireless communication
technology introduced as part of the Bluetooth 4.0 core speci-
fication [8]. It supports four primary device modes. (1) Broad-
caster: periodically broadcasts packets of data to nearby BLE
observers without requiring a formal connection. (2) Observer:
listens for and receives broadcast messages from other BLE
devices. (3) Peripheral: sends advertising packets and awaits
incoming connections from central devices, enabling periodic
data exchange and facilitating interactive apps; (4) Central:
acts as the main controller, responsible for discovering, con-
necting to, and managing peripheral devices; it structures data
exchange with peripherals using the GATT (Generic Attribute
Protocol). The broadcaster and observer modes are commonly
applied in location-based services, asset tracking, and event
management, while the peripheral and central modes are inte-
gral to wearables, medical devices, smart home technologies,
and similar apps.

Controller

Host
Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT) Security Manager (SM)

Logical Link Control & Adaptation Layer Protocol
(L2CAP)

Host Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Application

H
ID

H
eart R

ate

Battery

Sensor

Inform
ation

Figure 1: The BLE protocol stack.

BLE Protocol Stack. Figure 1 illustrates the BLE protocol
stack, comprising the app, host, and controller layers from
top to bottom. The app layer offers various services, such as
HID (Human Interface Device), heart rate monitoring, and bat-
tery status reporting. The host manages high-level protocols,
data exchange, and app logic, while the controller handles
low-level, timing-critical operations at the radio and link lay-
ers. The host and controller communicate via the HCI (Host
Controller Interface). Depending on the implementation, they
can be located on separate chips (connected via a physical
interface such as UART (Universal Asynchronous Receiver-
Transmitter) or USB) or integrated on the same chip, using
shared memory for interaction.

The host contains five major components: GAP (Generic
Access Profile), GATT (Generic Attribute Profile), ATT (At-
tribute Protocol), L2CAP (Logical Link Control and Adap-
tation Layer Protocol), and SM (Security Manager). GAP
defines device modes, manages device discovery, and han-
dles the connection process. Once connected, GATT enables
structured data exchange using the ATT for attribute-level
operations. L2CAP provides data multiplexing for higher lay-
ers, ensuring efficient data transmission over the BLE link.
SM ensures device security by managing authentication, en-
cryption, and data integrity to secure BLE communication.
On the other hand, the controller consists of the PHY (Phys-
ical) and LL (Link Layer) layers. The PHY layer operates
on the 2.4 GHz ISM band and employs various modulation
techniques, whereas the LL layer manages packet scheduling,
role managements, and timing parameters, such as connection
intervals, advertising intervals, and window lengths.

BLE Packet Type. BLE packets are categorized into two

2

PDU (≤ 257)Access
address

(4)
LL

header
(2)

LL payload (≤ 255)

CRC
(3)

Pream
ble

(1)

PDF type
(4bits)

RFU
(1bit)

ChSel
(1bit)

TxAdd
(1bit)

RxAdd
(1bit)

Length
(8bits)

Figure 2: BLE advertising packet format.

PDU (≤ 257)

Access
address

(4)
LL

header
(2)

LL payload (≤ 251) CRC
(3)

ATT
opcode
(1)

ATT parameters (≤ 246)

Information payload (≤ 247) MIC
(4)

LLID
(2bits)

NESN
(1bit)

SN
(1bit)

MD
(1bit)

RFU
(3bits)

Length
(8bits)

Length
(2)

Pream
ble

(1)

L2CAP
header (4)

CID
(2)

Figure 3: BLE data packet format: ATT as an example.

main types: advertising packets and data packets. Advertising
packets are used during the advertising and scanning phases
of BLE communication. They enable devices to announce
presence and capabilities, broadcast information, and estab-
lish connections. Figure 2 illustrates the advertising packet
format, which mainly includes a constant access address of
0x8E89BED6, an advertising type specified in the PDU type
field of the LL header, and the LL payload length field.

Data packets facilitate communication between a central
device and a peripheral during an established connection.
Figure 3 shows an example of an ATT data packet. In the
LL header, the LLID field indicates the packet type (L2CAP
or LL control), whereas the length field specifies the total
length of the LL payload plus the MIC (Message Integrity
Check). The LL payload comprises the L2CAP header and
information payload. The CID (Channel ID) in the L2CAP
header identifies the protocol of the information payload (e.g.,
0x0004 for ATT). The information payload includes an ATT
opcode (operation code), defining the operation type (e.g.,
request and response) and related parameters.

3 Overview

Current research on BLE stack fuzzing can be broadly classi-
fied into platform-based [15, 16, 28] and emulation-based [20,
23, 31] approaches. Platform-based approaches rely on spe-
cific hardware or dedicated OS environments as the founda-
tion for conducting fuzzing tests. Examples of platform-based
fuzzing include using FPGAs (Field-Programmable Gate Ar-
rays) or specific IoT devices to identify vulnerabilities in em-
bedded systems. The OS fuzzing examples primarily target
RTOS to uncover software vulnerabilities. These approaches
excel at providing high fidelity by closely simulating real-
world scenarios and interacting directly with actual platforms.

However, platform-based solutions face significant scala-
bility challenges for two primary reasons. First, each target

platform must be individually acquired, configured, and inte-
grated into a testing environment, which can be both resource-
intensive and complex. Second, extracting critical runtime
state information from target platforms often requires exten-
sive reverse engineering and the development of sophisticated
tools, such as internalblue [26].

On the other hand, emulation-based methods utilize soft-
ware to simulate the behavior of hardware or system envi-
ronments. Such emulators are designed to provide controlled,
flexible, and often faster testing without requiring actual hard-
ware. For example, the QEMU emulator can replicate entire
system architectures for running virtualized OS environments,
where security vulnerabilities in specific apps and protocols
can be tested and identified. These approaches are highly
scalable, allowing rapid testing across multiple targets and
offering flexibility to explore various configurations auto-
matically within the emulator. Moreover, they often provide
simpler access to runtime state information.

Nevertheless, emulation-based solutions are not without
their limitations. The primary drawback is that emulated tar-
gets may not fully replicate the behavior of actual protocols
and implementations, possibly overlooking some vulnerabil-
ities. Moreover, their applicability is restricted to specific
systems and hardware chipsets. For example, the approach
by Huster et al. [20] can only test systems that support Vir-
tIO [32], such as the Linux OS. Similarly, Frankenstein [31]
is confined to particular chipsets, such as Cypress and Broad-
com Bluetooth, and requires substantial effort to reconstruct
runtime state information.

To address these limitations, we propose a simulation-
based fuzzing framework, BLuEMan, for testing BLE pro-
tocol stacks. BLuEMan integrates the advantages of both
platform-based and emulation-based approaches while tack-
ling three major challenges: (1) generating high-quality seeds
for effective fuzzing; (2) ensuring runtime scalability in terms
of environment setup cost, coverage measurement, fuzzing
speed, and crash verification; and (3) accommodating the
increasing complexity of Bluetooth protocol development,
which demands more sophisticated and resource-intensive
fuzzing strategies. To overcome these challenges, BLuEMan
introduces three novel methods: (1) employing an MITM ar-
chitecture to generate high-quality seeds from real BLE apps;
(2) utilizing the single ELF model in RTOSs to enable ultra-
fast fuzzing with scalable performance; and (3) exploring
protocol states via probabilistic mutation of packet sequences,
eliminating the need to emulate complex BLE state machines.

Specifically, BLuEMan utilizes an RTOS to execute the
actual BLE protocol stack, achieving both high fidelity and
scalability. High fidelity is ensured by testing the real protocol
implementation, while scalability is enabled by leveraging the
flexibility of RTOS software simulator to facilitate rapid test-
ing across various targets. Moreover, BLuEMan incorporates
a software-based PHY simulator to simulate interactions at
the physical layer between BLE targets, such as a BLE central

3

Table 1: Overview of the discovered vulnerabilities.
Layer CVE Vulnerability Type Elapsed Time
LL CVE-2023-4424 Buffer overflow 5 m 24 s
ATT CVE-2024-3077 Integer underflow 3372 m 15 s
SM CVE-2024-3332 Race condition 1 m 10 s
LL CVE-2024-4785 Divide by zero 1943 m 44 s

and a BLE peripheral.
BLuEMan is aimed at testing open-source BLE protocol

stacks. It currently supports a variety of RTOS platforms with
integrated BLE stacks, including Zephyr [37], NimBLE [3],
and BTstack [7]. BLuEMan’s flexible design can be applied
to any open-source BLE protocol stack that can be ported to
these RTOS environments.

Objectives and Design Components. To meet the require-
ments of scalability and effective fuzz testing, BLuEMan is
designed with the following objectives and the corresponding
components:

• Efficiency: BLuEMan executes actual BLE protocol stacks
without the overhead associated with interacting with actual
platforms or processing within an simulation environment.
This design inherently enables faster fuzzing than tradi-
tional methods.

• Compatibility: BLuEMan compiles the entire RTOS, BLE
stack, and PHY simulator into a single ELF executable.
This integration simplifies compatibility with existing de-
velopment tools, such as debugging, instrumentation, and
state monitoring.

• Flexibility: BLuEMan incorporates a stackable mutation
architecture within its packet mutator. This architecture
identifies protocol layers and performs mutations based
on customizable fuzzing weights, offering flexibility for
fuzzing different layers. Moreover, it is extensible, allowing
support for custom protocols by implementing each as a
plugin within the stackable architecture.

• Traceability: BLuEMan employs a novel MITM architec-
ture, deploying a packet interceptor by patching the bridg-
ing interface at the PHY simulator. This approach not only
enables comprehensive fuzz testing but also ensures fine-
grained traceability for monitoring and analysis.

• Portability: The design of BLuEMan leverages a popular
open-source frameworks. Furthermore, by using Nordic
NRF52/53/54-series development boards with BLE hard-
ware, our proposed approach is capable of assessing any
BLE stack that can be ported to the hardware.

Real-world Impact. We discovered four new vulnerabilities
using BLuEMan, all of which have been assigned CVEs, as
detailed in Table 1. These vulnerabilities span multiple proto-
col layers, including LL, ATT, and SM, and involve various
types of vulnerabilities: buffer overflow, integer underflow,
race condition, and divide by zero. These findings highlight

Target App

Corpus
Queue

Packet
Mutator

State
Collector

Packet
Interceptor

Physical
Layer

Simulator

Interacting App

fifo

fifo

message
queue

shared
memory

ru
nt

im
e

st
at

e

get/update corpus

Figure 4: BLuEMan architecture.

the effectiveness of BLuEMan in identifying vulnerabilities
across different layers without the overhead of managing com-
plex state machines [15, 16, 23, 28]. Notably, all the identified
CVEs can remotely cause DoS in the affected BLE protocol
stacks, with three being exploitable without requiring pairing.
This is primarily due to incorrect code behavior or memory
corruption, such as buffer overflows in the BLE reception
buffer. Typically, a device crash results in an automatic restart.
However, in the worst-case scenario, the targeted device may
require a manual hardware reset to resume normal operation,
depending on the implementation of its hard fault handling
mechanism [16]. All the identified CVEs have been reported
to the respective developers and subsequently patched.

4 BLuEMan Design

In this section, we introduce the BLuEMan framework and
design components. Figure 4 shows its architecture overview.
We employ a PHY layer simulator for packet delivery be-
tween BLE devices for better fuzzing performance. All the
BLE apps, the stack, and the PHY layer bridging interfaces
are compiled as a single ELF executable. The gray boxes
in the figure indicate the new components introduced in the
framework:

• Packet Interceptor: Sits between the interacting app and
the target app, intercepting packets sent to the target and
forwarding packets from the target back to the interacting
app.

• State Collector: Collects runtime information from the
target app.

• Corpus Queue: Stores effective test cases.
• Packet Mutator: Generates fuzzing test cases by mutating

received packets.

When two BLE devices’ ELFs are ready, we invoke them

4

to communicate with each other. The packet interceptor in-
tercepts a packet sent from the interacting app to the target
app and forwards the packet for mutation. A mutated packet
(test case) is fed to the target app to perform a fuzzing task.
The mutation is performed on either the packet’s payload or a
selected test case from the corpus queue. Once the target app
has processed a mutated packet, the state collector collects
its runtime information, e.g., code coverage, and determines
whether the test case is effective. The corpus queue is updated
based on the state collector’s judgment.

Our fuzzing framework features a novel design that per-
forms mutations on payloads captured from interactions be-
tween apps. This approach achieves two key goals: (1) gen-
erating high-quality initial seeds and (2) enabling deeper ex-
ploration of protocol states. Prior research has shown that
the quality of initial seeds significantly impacts fuzzing ef-
fectiveness [19, 20]. To this end, our design leverages interac-
tions between different combinations of target and interacting
apps to produce effective initial seeds and enhances testing
coverage. An initial seed, also referred to as a test case or
corpus throughout this paper, is composed of a sequence of
BLE packets captured during communication between an in-
teracting app and a target app. For example, in a heart-rate
measurement app, interactions between the peripheral (inter-
acting) and central (target) apps yield protocol messages at
various layers, such as L2CAP and ATT, which are then used
for fuzzing.

To support deeper state exploration, the interacting apps
are implemented based on BLE protocol specifications, en-
suring comprehensive coverage of BLE states. Mutations
are applied to randomly selected packets and protocol layers
within these captured interactions. By integrating stateful pay-
loads generated from real protocol exchanges with a stateless
fuzzer, BLuEMan forms a stateful fuzzing framework capable
of targeting BLE protocol implementations at any state. To
maintain robustness and simplify vulnerability detection, the
fuzzed ELF executables are restarted in each fuzzing round,
preventing the accumulation of program error states.

4.1 Packet Interceptor

The packet interceptor plays a crucial role in the proposed
framework. We integrate our approach with a PHY simula-
tor to capture packets exchanged between the involved apps.
By using a simulator, we avoid the complexity of over-the-
air packet capture and gain a streamlined mechanism for
packet interception and manipulation. The packet interceptor
is implemented by patching the bridging interface offered
by the PHY simulator–specifically, by modifying the packet-
receiving routine to invoke the interceptor before the packet is
returned. The interceptor routine operates in a blocking man-
ner: it forwards the intercepted packet to the packet mutator
and waits for the mutated payload to be returned. This design
grants the packet interceptor complete control over the data

BLE device
(interacing)
with PHY
Simulator

PHY
Simulator

Middleware

BLE device
(target)

with PHY
Simulator

fifo fifo
➊ ➋

➌➍

(a) The typical packet flow.

BLE device
(interacing)
with PHY
Simulator

PHY
Simulator

Middleware

BLE device
(target)

with PHY
Simulator

fifo fifo

Packet
Interceptor

Packet
Mutator

message queue
① ② ③

④

⑤⑥

⑦⑧

(b) Work with the packet interceptor.
Figure 5: Packet flow for the PHY layer simulator.

passed from the PHY simulator to the mutator.
Figure 5 illustrates the packet flow with and without the

packet interceptor. In the default setup (Figure 5a), a packet
sent from the interacting app to the target app travels through
the PHY simulator middleware and follows a direct return
path to the sender, as indicated by the black circled steps 1 to 4.
In contrast, with the packet interceptor enabled (Figure 5b),
the packet is intercepted after transmission (steps 1 to 3),
sent to the mutator, and then returned to the target app for
processing (steps 4 and 5). The packet is then processed by
the BLE stack integrated with the target app, and a response
is generated and sent back to the sender (steps 6 to 8).

4.2 State Collector

The state collector is designed to provide sufficient informa-
tion to guide the fuzzing process in accurately selecting more
effective test cases from the corpus queue. Our framework
achieves this by collecting runtime state information from
the target BLE stack under test. A key advantage of using
a PHY simulator is its ability to compile the entire RTOS,
Bluetooth stack, and simulator into a single ELF executable,
facilitating seamless integration with development tools such
as debuggers, instrumentation utilies, and state monitors.

In our framework, we port AFL’s edge code coverage mech-
anism into the state collector and perform target instrumen-
tation using afl-gcc, thereby enabling edge coverage col-
lection. To focus the fuzzing effort, runtime state collection
is restricted to BLE-relevant components by patching the
compiler to instrument only selected source code directories.

Beyond edge coverage, researchers can customize the
framework to collect other types of coverage by modifying
the coverage collection module. Moreover, sanitizers like UB-
San (UndefinedBehaviorSanitizer), MSan (MemorySanitizer),

5

Target App

Corpus
Queue

State Collector

Packet Mutator

Empty
Corpus
Queue?

Packet MutationPacket
IN

Packet Collector
(initial-seed)

Packet Collector
(non-initial-seed)

Packet
OUT

Yes

No

BLE
Stack

Effective
Test Case?

App
Crashed?

Log Crashed
Test Case

Yes

No

Test Case
Discarded

App
Terminated?

Update
Coverage

No

Yes

No

Yes

Signaling message Load/Store packets upon requestPrimary workflow

①

②

③

④

⑤

⑥

⑦

⑧

⑨

⑩

⑪

⑫

Ⓐ

Ⓑ

Ⓒ

Ⓓ

Ⓔ

Figure 6: The packet-driven workflow of the packet mutator.

and ASan (AddressSanitizer) can be enabled to improve the
detection of undefined behavior and memory corruption er-
rors.

4.3 Corpus Queue
The corpus queue stores candidate test cases for fuzzing. Ini-
tially empty, it is populated with effective test cases as the
fuzzing process progresses. Each entry in the corpus queue
represents a sequence of multiple BLE packets collected in
the same fuzzing round. Thanks to the packet interceptor,
valid BLE packets exchanged between the interacting and tar-
get apps are captured early in the fuzzing process and added
as initial candidates. Subsequent test cases are derived from
these initial entries to further expand the corpus.

Only test cases that do not crash the target app are retained
in the corpus queue. If a test case causes a crash, it is sepa-
rately logged and preserved for further analysis and validation.

4.4 Packet Mutator
The packet mutator is the most critical component of the
framework. We propose a modular, packet-driven workflow
and a stackable mutation architecture to enable an efficient
and flexible fuzzing process. The modular workflow ensures
streamlined execution, while the stackable architecture allows
weighted fuzzing based on identified protocol layers. This
process is illustrated in Figure 6. It is triggered upon receiv-
ing an input packet 1 . Depending on whether the corpus
queue is empty, the mutator either collects an initial seed 2

or performs packet mutation 3 . All packets processed by
the mutator are duplicated and stored in a packet collector,
which is later used to maintain the fuzzing corpus. The output
packet 5 is then sent to the target app 6 to fuzz the BLE
stack. After the packet is processed, the target app’s runtime
state is recorded by the state collector. The test case used may

Algorithm 1 The Packet Mutation Algorithm

Input: pkt: Input packet (original).
Input: wx: Weight for not performing mutation.
Input: L: List of available protocols. Each element is in the

form of {R,w,M}, where R is the recognization func-
tion, w is the weight for mutation, and M is the mutation
function.

Output: pkt ′: Output packet (mutated).
1: L’←∅ ▷ The array containing the detected protocols.
2: for p ∈ L do
3: if p.R(pkt) is true then
4: p.w← UpdateWeight(p)
5: add p to L′

6: end if
7: end for
8: n← number of elements in L′

9: add {∅,wx,∅} to L′

10: W← ∑ p.w ∀p ∈ L′

11: m←−1 ▷ Mutation index
12: pr← draw a probability from [0,1]
13: wL← 0
14: for i = 0 to (n−1) do
15: wU ← wL +L′[i].w/W
16: if wL ≤ pr < wU then
17: m← i ▷ Assign mutation index
18: end if
19: wL← wU
20: end for
21: if m >−1 then
22: pkt ′← L′[m].M(pkt)
23: else
24: pkt ′← pkt
25: end if
26: return pkt ′

be logged 8 , used to update coverage 10 , or discarded 12 ,
depending on whether the runtime state indicates a crash,
termination, or effective behavior (i.e., increased coverage).

During the initial seed collection process, the state collector
updates coverage information for each processed packet in
the packet collector A . This process halts if no new coverage
is observed in the most recent n packets. For non-initial-seed
packets, coverage state is only reported when the target app
terminates normally at the end of a fuzzing round B . In both
cases–either when initial seed collection halts or a fuzzing
round ends–the packets stored in the packet collector are
treated as a complete test case and added to the corpus queue
(C and D).

To enhance fuzzing flexibility, we introduce a stackable
mutation architecture capable of recognizing protocol layers
and applying mutations based on preferred fuzzing weights.
Each supported protocol is implemented as a plugin, which in-
cludes: a protocol recognition function (Ri), a mutation weight

6

(wi), and a protocol mutation function (Mi). The recognition
module identifies the presence of a specific protocol header
and payload in the packet. If the protocol is detected, a fuzzing
probability is sampled to determine whether its header or pay-
load should be mutated. The corresponding protocol mutation
module then performs the actual mutation.

The stackable mutation architecture allows researchers to
design and implement fuzzers for unsupported or customized
protocols. In the case of BLE fuzzing, we provide implemen-
tations for the LL, L2CAP, SMP, and ATT protocols. Notably,
each protocol fuzzer can be configured to target the protocol
header, payload, or both. In general, we apply field-aware
mutations to protocol headers to ensure that mutated packets
can pass the basic validation checks regulated by the protocol
specifications.

Specifically, BLuEMan incorporates mutation operations
from traditional fuzzers, such as the havoc operations
from AFL, and enhances their effectiveness through three
lightweight mutation constraints: (1) restricting bitwise muta-
tions to the Link Layer, (2) keeping the upper-layer protocol
fields (e.g., the LLID field in the LL protocol) unchanged, and
(3) adjusting length fields in response to changes in payload
size. The traditional mutators promote testing diversity, while
the added constraints help maintain protocol correctness.

The packet mutation algorithm is detailed in Algorithm 1.
Given an input packet pkt, a weight wx representing the prob-
ability of skipping mutation, and a list of available protocols
L, the algorithm returns either a mutated packet or the original
input packet, based on the assigned weights and a sampled
probability. Each protocol in the list L is represented as a tuple
{R,w,M}, where R is the protocol recognition function, w is
the mutation weight, and M is the mutation function.

The algorithm starts by determining which protocols are
present in the input packet (lines 1-7), storing all detected
protocols in a separate array, L′. To simplify implementation,
a dummy protocol {∅,wx,∅} is appended to the end of L′

(line 9). The total mutation weight W is then calculated by
summing the weights of all protocols in L′ (line 10). Next,
the algorithm samples a probability from the range [0,1],
determines which protocol to mutate, and stores the selection
in an index variable m (lines 11-20). While line 12 draws a
uniform random probability, the actual likelihood of selecting
each protocol is influenced by the UpdateWeight function,
which adjusts weights based on the runtime coverage of each
protocol layer. Finally, the algorithm invokes the mutation
function L′[m].M on the input packet pkt. If no protocol is
selected, the original input packet is returned unchanged.

It is important to note that the fuzzing speed of the packet-
driven workflow largely depends on the interaction frequency
between the selected interacting app and the target app. To
maintain progress, if no interaction is detected within a speci-
fied timeout threshold (2 s by default in this study), both apps
are terminated and restarted for a new fuzzing round. For
further details on fuzzing speed, please refer to Section 6.1.

Pairing Response

(1) Pairing Request

Initiator
(Central)

Responder
(Peripheral)

(2) Pairing Public Key

Pairing Public Key

(3) Pairing Random

Pairing Random

Identity Information

Identity Address Info.

(5) Identity Information
(6) Identity Addr Info.

Pairing Confirm

(4) Pairing DHKey Check

Pairing DHKey Check

(a) Packet Sequence.

recv'ed: (legacy)
Pairing Req

recv'ed:
Pairing Random

recv'ed: Key

send: Security Req
(optional)

recv'ed:
Pairing Confirm

(a) Idle

(b) Wait
Pairing Confirm

(c) Wait
Pairing Random

(d) Key
Distribution

(e) Final State

(f) Wait
Public Key

(h) Wait
DHKey Check

(g)Wait
Pairing Random

recv'ed: Public Key
send: Confirmation

recv'ed:
Nonce

recv'ed:
DHKey Check

recv'ed: (secure)
Pairing Req

pairing failed

recv'ed:
LL_ENC_REQ

pairing failed

legacy pairing

secure conn. pairing

(b) Simplified State Machine.

Figure 7: Example of SM pairing: packet sequence and state
machine mapping.

4.5 Packet-driven State Machine Traversal
One key novelty of BLuEMan is its ability to explore proto-
col states without emulating BLE state machines. It takes a
packet-driven approach to state machine traversal by associat-
ing packet sequences with state transitions. To illustrate this,
we use the SM pairing process as an example.

Figure 7a shows the LE Secure Connections Pairing packet
sequence using the Just Works method, which is naturally
generated by the sm_pairing apps during interactions be-
tween the central and peripheral apps. In contrast, Figure 7b
presents a simplified peripheral state machine for LE pair-
ing using the same method. Starting from the idle state, the
peripheral transitions through states (a), (f)–(h), and (d)–(e),
guided by the packet sequence (1)–(6) produced within BLuE-
Man. Our mutation strategy probabilistically selects different
packets and protocol layers from these live interactions to
mutate, enabling exploration of any state reachable by the
BLE apps under test.

A compelling example of the effectiveness of this approach
is the discovery of CVE-2024-3332 (see Appendix B.3). Al-
though the root cause lies in a race condition between the
HCI and SM pairing protocol implementations, the vulner-
ability is only triggered when the SM protocol reaches the
“Key Distribution" state, highlighting the practical value of
our method.

5 Implementation

Our proposed framework is integrated with a selected RTOS
and a PHY simulator. Unless otherwise specified, we adopt
the Zephyr RTOS, a general-purpose RTOS maintained by the
Linux Foundation, which supports over 750 boards. Among
the available open-source simulators, BabbleSim [6] and
RootCanal [17] are two widely used options. Based on the
completeness of their BLE implementations, we choose Bab-
bleSim as the PHY simulator to capture packet exchanges
between apps. Both BabbleSim and Zephyr are patched to sup-

7

Protocol Stack
Software

Protocol Stack
Software

Protocol Stack
Software

Baseband
HW Accelerators

Baseband
HW Accelerators

Baseband
HW Accelerators

Modem Modem Modem

Shared MediumBa
bb

le
Si

m
 P

H
Y

Si
m

ul
at

ed
D

ev
ic

es

Figure 8: BabbleSim PHY: shared medium and device inter-
face.

port the BLuEMan framework. BLuEMan also incorporates
instrumentation, coverage collection, and mutation operators
adapted from the AFL fuzzer.

In this section, we briefly introduce BabbleSim and discuss
the necessary integration steps. BLuEMan is publicly avail-
able at https://doi.org/10.5281/zenodo.15601101 and
https://github.com/zoolab-org/blueman.artifact.

BabbleSim. BabbleSim is a simulator designed for shared
medium networks at the physical layer, where the shared
medium represents wireless communication in the 2.4GHz
ISM band. The BabbleSim PHY, illustrated in Figure 8, is di-
vided into two main components: (1) the shared medium and
(2) the simulated modems that use BabbleSim’s library func-
tions. Programs with these simulated modems are referred
to as simulated devices. The propagation in the simulated
medium closely replicates real-world wireless communica-
tion in the 2.4GHz ISM band, with BabbleSim’s library en-
abling simulated devices to communicate wirelessly through
the shared medium. Multiple simulated devices can connect
to a single simulated medium.

BabbelSim supports compiling device and app codes into
ELF executables, allowing it to run on Linux systems. This
feature provides developers with flexibility and ease of use,
enabling direct simulation and testing of wireless communica-
tion protocols within a Linux environment. BabbleSim allows
developers to harness the powerful capabilities of the Linux
platform for efficient development and testing.

Through BabbleSim’s modular library, developers can im-
plement communication protocols for the 2.4GHz ISM band,
such as Bluetooth Low Energy, Thread, and 6LoWPAN. A
notable project, ext_nRF_hw_models, involves developing
software-simulated peripherals based on nRF5-series hard-
ware models, including wireless protocols such as Bluetooth
Low Energy and IEEE 802.15.4.

We integrate our packet interceptor with the radio stack of
the BabbleSim simulator. It is done by invoking the packet
interceptor function from within the start_Rx routine before
the start_Rx routine returns a packet. The implementation
of the packet interceptor contains 168 lines of C codes, and
the patch contains only a single line function call to the Bab-
bleSim routine.

Application

CPU/SOC HW peripherals

Zephyr
Kernel

Drivers

other
device

Architecture/SOC
dependent layer

(a) With physical hardware.

Drivers

POSIX
HW models

Application

Zephyr
Kernel

Host OS Kernel
(i.e., Linux)

radio
stack

other
device
binary

(b) with POSIX API.

Figure 9: Zephyr architecture comparison [36].

Integration. We further integrate the PHY simulator with
the targeted RTOS and BLE protocol stack implementation.
Specifically, we evaluate our approach using two RTOS plat-
forms, Zephyr [37] (supported by the Linux Foundation) and
Mynewt [3] (supported by the Apache Foundation), along
with their built-in BLE protocol stacks. Other BLE protocol
stacks, such as BTstack [7], that can be adapted to run on
either Zephyr or Mynewt can also be evaluated using our
framework.

We use Zephyr as an example to illustrate the integration of
our framework with an RTOS. Figure 9 compares the Zephyr
architecture on hardware versus a PHY simulator, i.e., Bab-
bleSim. As shown in Figures 9a and 9b, Zephyr provides a
POSIX-compatible implementation to replace architecture-
and SoC1-dependent layers and CPU/SoC hardware. For in-
stance, architecture-specific halt instructions are implemented
using the POSIX API exit function. Additionally, Zephyr
allows the driver to interface with the modem API (the radio
stack in Figure 9b) provided by the BabbleSim project. By
substituting hardware peripherals with software-simulated
radios, each Bluetooth device/app is treated as a standalone
app running in a typical OS environment, suitable for fuzzing.

6 Evaluation

In this section, we evaluate BLuEMan from multiple per-
spectives and summarize the results in the form of research
questions (RQ). We begin by describing the experimental
setting and our comparison with existing Bluetooth fuzzers.
Experimental Setting. Experiments are conducted on a
server equipped with an Intel(R) Xeon(R) Gold 5118 CPU and
48 GB RAM, running Debian 12 Linux OS. We select several
pairs of interacting and target apps, as summarized in Table 2.
Two key points are worth noting. First, the selected BLE
protocol stacks were developed by three independent teams,
demonstrating the portability of BLuEMan. The correspond-
ing source code can be found in the samples/bluetooth
directory of the Zephyr project, the babblesim/targets di-
rectory of the NimBLE project, and the example directory
of the BTstack project. Second, some BLE apps may require

1SoC: System on Chip

8

https://doi.org/10.5281/zenodo.15601101
https://github.com/zoolab-org/blueman.artifact

Table 2: BLE app pairs used for experiments.
Stack Name

(App #1) (App #2)
BTstack Battery Query

(gatt_battery_query) (gatt_counter)
SM Pairing
(sm_pairing_central) (sm_pairing_peripheral)
LE Credit
(le_credit_based_flow_control_mode_client)
(le_credit_based_flow_control_mode_server)

NimBLE GATT
(blecent) (bleprph)

Zephyr GATT Write
(central_gatt_write) (peripheral_gatt_write)
OTS
(central_otc)† (peripheral_ots)
Heart Rate
(central_hr) (peripheral)
ISO Broadcast
(iso_broadcast) (iso_receive)§

BLE Mesh
(mesh)† (mesh_provisioner)†§

†: Replace hardware-dependent functions with mock ones.
§: Only application #2 in this pair is fuzzed.

physical hardware (e.g., a button) to activate specific features;
for such cases, we patch the apps to enable those features
programmatically using mock functions, removing the need
for physical components.

Comparison with Existing Bluetooth Fuzzers. We sum-
marize key distinctions by comparing BLuEMan with prior
notable Bluetooth fuzzers in Table 3. An experimental com-
parison with BrakTooth is presented in Section 6.5. Direct
comparisons with other solutions are not feasible due to dif-
ferences in target protocols or the unavailability of required
platform or hardware, as presented below.

Platform-based approaches, including SweynTooth [16],
BrakTooth [15], and L2FUZZ [28], typically use a dongle
to interact with target devices. To estimate fuzzing progress,
they develop custom state machines that track the hardware
state by mapping received messages from the target device to
corresponding protocol states. For experimental evaluation,
SweynTooth is not publicly available–only proof-of-concept
attacks have been released–and L2FUZZ is incompatible with
the BLE devices we target. However, BrakTooth can be ex-
ecuted using the ESP32-WROVER-KIT platform, so it is
chosen for the experimental comparison.

Emulation-based fuzzers include Frankenstein [31] and
VirtFuzz [20], whereas BTFuzz [23] is a simulation-based
fuzzer like BLuEMan. Frankenstein uses QEMU user-mode
as its primary emulation engine, targeting Broadcom and Cy-
press Bluetooth firmware; however, the source code required
by BLuEMan is unavailable. VirtFuzz employs VirtIO for
fuzzing Bluetooth protocols above the HCI layer, which dif-
fers from BLuEMan’s protocol entry point. Moreover, VirtIO
requires a guest OS to implement specialized drivers for their
interation, which are typically unavailable on most RTOSs.

Table 3: Summary of Bluetooth fuzzing research works.
Name Radio Type Protocols Exploration Strategy

Approach Description
BLuEMan (Ours) LE Host/Controller Code coverage (edge)

Simulation-based Compile firmware into an ELF executable.
SweynTooth [16] LE Host/Controller Customized state machine

Platform-based Use a dongle to interact with BLE devices.
BTFuzz [23] LE Host Customized state machine

Simulation-based Attach customized HCI interface to BLE host.
BrakTooth [15] BR/EDR Host/Controller Customized state machine

Platform-based Use a dongle to interact with BR/EDR devices.
L2FUZZ [28] BR/EDR L2CAP Customized state machine

Platform-based Use a dongle to interact with BR/EDR devices.
Frankenstein [31] BR/EDR/LE Controller Code coverage (basic block)

Emulation-based Emulate firmware using QEMU user-mode.
VirtFuzz [20] BR/EDR/LE Host Code coverage (edge)

Emulation-based Full system emulation using QEMU/VirtIO.

0.0 0.1 0.2 0.3 0.4
50

10
0

15
0

20
0

25
0

30
0

Timeout Ratio

P
ac

ke
t T

ra
ns

m
is

si
on

 R
at

e
(p

ac
ke

ts
/s

)

Battery Query (to Central)
Battery Query (to Peripheral)
GATT (To Central)
GATT (To Peripheral)
GATT Write (to Central)
GATT Write (to Peripheral)
Heart Rate (to Central)
Heart Rate (to Peripheral)
LE Credit (to Central)
LE Credit (to Peripheral)
OTS (to Central)
OTS (to Peripheral)
SM Pairing (to Central)
SM Pairing (to Peripheral)
BLE Mesh (to Provisioner)
ISO Broadcast (to Receiver}

Figure 10: Scatter plot for the packet transmission rate and
the corresponding timeout ratio for each app pair.

BTFuzz, as a simulation-based approach, utilizes a state ma-
chine to monitor the fuzzing state of the target protocol stack.
However, its HCI-based interface limits the fuzzing scope to
host protocols.

Note that, regarding initial seeds, Frankenstein starts with
a null byte; BLuEMan, BrakTooth, and VirtFuzz use captured
Bluetooth packets; while SweynTooth, BTFuzz, and L2FUZZ
generate seeds from self-simulated protocol state machines.

6.1 RQ1: Fuzzing Speed

We discuss the fuzzing speed of our proposed approach due
to the use of the packet-driven design. With this design, the
fuzzer can only perform mutations when a packet passes
through the packet interceptor and the mutator. As a result,
the fuzzing speed is primarily determined by the packet trans-
mission rate between the client and the server. We set a default
timeout threshold of 2 seconds to detect whether a fuzzing
process initiated by an interacting app is stalled. If a stall is
detected, the involved apps are restarted. We run the selected
BLE app pairs to perform the measurement. Each app pair is
run for 24 hours.

Figure 10 presents the scatter plot of the packet transmis-
sion rate and the corresponding timeout ratio for each app pair.

9

Table 4: Packet transmission rates for BLE works.

Name Approach Rate (packets/min)
SweynTooth [16] Platform-based 119
BTFuzz [23] Simulation-based 1,073
BLuEMan (Ours) Simulation-based 19,315

Each app is represented by a different symbol in the figure.
The y-axis shows the average packet transmission rate mea-
sured during the experiments. At the same time, the x-axis
represents the timeout ratio, defined as the number of stalls
detected divided by the total number of invocations collected
in the same experiments. The Pearson correlation coefficient
for the measured average packet transmission rate and the
timeout ratio is -0.74, indicating that the number of timeouts
has a strong negative impact on the packet transmission rate.

App stalls do not always occur when invoking an app pair.
We attempt to examine the root cause of app stalls. One pri-
mary reason is unhandled simulated hardware interrupts ob-
served in a few apps. For example, we observed an unex-
pectedly lower transmission rate for the “GATT Write" app
pair. Our in-depth investigation revealed that the behavior
of building and running the app on a native host machine
(e.g., an x86-based server) differs significantly from that on
actual hardware. The stalls observed in the “GATT Write"
app pair were caused by the packet interceptor not being trig-
gered as expected by simulated hardware interrupts. The root
cause of this issue is that the apps implement infinite loops to
process BLE protocol messages, which prevents them from
handling simulated hardware interrupts raised by the Bab-
bleSim simulator. Following the official guidelines from the
Zephyr project, we resolved this issue by inserting an addi-
tional k_cpu_idle function call within the infinite loops to
yield the CPU. The recommended fix mitigates the issues
and enables the PHY simulator bridging interface to handle
hardware interrupts.

We compare the packet transmission rate of the BLE
fuzzing research works reported from SweynTooth [16] and
BTFuzz [23], as shown in Table 4. The numbers show that
our proposed approach efficiently fuzzes the targeted BLE
implementations. Note that BTFuzz does not explicitly de-
scribe its runtime setup; however, its PTY2-based interface
design implies the need for an OS kernel running on physical
or virtual hardware. While BTFuzz is not publicly available,
we use it as the reference for emulation-based performance
benchmark.

6.2 RQ2: Performance of the Radio Media
To have a fair comparison of the radio media performance for
fuzzing, we evaluate the performance of selected BLE stack
implementation by measuring the transmission performance
over different radio media, including platform-based media,

2pseudo terminal.

Remote DeviceHost Computer

Central
(Native - x86)

Host BLE
Controller

Peripheral
(Native - arm)nRF52840

(a) Platform-based measurement over the air (nRF52840).

Host Computer

Central
(Native - x86) RootCanal Peripheral

(QEMU)

U
ART over
Socket

U
ART over
Socket

(b) Emulation-based measurement using the QEMU-based
emulator (RootCanal).

Host Computer

Central
(Native - x86) RootCanal Peripheral

(Native - x86)

U
ART over
Socket

U
ART over
Socket

(c) Simulation-based media using the Controller emulator
(RootCanal).

Host Computer

PHY simulator
BabbleSim
nrf52_bsim

Central
(Native - x86)

Peripheral
(Native - x86)

FIFO

FIFO

(d) Simulation-based media using the PHY simulator (Bab-
bleSim).

Figure 11: Architectural overview of the evaluated media.

emulation-based media, and our proposed simulation-based
media. The summary of the three setups is as follows.

• Platform-based media. We deploy our selected RTOS
firmware and the target BLE stack to an nRF52840 dongle
and perform the performance measurement over the air.

• Emulation-based media. An RTOS firmware and the tar-
get BLE stacks are run using QEMU user-mode emula-
tion. The measurement inputs are sent to the target via the
RootCanal framework. It is worth noting that only protocol
layers above the HCI interface can be controlled due to the
RootCanal design.

• Simulation-based media. Our proposed approach lever-
ages an RTOS and a PHY simulator to perform performance
measurements. The targets are compiled as ELF binary ex-
ecutables running on a server machine.

We use customized GATT Write central and peripheral apps
originated from the Zephyr project to perform the benchmark.
The architectural overview of the evaluated scenarios is shown
in Figure 11. The host computer is a laptop with an AMD
Ryzen HX 370 CPU and a MediaTek MT7922 Bluetooth
chip running a Debian 12 Linux operating system. We mea-
sure the elapsed setup and transmission round-trip time on
the central app. Each measurement iteration begins with the
pairing of the two involved apps and ends with the first re-
ceipt of the response message for a GATT write request. We

10

0

1000

2000

3000

4000
T

im
e

(m
s)

Platform (Air) Simulator (RootCanal)
Emulator (QEMU) Simulator (BabbleSim)

Figure 12: Measured performance for different radio media.

perform 1,000 iterations and summarize the results in Fig-
ure 12. The figure shows that the BabbleSim PHY simulator
provides the most stable and efficient medium for transmitting
Bluetooth packets, being approximately 100 times faster than
other media. Surprisingly, the RootCanal controller simulator
performs similarly whether using native code or an emulator.
The elapsed time for pairing and packet transmission round-
trip over the air is similar to that of the emulator. However,
the signal strength fluctuates over time, leading to less stable
performance.

6.3 RQ3: Fuzzing Coverage

We measure the fuzzing coverage for the evaluated apps to
demonstrate the effectiveness of our proposed approach. Each
selected app pair is fuzzed three times, with each experiment
lasting 24 hours. We evaluate three different mutation strate-
gies: field-aware mutation, AFL-only mutation and random
mutation. For the field-aware mutation, the packet header is
mutated within the bounds defined by the corresponding pro-
tocol specification, with selected fields set to either valid or
invalid values. The payload, on the other hand, is mutated
using random byte-level changes. For AFL-only mutation, we
directly apply havoc mutators from AFL. To avoid immediate
rejection, any packet exceeding the current connection’s max-
imum allowed LL payload size is truncated. In the random
mutation strategy, random byte mutations are applied to both
the header and payload of the entire LL packet.

In the experiments, all app pairs swap the roles of the in-
teracting and target apps, except for the BLE Mesh and ISO
Broadcast apps. For the BLE Mesh app, we evaluate only the
provisioner because it is more complex and is responsible for
initializing and configuring the entire mesh network, while the
provisionee only plays a passive role. For the ISO Broadcast
app, we only test the receiver because the ISO receiver is a
BLE observer that cannot send packets. Its sole function is to
receive packets, making it unsuitable as an interacting app.

Figure 13 shows the coverage measured over time for all the
evaluated apps. Due to space limitations, only a limited num-
ber of test cases are presented in the figure. Readers may refer

0 5 10 15 20

0
10

00
30

00
50

00

GATT Write (to Central)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

GATT Write (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

Heart Rate (to Central)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

Heart Rate (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

OTS (to Central)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

OTS (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

Figure 13: Coverage for the selected evaluated apps.

to Figure 17 in Appendix A for the rest of the plots. Among
the 16 test cases, those using field-aware mutations demon-
strated significant improvements in edge coverage compared
to both random and the AFL-only mutators, with gains of
4.48%-40.05% and 6.14%–256.49%, respectively, excluding
the BLE Mesh case.

Notably, in the BLE Mesh case, the three methods achieved
comparable edge coverage, with differences of less than
5.64%. This is because, unlike the standard BLE stack, BLE
Mesh is based on a separate specification developed on top of
BLE and is not part of the core BLE specification. The adver-
tising bearer used in our tests is built on the LL layer of the
BLE stack, with additional layers specific to BLE Mesh’s Net-
work, Transport, and Access layers, but without the L2CAP,
SM, and ATT layers found in the standard BLE stack. Since
the field-aware mutator handles only the standard LL, L2CAP,
SM, and ATT layers of the BLE stack, it does not offer any
advantages for the BLE Mesh protocol layers above the LL
layer.

11

0.0 0.5 1.0 1.5 2.0

36
00

40
00

44
00

GATT Write (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

0.0 0.5 1.0 1.5 2.0

36
00

40
00

44
00

Heart Rate (to Peripheral)

Time (hr)
C

ov
er

ag
e

(A
pp

ro
x.

 E
dg

e
C

ou
nt

)

Fixed (0.1)
Fixed (0.25)
Fixed (0.5)
Fixed (0.75)
Fixed (1.0)
Selective (0.75/0.25)
Selective (0.25/0.75)
Random
Mixed

0.0 0.5 1.0 1.5 2.0

36
00

40
00

44
00

OTS (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

0.0 0.5 1.0 1.5 2.0

36
00

40
00

44
00

SM Pairing (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Figure 14: Coverage for different packet selection strategies.

6.4 RQ4: Packet Selection Strategy
We experimentally evaluate the impact of different packet
selection strategies on coverage. For each selected packet
sequence, packets are chosen for mutation using one of the
following four strategies:

• Fixed Probability: A fixed mutation probability is uni-
formly applied to all packets in a sequence. We test several
values, including 0.1, 0.25, 0.5, 0.75, and 1.0. A probability
of 1.0 indicates all packets in the sequence are mutated.

• Selective Probability: A transition point within the packet
sequence is identified to switch mutation probabilities. We
use coverage information from initial corpus collection to
locate the point with the most significant change in cover-
age. Two probability pairs are evaluated: (0.25, 0.75) and
(0.75, 0.25), where the first value is applied before the tran-
sition point and the second value after.

• Random Probability: For each mutation, a probability is
randomly chosen from the range [0.1, 1.0].

• Mixed Strategy: This strategy iteratively applies one of
the above three methods. Each selected method is used for
N packet sequences before switching to the next; in our
implementation, N = 2000.

We evaluate these strategies across four peripheral apps–
GATT Write, Heart Rate, OTS, and SM Pairing–with results
shown in Figure 14. The Fixed Probability strategy with a
value of 1.0 generally performs poorly in most cases, as ex-
cessive mutation often prevents packets from passing basic
protocol state validation, limiting deeper exploration of proto-
col states. In contrast, the other strategies each show strengths
depending on the app. Based on these observations, we rec-
ommend the Mixed strategy to achieve balanced and effective
fuzzing performance.

Figure 15: Experimental setup for running the BrakTooth
tool. (Left) ESP-WROVER-KIT running BrakTooth firmware.
(Right) nRF52840 kit running the Zephyr BLE stack and apps.

0 40 80 120

0
20

00
40

00

Time (sec)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Full
Host−only
BrakTooth

(a) GATT Write.

0 40 80 120

0
20

00
40

00

Time (sec)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Full
Host−only
BrakTooth

(b) Heart Rate.

0 40 80 120

0
20

00
40

00

Time (sec)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Full
Host−only
BrakTooth

(c) OTS.
Figure 16: Coverage and speed comparison between BLuE-
Man and BrakTooth. Legend: (Full) BLuEMan with full
(host+controller) coverage collection; (Host-only) BLuEMan
with BLE host-only coverage collection; (BrakTooth) Brak-
Tooth coverage, which evaluates only BLE host protocols.

6.5 RQ5: Comparison with BrakTooth

We use the ESP32-WROVER-KIT and the nRF52840 devel-
opment kit to run the BrakTooth firmware and the Zephyr
BLE stack (supported by BLuEMan), respectively, as shown
in Figure 15. Both devices are connected to the same PC for
experiment execution. To minimize potential signal interfer-
ence, the devices are enclosed in a shielding box

For BrakTooth, we use the bthost_fuzzer tool from its
repository, which supports fuzzing BLE peripheral devices.
It automatically scans nearby devices and sends GATT com-
mands to those it recognizes. It is limited to peripheral devices,
as central devices do not respond to Bluetooth scanning.

We select three Zephyr peripheral apps–gatt_write,
heart_rate, and ots–as targets for fuzzing by BrakTooth
and BLuEMan. Each app is fuzzed for 5 hours due to hard-
ware stability. During fuzzing, we collect runtime coverage
from apps instrumented using a patched version of AFL-gcc.

It is observed that coverage reported by BrakTooth stops in-
creasing after around 40 seconds, although each app is fuzzed
for several hours. Thus, we plot only the first 120 seconds of
coverage progression, as shown in Figure 16. It shows that our
simulation-based method, combined with the MITM architec-
ture, explores significantly more states in the target BLE host
compared to the platform-based approach, BrakTooth.

12

6.6 RQ6: Real-World Vulnerability

This subsection discusses new vulnerabilities our proposed
approach recognizes, as illustrated in Table 1. The recognized
vulnerabilities span across different layers, i.e., LL, ATT, and
SM. It demonstrates that our framework can effectively un-
cover vulnerabilities across various layers through its state-
ful exploration design. All the reported CVEs can remotely
cause DoS in the affected BLE protocol stacks, with three
being exploitable without requiring pairing (CVE-2023-4424,
CVE-2024-3077, and CVE-2024-4785). Note that all the vul-
nerabilities discussed in this study have been reported to the
corresponding developers and are fixed.

Below, we provide a brief introduction to each CVE, with
full details presented in Appendix B due to space constraints.

CVE-2023-4424. This vulnerability can be triggered in
Zephyr’s LL implementation when processing BLE advertis-
ing packets. The flawed implementation incorrectly assumes
that an advertising packet contains at least 6 bytes for the
broadcast address, followed by advertising data. If the actual
data length is less than 6 bytes, this assumption leads to an
integer underflow. As a result, an attacker can broadcast mal-
formed packets, enabling DoS attacks against any vulnerable
BLE device that receives them. Affected devices must be re-
booted to restore the BLE stack. The CVE was assigned a
CVSS score of 8.8 (high) by the NVD, as it can be exploited
remotely with low complexity, no privileges required, and no
user interaction.

CVE-2024-3077. This vulnerability can be triggered in
Zephyr’s ATT layer implementation, causing a BLE device to
crash due to an integer underflow issue. Specifically, this is-
sue arises when handling an unexpected response to the ATT
Find Information Request. An attacker can spoof or control a
GATT server and respond with a valid protocol message of
zero length, leading to out-of-bounds memory access. This
type of vulnerability was found in multiple locations, affect-
ing a total of five functions related to ATT response handling.
The fix involves adding checks to ensure that the length of the
ATT response meets the minimum size required for a valid
Find Information Response.

CVE-2024-3332. This vulnerability occurs in Zephyr’s SM
layer and is rooted in improper synchronization within the
HCI driver. Specifically, the Host HCI driver processes a con-
nection termination HCI command before completing prior
SM-related HCI commands. As a result, an SM command
may attempt to access a shared resource that has already been
cleared. Since this issue stems from synchronization errors,
it is not confined to the SM layer; other code segments that
rely on shared resources may also be affected. Exploitation
requires a specific execution order, making the vulnerability
more difficult to trigger. An attacker would need to repeatedly
attempt the exploit to increase the likelihood of success.

CVE-2024-4785. This vulnerability occurs in the Zephyr’s

LL implementation. Under normal conditions, once a cen-
tral and peripheral device establish a link-layer connec-
tion, they can negotiate connection parameters using the
LL_CONNECTION_PARAM_REQ packet, which can be initiated by
either device. In contrast, the LL_CONNECTION_UPDATE_IND

packet can only be sent from the central to the peripheral. This
vulnerability arises because no validation is performed before
using parameters in the LL_CONNECTION_UPDATE_IND packet,
leading to a potential divide-by-zero error. To exploit this flaw,
an attacker can send a malicious LL_CONNECTION_UPDATE_IND

packet to the victim after establishing their connection. The
patch addresses this issue by checking whether received pa-
rameters, such as the connection interval, meet the minimum
required threshold.

7 Limitation and Extension

Need for Source Code. The BLuEMan framework is cou-
pled with a supported RTOS and a PHY simulator, and re-
quires access to the source code of the BLE implementation.
It can support various open-source BLE implementations, in-
cluding BTstack [7], NimBLE [3], and Zephyr-native [37],
by porting them to compatible RTOSs such as Zephyr and
Mynewt.

Inaccuracy of Hardware Simulations. Using a PHY sim-
ulator to simulate the hardware may introduce inaccuracies
in behavior compared to physical hardware. One such inac-
curacy involves the handling of hardware interrupts. In the
simulated environment, the kernel thread may delay hardware
interrupts until it returns from certain waiting states, such as
an API call or a CPU yield operation, e.g., k_cpu_idle.

Additionally, the sequential execution of software and hard-
ware tasks in the simulated environment can result in false
negatives and missing vulnerabilities that depend on specific
timing or interactions between software and hardware. Physi-
cal hardware, with its more randomized execution sequences,
is less prone to such omissions. Therefore, while PHY simu-
lation provides a valuable testing tool, it has limitations that
can impact the accuracy of results, particularly in timing and
interaction-dependent scenarios.

BLuEMan Scalability. While this work mainly uses the
Zypher RTOS for executing BLuEMan, the framework is
also compatible with other popular RTOSs such as FreeR-
TOS [14] and ThreadX [12]. Firmware for these systems
can be compiled into a single ELF executable, enabling it to
run efficiently as native code on a host system running the
fuzzer. Some manual effort is required to port BabbleSim to
this native runtime. It is important to note that our approach
focuses on evaluating the BLE stack rather than the RTOS
itself. While FreeRTOS and ThreadX do not provide built-in
Bluetooth stacks like Zephyr, they are compatible with some
open-source Bluetooth stacks such as BTstack and NimBLE,
both of which have been evaluated in the work.

13

8 Related Work

We study related work in Bluetooth vulnerability, BLE-related
fuzzer, and general protocol fuzzer directions.

Bluetooth vulnerability. Numerous security vulnerabilities
have been discovered in existing Bluetooth implementations.
Specifically, BlueBorne [5] reveals vulnerabilities in several
Bluetooth protocols, including L2CAP, BNEP (Bluetooth Net-
work Encapsulation Protocol), and SDP (Service Discovery
Protocol), whereas the others identify vulnerabilities from the
L2CAP implementation of the Android Bluetooth stack [21],
BlueZ in the Linux kernel [1], and the Texas Instrument’s
BLE implementation [4]. BLUFFS [2] presents six novel at-
tacks to break the future and forward secrecy of Bluetooth
sessions, whereas BLESA [35] discovers a vulnerability in
the device reconnection procedure at the LL layer. In this
paper, we focus on a full-stack fuzzing framework against
BLE vulnerabilities.

BLE Emulation-based fuzzers. BLE emulation-based
fuzzers can be classified into BLE host fuzzers and full-
stack fuzzers. BLE host fuzzers: BTFuzz [23] adopts black-
box fuzzing and communicates with the BlueZ BLE host
on QEMU via an emulated serial device, while guiding fuzz
testing using a customized state machine. VirtFuzz [20] col-
lects edge coverage to guide the fuzz testing and commu-
nicates with the Linux Bluetooth host on QEMU through a
customized VirtIO [27, 32] device. Although it is a power-
ful framework for fuzzing wireless implementations, most
RTOS platforms do not support VirtIO Bluetooth, and apply-
ing it to RTOS can introduce significant overhead. BLE full-
stack fuzzers: Frankenstein [31] operates by dumping memory
contents and registering values at runtime, through patching
the memory of physical Bluetooth controllers. The dumped
firmware is then linked into an ELF file to execute in QEMU
user mode. This approach provides faster execution speeds
and flexibility for firmware modification. However, it requires
extensive reverse engineering and is prone to hardware dis-
crepancies across platforms, further increasing complexity
and cost.

BLE Platform-based Fuzzers. Platform-based fuzzers can
also be classified into BLE host fuzzers and full-stack fuzzers.
BLE host fuzzers: L2Fuzz [28] uses black-box fuzzing based
on Bluetooth v5.2, creating an L2CAP state machine where
each state has predefined legitimate packets to support state
transitions. ToothPicker [18] targets the iOS Bluetooth stack
using FRIDA for dynamic instrumentation and radamsa for
mutation on iOS devices. Full-stack fuzzers: BrakTooth [15]
and SweynTooth [16] employ black-box fuzz approaches to
perform platform-based BLE full-stack fuzzing. BrakTooth
focuses on testing Bluetooth BR/EDR, while SweynTooth
specializes in testing Bluetooth LE. Both studies design a
state machine targeting the entire stack rather than specific
layers. However, these platform-based solutions are all limited

by physical environments, restricting the speed of fuzz testing.

BLE GATT Service Fuzzers. GATT is an essential com-
ponent of many IoT devices, defining how devices exchange
data through services and characteristics, so its security and
stability are important [33, 38]. In the BLE security testing
framework [30], the fuzzer is built using Go and interacts
with Bluetooth devices through GATT packets. The fuzzer
adjusts the parameter size based on the protocol specification,
while adopting a random approach to generate parameters.
However, the triggered failures are not deterministic, making
it challenging to identify root causes.

Protocol Fuzzers. Protocol fuzzing has evolved through var-
ious implementations. Grammar-based fuzzing [10, 25, 34]
relies on hard-coded or user-defined grammar specifications to
generate test cases, which define the structure and field types
of packets. With advancements, stateful protocol fuzzing tech-
niques [11, 13, 22, 29] have emerged, aiming to learn state
models of network protocols. Some tools have further en-
hanced these methods, such as TCP-Fuzz [39], which intro-
duces a dependency-based strategy to handle dependencies
between system calls and packets and uses a transition-guided
fuzzing approach to improve state transition coverage. Addi-
tionally, TCP-Fuzz employs a differential checker to compare
the outputs of multiple TCP stacks to detect semantic bugs.
BLEEM [24] is a packet-sequence-oriented black-box fuzzer
at the sequence level and uses a non-invasive feedback mech-
anism to track system states dynamically. FuzzUSB [22] is
a fuzzer specifically for the USB gadget stack, addressing
the limitations of prior USB host stack fuzzing tools. This
framework adopts a multi-channel input mutation strategy,
which considers the multi-phase nature of USB communica-
tion, allowing mutation testing across different states.

9 Conclusion

In this work, we introduced BLuEMan, a simulation-based
fuzzing framework for evaluating the security of BLE pro-
tocol stack implementations. By combining a RTOS with a
software-based PHY simulator, BLuEMan provides an effi-
cient and scalable platform for protocol fuzzing. It features a
novel MITM architecture for automated seed collection and a
packet-driven workflow that streamlines state management.
The framework supports comprehensive fuzzing across the
BLE stack. Experimental results show that BLuEMan is effec-
tive in identifying a wide range of vulnerabilities–including
buffer overflows, integer overflows, memory errors, and race
conditions. Notably, it contributed to the discovery of four
critical CVEs, all of which were responsibly disclosed and
patched. These results highlight the practicality and effective-
ness of BLuEMan in advancing secure development practices
for BLE protocol stacks.

14

Acknowledgment

We thank the anonymous reviewers and the shepherd for
their valuable and insightful comments for improving this
paper. The works presented in this study are supported, in
part, by the National Science and Technology Council and Tai-
wan Academic Cybersecurity Center (TACC) at NYCU under
the grants NSTC-113-2221-E-A49-186-MY3, 113-2634-F-
A49-001-MBK, 112-2628-E-A49-016-MY3, and 114-2218-
E-A49-017. One of the authors, Wei-Che Kao, has been affil-
iated with DEVCORE since graduation. We thank the com-
pany for supporting their employee’s ongoing academic re-
search involvement and sponsoring his travel expenses.

Ethics Considerations

In our vulnerability discovery efforts, we prioritized ethical
practices to benefit stakeholders and minimize harm. A key
stakeholder was the Zephyr Project of the Linux Foundation,
a community-driven open-source initiative. Upon identifying
vulnerabilities, we promptly notified the Zephyr team, col-
laborated on solutions, and allowed sufficient time for fixes.
All issues were reported as CVEs and resolved before public
disclosure, minimizing disruption while maintaining trans-
parency.

Our decisions balanced risks to Zephyr’s developers and
users with the need for swift action. We ensured sensitive
information remained protected and prioritized solutions that
upheld security and privacy. Recognizing that perspectives on
ethics can vary, we engaged openly with the Zephyr team to
address concerns and strengthen the project’s security frame-
work. This collaborative approach ensured effective resolu-
tions and long-term improvements for the community.

Open Science

This research complies with the open science policy required
by the USENIX Security conference. Our codes, scripts, and
sample applications are available at https://doi.org/10.5
281/zenodo.15601101 and https://github.com/zoolab-org

/blueman.artifact.

References

[1] Andy Nguyen. BleedingTooth: Linux Bluetooth Zero-
Click Remote Code Execution. https://google.git
hub.io/security-research/pocs/linux/bleed
ingtooth/writeup.html.

[2] Daniele Antonioli. BLUFFS: Bluetooth Forward and
Future Secrecy Attacks and Defenses. In ACM confer-
ence on Computer and Communications Security (CCS),
November 2023.

[3] Apache Mynewt. NimBLE, 2024. https://github.c
om/apache/mynewt-nimble.

[4] Armis. Bleedingbit: Exposes Enterprise Access Points
and Unmanaged Devices to Undetectable Chip Level
Attack. https://www.armis.com/research/bleed
ingbit/.

[5] Armis. BlueBorne: The dangers of Bluetooth imple-
mentations: Unveiling zero day vulnerabilities and se-
curity flaws in modern Bluetooth stacks. https:
//www.armis.com/research/blueborne/.

[6] BabbleSim. BabbleSim, 2024. https://babblesim.
github.io/.

[7] bluekitchen. BTstack, 2024. https://github.com/b
luekitchen/btstack.

[8] Bluetooth SIG. Bluetooth® Core Specification 5.4,
2023. https://www.bluetooth.com/specific
ations/specs/core-specification-5-4/.

[9] Bluetooth SIG. 2023 Bluetooth® Market Update, 2024.
https://www.bluetooth.com/2023-market-upd
ate/.

[10] boofuzz. boofuzz: Network protocol fuzzing for humans.
https://github.com/jtpereyda/boofuzz.

[11] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of
TLS implementations. In 24th USENIX Security Sympo-
sium (USENIX Security 15), pages 193–206. USENIX
Association, August 2015.

[12] Eclipse ThreadX. ThreadX Repository, 2025. https:
//github.com/eclipse-threadx/threadx.

[13] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget,
Joeri de Ruiter, Konstantinos Sagonas, and Juraj So-
morovsky. Analysis of DTLS implementations using
protocol state fuzzing. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2523–2540. USENIX
Association, August 2020.

[14] FreeRTOS. FreeRTOS Repository, 2025. https://gi
thub.com/FreeRTOS/FreeRTOS.

[15] Matheus E. Garbelini, Vaibhav Bedi, Sudipta Chattopad-
hyay, Sumei Sun, and Ernest Kurniawan. BrakTooth:
Causing havoc on bluetooth link manager via directed
fuzzing. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1025–1042, Boston, MA, August
2022. USENIX Association.

[16] Matheus E. Garbelini, Chundong Wang, Sudipta Chat-
topadhyay, Sun Sumei, and Ernest Kurniawan. Sweyn-
Tooth: Unleashing mayhem over bluetooth low en-
ergy. In 2020 USENIX Annual Technical Conference

15

https://devco.re/en/
https://doi.org/10.5281/zenodo.15601101
https://doi.org/10.5281/zenodo.15601101
https://github.com/zoolab-org/blueman.artifact
https://github.com/zoolab-org/blueman.artifact
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://github.com/apache/mynewt-nimble
https://github.com/apache/mynewt-nimble
https://www.armis.com/research/bleedingbit/
https://www.armis.com/research/bleedingbit/
https://www.armis.com/research/blueborne/
https://www.armis.com/research/blueborne/
https://babblesim.github.io/
https://babblesim.github.io/
https://github.com/bluekitchen/btstack
https://github.com/bluekitchen/btstack
https://www.bluetooth.com/specifications/specs/core-specification-5-4/
https://www.bluetooth.com/specifications/specs/core-specification-5-4/
https://www.bluetooth.com/2023-market-update/
https://www.bluetooth.com/2023-market-update/
https://github.com/jtpereyda/boofuzz
https://github.com/eclipse-threadx/threadx
https://github.com/eclipse-threadx/threadx
https://github.com/FreeRTOS/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS

(USENIX ATC 20), pages 911–925. USENIX Associa-
tion, July 2020.

[17] Google Inc. RootCanal Repository, 2024. https://gi
thub.com/google/rootcanal.

[18] Dennis Heinze, Jiska Classen, and Matthias Hollick.
ToothPicker: Apple picking in the iOS bluetooth stack.
In 14th USENIX Workshop on Offensive Technologies
(WOOT 20). USENIX Association, August 2020.

[19] Adrian Herrera, Hendra Gunadi, Shane Magrath,
Michael Norrish, Mathias Payer, and Antony L. Hosking.
Seed selection for successful fuzzing. In Proceedings
of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 230–243, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[20] Sönke Huster, Matthias Hollick, and Jiska Classen. To
boldly go where no fuzzer has gone before: Finding
bugs in Linux’ wireless stacks through VirtIO devices.
In 2024 IEEE Symposium on Security and Privacy (SP),
pages 4629–4645. IEEE, 2024.

[21] Jan Ruge. BlueFrag: CVE-2020-0022 an Android 8.0-
9.0 Bluetooth Zero-Click RCE. https://insinuator
.net/2020/04/cve-2020-0022-an-android-8-0
-9-0-bluetooth-zero-click-rce-bluefrag/.

[22] Kyungtae Kim, Taegyu Kim, Ertza Warraich, Byoungy-
oung Lee, Kevin R. B. Butler, Antonio Bianchi, and
Dave Jing Tian. FuzzUSB: Hybrid stateful fuzzing of
USB gadget stacks. In 2022 IEEE Symposium on Secu-
rity and Privacy (SP), July 2022.

[23] Jin Lei, Yongjun Wang, Xu Zhou, and Ke Yan. BTFuzz:
Accurately fuzzing bluetooth host with a simulated non-
compliant controller. In 2022 IEEE 4th International
Conference on Civil Aviation Safety and Information
Technology (ICCASIT), pages 1195–1201, 2022.

[24] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong
Liu, Yu Jiang, Ting Chen, Abhik Roychoudhury, and
Jiaguang Sun. Bleem: Packet sequence oriented fuzzing
for protocol implementations. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4481–4498,
Anaheim, CA, August 2023. USENIX Association.

[25] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun
Jiao, and Jiaguang Sun. Polar: Function code aware fuzz
testing of ICS protocol. ACM Trans. Embed. Comput.
Syst., 18(5s), October 2019.

[26] Dennis Mantz, Jiska Classen, Matthias Schulz, and
Matthias Hollick. InternalBlue - bluetooth binary patch-
ing and experimentation framework. In Proceedings

of the 17th Annual International Conference on Mo-
bile Systems, Applications, and Services, pages 79–90.
Association for Computing Machinery, 2019.

[27] Tsirkin Michael S. and Huck Cornelia, 2023. https:
//docs.oasis-open.org/virtio/virtio/v1.2/c
s01/virtio-v1.2-cs01.html.

[28] Haram Park, Carlos Kayembe Nkuba, Seunghoon Woo,
and Heejo Lee. L2Fuzz: Discovering bluetooth l2cap
vulnerabilities using stateful fuzz testing. In 2022 52nd
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 343–354,
2022.

[29] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. Aflnet: A greybox fuzzer for network protocols.
In 2020 IEEE 13th International Conference on Soft-
ware Testing, Validation and Verification (ICST), pages
460–465, 2020.

[30] Apala Ray, Vipin Raj, Manuel Oriol, Aurelien Monot,
and Sebastian Obermeier. Bluetooth low energy devices
security testing framework. In 2018 IEEE 11th Interna-
tional Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2018.

[31] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced wireless
fuzzing to exploit new bluetooth escalation targets. In
29th USENIX Security Symposium (USENIX Security
20), pages 19–36. USENIX Association, August 2020.

[32] Rusty Russell. virtio: towards a de-facto standard for
virtual i/o devices. SIGOPS Oper. Syst. Rev., 42(5):95–
103, July 2008.

[33] SecuRing Sławomir Jasek. GATTacking bluetooth smart
devices, 2016. Black Hat USA.

[34] Andreas Walz and Axel Sikora. Exploiting dissent: To-
wards fuzzing-based differential black-box testing of
TLS implementations. IEEE Transactions on Depend-
able and Secure Computing, 17(2):278–291, 2020.

[35] Jianliang Wu, Yuhong Nan, Vireshwar Kumar,
Dave (Jing) Tian, Antonio Bianchi, Mathias Payer,
and Dongyan Xu. BLESA: Spoofing attacks against
reconnections in bluetooth low energy. In 14th USENIX
Workshop on Offensive Technologies (WOOT 20).
USENIX Association, August 2020.

[36] Zephyr Project. Zephyr - The POSIX architecture, 2024.
https://docs.zephyrproject.org/latest/boar
ds/native/doc/arch_soc.html.

[37] Zephyr Project. Zephyr RTOS Repository, 2024. https:
//github.com/zephyrproject-rtos/zephyr.

16

https://github.com/google/rootcanal
https://github.com/google/rootcanal
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://docs.oasis-open.org/virtio/virtio/v1.2/cs01/virtio-v1.2-cs01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/cs01/virtio-v1.2-cs01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/cs01/virtio-v1.2-cs01.html
https://docs.zephyrproject.org/latest/boards/native/doc/arch_soc.html
https://docs.zephyrproject.org/latest/boards/native/doc/arch_soc.html
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr

[38] Yue Zhang, Jian Weng, Zhen Ling, Bryan Pearson, and
Xinwen Fu. BLESS: A ble application security scan-
ning framework. In IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications. IEEE, July
2020.

[39] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan,
Chenggang Qin, and Shi-Min Hu. TCP-Fuzz: Detect-
ing memory and semantic bugs in TCP stacks with
fuzzing. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, July 2021.

A Coverage Measurement Result

Due to space limitations, the plots of the measured coverage
for the selected applications not presented in Figure 13 are
shown in Figure 17.

B Details of Recognized CVEs

This section discusses new vulnerabilities our proposed ap-
proach recognizes, as illustrated in Table 1. The recognized
vulnerabilities span across different layers, i.e., LL, ATT, and
SM. It demonstrates that our framework can effectively un-
cover vulnerabilities across various layers through its stateful
exploration design. As mentioned in Section 3, all the reported
CVEs can remotely cause DoS in the affected BLE protocol
stacks, with three being exploitable without requiring pairing
(CVE-2023-4424, CVE-2024-3077, and CVE-2024-4785).
Notably, a single packet cannot trigger the vulnerabilities
discovered by BLuEMan in the SM layers. It requires a se-
quence of packets to guide the program into a vulnerable state,
which is further discussed in Section B.3. Note that all the
vulnerabilities discussed in this study have been reported to
the corresponding developers and are fixed. The recognized
CVEs are summarized in the following subsections.

B.1 CVE-2023-4424

This vulnerability can be triggered in Zephyr’s Link Layer
(LL) implementation when processing BLE advertising pack-
ets. The vulnerable implementation incorrectly assumes that
a BLE advertising packet is at least 6 bytes in length (the
broadcasting address), followed by the advertising data. As a
result, it calculates the advertising data length using the logic
shown in Figure 18, which causes an integer underflow if the
actual data length is less than 6 bytes. This flaw allows an at-
tacker to broadcast malformed packets, enabling DoS attacks
against all vulnerable BLE devices that receive advertising
packets. A victim device has to be rebooted to recover the
state of the BLE stack. The CVE received a CVSS score of 8.8
(high) from the NVD, as it can be exploited remotely with low
complexity, no privileges required, and no user interaction.

B.2 CVE-2024-3077

This vulnerability can be triggered in Zephyr’s Attribute Pro-
tocol (ATT) layer implementation when an unexpected ATT
response packet is received from a malicious BLE device. It
crashes a BLE victim device due to an integer underflow issue.
Specifically, this vulnerability happens when an unexpected
response to the ATT Find Information Request is handled. An
attacker can spoof or control a GATT server, respond to an
ATT Find Information Request using a valid protocol mes-
sage of length zero, and cause out-of-bound memory access
to crash the interacting device.

Figure 19 compares the typical packet flow with the ex-
ploitation packet flow of CVE-2024-3077. The typical flow,
shown in Figure 19a, starts with discovering the device and
requesting GATT service information from the GATT server.
Once the setup is complete, the client sends an ATT Find Infor-
mation Request to the server and waits for the corresponding
ATT Find Information Response. Zephyr implements this fea-
ture by registering a callback function, gatt_find_info_rsp,
to handle any packets returned from the server after sending
an ATT Find Information Request.

Although the lower layer implementation in Zephyr ensures
that only valid ATT messages are handled by the callback
function, some valid ATT messages, such as the ATT Exe-
cute Write Response having a zero-length payload, can still
bypass the check. As a result, the length-1 operation in the
gatt_find_info_rsp function inadvertently sets the length

variable to a large value (216− 1) when the payload length
of the response is zero. It then causes a crash due to out-of-
bounds access to inaccessible memory regions, as shown in
Figure 19b.

We have reported these issues to the developers, and all of
them have been patched. Figure 23 in Appendix C.1 shows
the patch for this vulnerability. The fix involves adding a
check to ensure that the length of the ATT response meets
the minimum size required for a Find Information Response.
This type of vulnerability was found in multiple locations,
with a total of five functions related to ATT response handling
being affected.

B.3 CVE-2024-3332

This vulnerability occurs in Zephyr at the Security Manager
(SM) layer, with the root cause being improper synchroniza-
tion in the HCI driver. Specifically, the Host HCI driver pro-
cesses the connection termination HCI command before com-
pleting the HCI commands related to the SM layer. This
causes the previous SM-related command to access a shared
resource that has already been cleared. Since this issue stems
from improper synchronization, it is not limited to the SM
layer; other code segments that use shared resources may also
be affected. The vulnerability requires a specific execution
order to trigger, making exploitation more difficult. Attackers

17

0 5 10 15 20

0
10

00
30

00
50

00

ISO Broadcast (to Receiver}

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

GATT (To Central)

Time (hr)
C

ov
er

ag
e

(A
pp

ro
x.

 E
dg

e
C

ou
nt

)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

Battery Query (to Central)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

LE Credit (to Central)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

SM Pairing (to Central)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

BLE Mesh (to Provisioner)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

GATT (To Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

Battery Query (to Peripheral)

Time (hr)
C

ov
er

ag
e

(A
pp

ro
x.

 E
dg

e
C

ou
nt

)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

LE Credit (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

0 5 10 15 20

0
10

00
30

00
50

00

SM Pairing (to Peripheral)

Time (hr)

C
ov

er
ag

e
(A

pp
ro

x.
 E

dg
e

C
ou

nt
)

Field−Aware Mutation
Random Mutation
AFL−only

Figure 17: Measured coverage for the selected evaluated applications (the rest).

1 ...
2 if (adv->type != PDU_ADV_TYPE_DIRECT_IND) {
3 data_len = (adv->len - BDADDR_SIZE);
4 }
5 ...
6 memcpy(&adv_info->data[0], &adv->adv_ind.data[0], data_len);
7 ...

Figure 18: The root cause of CVE-2023-4424.

need to repeatedly attempt to exploit the issue for a chance to
trigger it.

One example to illustrate this vulnerability is shown in
Figure 20. During a pairing process, a victim BLE device
creates an asynchronous task to generate the Diffie-Hellman
(DH) key upon receipt of a pairing public key. Before the
asynchronous task completes, an attacker can send a pairing
DH-key check with an incorrect Ea value and then issue an
LL_TERMINATE_IND to terminate the SM connection. When the
asynchronous task is complete, the DH key check verification
fails due to the incorrect Ea received from the attacker. The
victim then attempts to return a pairing failed message to the
central. However, since the SM connection state has been
cleared due to previous termination, subsequent access to the
SM connection state leads to access to a released memory
pointer, causing a memory access error.

We have reported these issues to the developers, and all of
them have been patched. Figure 24 in Appendix C.2 shows
the patch to this vulnerability. Because the race condition is
caused by the simultaneous handling of HCI commands, a
function call to the original bt_recv function implemented
in the HCI layer is protected with a lock to prevent current
threads from accessing the function and leading to the race
condition.

GATT Client
(Central)

GATT Server
(Peripheral)

Device Discovery Procedure

Connection Procedure

Link Layer Information Exchange

(Optional) Pairing & Bounding Procedure

ATT_FIND_INFORMATION_REQ

ATT_FIND_INFORMATION_
RSP

(a) Typical packet flow.

GATT Client
(Central)

GATT Server
(Peripheral)

Device Discovery Procedure

Connection Procedure

Link Layer Information Exchange

(Optional) Pairing & Bounding Procedure

ATT_FIND_INFORMATION_REQ

ATT_EXECUTE_WRITE_RS
P

(b) Exploitation packet flow.

Figure 19: CVE-2024-3077: Packet flow comparison.

B.4 CVE-2024-4785

This vulnerability occurs in the link layer (LL) of Zephyr.
Figure 21 shows a typical packet flow of link layer con-
nection establishment. Under normal circumstances, once
a central and peripheral device establishes a link layer con-
nection, they can negotiate connection parameters via the
LL_CONNECTION_PARAM_REQ packet. This packet can be initi-
ated by either the central or the peripheral device, while the
LL_CONNECTION_UPDATE_IND can only be sent from the central
to the peripheral.

This vulnerability is triggered because no checks
are performed before using the parameters in the
LL_CONNECTION_UPDATE_IND packet, leading to divide-by-zero
errors. Specifically, the interval value received from an at-
tacker is used directly in division operations, as shown in
Figure 22. It only affects BLE peripheral devices, as only
a central device can return an LL_CONNECTION_UPDATE_IND

18

SM
(Central)

SM
(Peripheral)

Connected

Pairing Public Key

Pairing Public Key

Pairing DHKey Check (Invalid Ea)
LL_TERMINATE_IND

Pairing Failed (DHKey Check Failed)

Crypto
Module

Async. Key Generation

DHKey Ready

Figure 20: Attack scenario for demonstrating CVE-2024-
3332.

LL
(Central)

LL
(Peripheral)

Initiated by the Central device

LL_CONNECTION_PARAM_REQ

LL_CONNECTION_UPDATE_IND

LL_CONNECTION_PARAM_RSP

LL_CONNECTION_PARAM_REQ

LL_CONNECTION_UPDATE_IND

Initiated by the Peripheral device

Figure 21: Attack scenario for demonstrating CVE-2024-
4785.

packet to a peripheral device. To exploit the vulnerability,
an attacker (central) first establishes a link layer connection
with the victim (peripheral). After establishing the connection,
the attacker can send a malicious LL_CONNECTION_UPDATE_IND
packet to trigger a divide-by-zero error and crash the victim.

This vulnerability affects multiple locations in the link
layer source codes. One patch is to create a new sanitizer
function called cu_check_conn_ind_parameters to check the
validness of fields (interval, latency, timeout) in a received
packet, as shown in Figure 25. Another patch snippet for
this vulnerability is shown in Figure 26. In general, the
patches check whether a received parameter, such as the
interval parameter in the packet, exceeds a minimal value
(BT_HCI_LE_INTERVAL_MIN, which is 6). If the parameter does
not meet this threshold, the patch adds one to the received
interval to prevent possible subsequent divide-by-zero errors.

C Patch to Recognized CVEs

C.1 CVE-2024-3077

Figure 23 shows the patch for CVE-2024-3077. The fix

PDU (≤ 257)

Access
address

(4)
LL

header
(2)

LL payload (≤ 251) CRC
(3)

LL
opcode
(1)

MIC
(4)

LLID
(2bits)

NESN
(1bit)

SN
(1bit)

MD
(1bit)

RFU
(3bits)

Length
(8bits)

Pream
ble

(1) WinOffset
(2)

Win
Size
(1)

Interval
(2) = 0

Latency
(2)

Timeout
(2)

Instant
(2)

LL Control Data

Figure 22: CVE-2024-4785: Attacking the LL control mes-
sage.

1 diff --git a/subsys/bluetooth/host/gatt.c
b/subsys/bluetooth/host/gatt.c↪→

2 index 69d43de569..6744d77210 100644
3 --- a/subsys/bluetooth/host/gatt.c
4 +++ b/subsys/bluetooth/host/gatt.c
5 @@ -4365,7 +4422,7 @@ static void

gatt_find_info_rsp(struct bt_conn *conn, int err,↪→
6 const void *pdu, uint16_t length,
7 void *user_data)
8 {
9 - const struct bt_att_find_info_rsp *rsp = pdu;
10 + const struct bt_att_find_info_rsp *rsp;
11 struct bt_gatt_discover_params *params = user_data;
12 uint16_t handle = 0U;
13 uint16_t len;
14 @@ -4387,6 +4444,13 @@ static void

gatt_find_info_rsp(struct bt_conn *conn, int err,↪→
15 goto done;
16 }
17
18 + if (length < sizeof(*rsp)) {
19 + LOG_WRN("Parse err");
20 + goto done;
21 + }
22 +
23 + rsp = pdu;
24 +
25 /* Data can be either in UUID16 or UUID128 */
26 switch (rsp->format) {
27 case BT_ATT_INFO_16:

Figure 23: Patch for CVE-2024-3077.

involves adding a check to ensure that the length of the ATT
response meets the minimum size required for a Find Infor-
mation Response. This type of vulnerability was found in
multiple locations, with a total of five functions related to
ATT response handling being affected.

C.2 CVE-2024-3332
Figure 24 in Appendix C.2 shows the patch to CVE-2024-
3332. Because the race condition is caused by the simultane-
ous handling of HCI commands, a function call to the original
bt_recv function implemented in the HCI layer is protected
with a lock to prevent current threads from accessing the
function and leading to the race condition.

C.3 CVE-2024-4785
CVE-2024-4785 can be used to attack the parser of link

layer messages. One patch is to create a new sanitizer function

19

1 diff --git a/subsys/bluetooth/host/hci_core.c
b/subsys/bluetooth/host/hci_core.c↪→

2 index 35ba75701b4..5b515bd929c 100644
3 --- a/subsys/bluetooth/host/hci_core.c
4 +++ b/subsys/bluetooth/host/hci_core.c
5 @@ -3900,7 +3900,7 @@ static void rx_queue_put(struct

net_buf *buf)↪→
6 }
7 }
8
9 -int bt_recv(struct net_buf *buf)
10 +static int bt_recv_unsafe(struct net_buf *buf)
11 {
12 bt_monitor_send(bt_monitor_opcode(buf), buf->data,

buf->len);↪→
13
14 @@ -3939,6 +3939,17 @@ int bt_recv(struct net_buf

*buf)↪→
15 }
16 }
17
18 +int bt_recv(struct net_buf *buf)
19 +{
20 + int err;
21 +
22 + k_sched_lock();
23 + err = bt_recv_unsafe(buf);
24 + k_sched_unlock();
25 +
26 + return err;
27 +}
28 +
29 int bt_hci_driver_register(const struct bt_hci_driver *drv)
30 {
31 if (bt_dev.drv) {

Figure 24: Patch for CVE-2024-3332.

called cu_check_conn_ind_parameters to check the valid-
ness of fields (interval, latency, timeout) in a received
packet, as shown in Figure 25. Another patch snippet for
this vulnerability is shown in Figure 26. In general, the
patches check whether a received parameter, such as the
interval parameter in the packet, exceeds a minimal value
(BT_HCI_LE_INTERVAL_MIN, which is 6). If the parameter does
not meet this threshold, the patch adds one to the received
interval to prevent possible subsequent divide-by-zero errors.

1 diff --git a/subsys/..../ll_sw/ull_llcp_conn_upd.c
b/subsys/..../ll_sw/ull_llcp_conn_upd.c↪→

2 index eb1f692e55f..db0d2711748 100644
3 --- a/subsys/..../ll_sw/ull_llcp_conn_upd.c
4 +++ b/subsys/..../ll_sw/ull_llcp_conn_upd.c
5 @@ -196,6 +196,22 @@ static bool

cu_check_conn_parameters(struct ll_conn *conn,
struct proc_ctx *ctx)

↪→
↪→

6 }
7 #endif /* CONFIG_BT_CTLR_CONN_PARAM_REQ */
8
9 +static bool cu_check_conn_ind_parameters(
10 + struct ll_conn *conn, struct proc_ctx *ctx)
11 +{
12 + const uint16_t interval_max =
13 + ctx->data.cu.interval_max; /* unit 1.25ms */
14 + const uint16_t timeout = ctx->data.cu.timeout;
15 + /* unit 10ms */
16 + const uint16_t latency = ctx->data.cu.latency;
17 +
18 + /* Valid conn_update_ind parameters */
19 + return (interval_max >= CONN_INTERVAL_MIN(conn)) &&
20 + (interval_max <= CONN_UPDATE_CONN_INTV_4SEC) &&
21 + (latency <= CONN_UPDATE_LATENCY_MAX) &&
22 + (timeout >= CONN_UPDATE_TIMEOUT_100MS) &&
23 + (timeout <= CONN_UPDATE_TIMEOUT_32SEC) &&
24 + ((timeout * 4U) > /* *4U ... */
25 + ((latency + 1U) * interval_max));
26 +}
27 ...

Figure 25: The sanitizer function for CVE-2024-4785.

1 diff --git
a/subsys/bluetooth/controller/ll_sw/ull_conn.c
b/subsys/bluetooth/controller/ll_sw/ull_conn.c

↪→
↪→

2 index c9ebeb9c274..93a610fa705 100644
3 --- a/subsys/bluetooth/controller/ll_sw/ull_conn.c
4 +++ b/subsys/bluetooth/controller/ll_sw/ull_conn.c
5 ...
6 @@ -2186,17 +2217,22 @@ void

ull_conn_update_parameters(struct ll_conn *conn,
uint8_t is_cu_proc, uint8_t win_size,

↪→
↪→

7 uint32_t win_offset_us, uint16_t interval,
8 uint16_t latency, uint16_t timeout, uint16_t instant)
9 ...
10 + if (interval >= BT_HCI_LE_INTERVAL_MIN) {
11 + uint16_t max_tx_time;
12 + uint16_t max_rx_time;
13 + uint32_t slot_us;
14 ...
15 + } else {
16 + conn_interval_new = interval + 1U;
17 + conn_interval_unit_new = CONN_LOW_LAT_INT_UNIT_US;
18 ...
19 + }
20 +
21 + conn_interval_us = conn_interval_new
22 + * conn_interval_unit_new;
23 + periodic_us = conn_interval_us;
24 +
25 + conn_interval_old_us = conn_interval_old
26 + * conn_interval_unit_old;
27 + latency_upd = conn_interval_old_us / conn_interval_us;
28 ...

Figure 26: Patch snippet for CVE-2024-4785.

20

	Introduction
	BLE Primer
	Overview
	BLuEMan Design
	Packet Interceptor
	State Collector
	Corpus Queue
	Packet Mutator
	Packet-driven State Machine Traversal

	Implementation
	Evaluation
	RQ1: Fuzzing Speed
	RQ2: Performance of the Radio Media
	RQ3: Fuzzing Coverage
	RQ4: Packet Selection Strategy
	RQ5: Comparison with BrakTooth
	RQ6: Real-World Vulnerability

	Limitation and Extension
	Related Work
	Conclusion
	Coverage Measurement Result
	Details of Recognized CVEs
	CVE-2023-4424
	CVE-2024-3077
	CVE-2024-3332
	CVE-2024-4785

	Patch to Recognized CVEs
	CVE-2024-3077
	CVE-2024-3332
	CVE-2024-4785

