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Abstract—Invoking system calls in exploit implementation is
a typical approach to compromising a system. A key objective
of these attacks is to manipulate program execution paths, with
a specific focus on invoking targeted system calls. Our study
introduces Context-Aware System Call Enforcement (CASE),
a software-based approach meticulously crafted to shrink the
attack surface associated with system call-based exploits. CASE
achieves this by rigorously validating the context, mainly back-
ward function call paths and runtime stack states, to ensure
the legitimacy of system call invocations. Our strategy incor-
porates innovative elements, including anchored entry points,
return address-based validation, and frame size checks. We
formalize our approach by creating NP-hard challenges for
potential attackers and complete with a proof-of-concept (PoC)
implementation that shields against attacks. Our PoC implemen-
tation introduces minimal overhead, less than 2%, for context
validation. Simultaneously, it adeptly identifies and halts attacks
of varying complexities, ranging from simple examples to real-
world servers.

Index Terms—Application Security, Backward Path Validation,
Minimizing Attack Surfaces, System Call

I. INTRODUCTION

SYSTEM calls serve as a pivotal linchpin in the intricate
landscape of exploit development, acting as gateways for

attackers to manipulate the underlying functionalities of an
operating system. Based on the knowledgebase from MITRE
defense [1], half of the attack tactics involve the use of
system calls and can be defended by performing system
call analysis. Analyzing shell codes retrieved from publicly
available repositories [2] shows that all binary-based exploits
use at least one system call. These observations show that the
attack surfaces could be effectively minimized by managing
the use of system calls. Although system calls are essential
interfaces for attackers to carry out most attacks, most de-
fense approaches concentrate on minimizing the system call
set rather than ensuring their legitimate usage. Researchers
have proposed solutions such as debloating [3–6], system
call filtering [7–11], and system call sandboxing [12–15] to
reduce the number of available system calls (e.g., creating a
denylist), thus minimizing the attack surface. However, these
defenses still leave a significant attack surface because those
allowed system calls may still be used illegitimately. For
example, suppose a web server executes an external Common
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1 /* header files omitted */
2 void shell() {
3 _exit(execlp("/bin/sh", "/bin/sh", NULL));
4 }
5
6 void vuln() {
7 char buf[16];
8 read(0, buf, 0x20);
9 }

10
11 int main() {
12 vuln();
13 return 0;
14 }

Fig. 1: A simple motivating example.

Gateway Interface (CGI) program via the fork and exec

system calls. A defense approach would allow the use of the
two system calls in the web server process. Nevertheless, it is
straightforward that invoking the system calls from the web
server itself or a malicious shellcode injected by attackers must
be handled independently. To this end, a more fine-grained
control on enforcing system call usage is required to ensure a
system can be well-protected.

In this study, we propose a novel approach to enforce the
usage of system calls by validating the calling context of
targeted system calls, achieving a more fine-grained control
of the system call usage. We use a motivating example to
illustrate how the calling context of a system call can be
retrieved from a running process and demonstrate several
fundamental observations relevant to our defense approach.
Figure 1 shows a simple program that contains a buffer
overflow vulnerability. The program contains three functions,
main(), vuln(), and shell(), where the main() function
calls the vuln() function, and the shell() function is
unreachable in this program. The program is compiled with -
no-pie and -fno-stack-protector options so that an attacker can
overwrite the return address of function vuln() to change the
program flow.

We look into the program state before the stack is over-
flowed by the read() function call. The read() function
calls the read system call to receive input from the user.
Figure 2a shows the call path from the program entry point
to the invocation of the read system call. If a user does not
overflow the stack, the program then terminates by returning
from the vuln() function followed by returning from the
main() function. The caller of the main() function, which
is the __libc_start_call_main() function, then calls
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Fig. 2: Call paths for invoked system calls.

exit() function and finally reaches the exit_group system
call, as shown in Figure 2b. However, suppose an attacker
overflows the buffer by filling the return address of the vuln()
function with the function address of the shell() function.
In that case, the program flow is transferred to the shell()

function and finally invokes the execve system call, as shown
in Figure 2c. Note that we cannot determine the caller of the
shell() function because the attacker has corrupted the stack.

We can have four fundamental observations from the pro-
gram states shown in Figure 2. First, we can perform the stack
unwinding [16] operation to retrieve the call path of the user-
space program and the corresponding consumed stack sizes
of each function on the path on the invocation of an arbitrary
system call. Second, a healthy function call path should be
backtraced to a valid source. In the example mentioned above,
the valid source is the entry point, the _start function of
the program. Third, even if we can backtrace a function
call path to a valid source, the invocation of the shell()

function is weird because it is originally unreachable in the
program. Furthermore, if we sum up the used stack size of

each recognized function call, the result does not match the
expected stack size. It is worth noting that typical system
call-based approaches cannot defend against the motivating
example. Readers may refer to Section IV-G for the detailed
comparison.

We design and implement our defense approach based on
the observations. The general objective of our approach is
to validate the program runtime state, i.e., context, to ensure
that a program is on the right track. Our contribution is four-
fold. First, we present CASE, a nimble solution designed to
scrutinize the legitimacy of system call context meticulously.
Second, through extensive observations, we demonstrate the
compatibility of our approach with modern Linux distribu-
tions. Third, we formalize our approach, creating NP-hard
challenges for potential attackers, and complete with a proof-
of-concept (PoC) implementation that shields against attacks.
Lastly, we subject our implementation to a comprehensive
evaluation, showcasing its efficiency and effectiveness. Our
PoC implementation introduces minimal overhead, less than
2%, for context validation. Simultaneously, it adeptly identifies
and halts attacks of varying complexities, ranging from simple
examples to real-world GUI applications and servers. The rest
of this paper is organized as follows. We review several rele-
vant research works in Section II. We introduce our approach
in Section III. The evaluation of our proposed approach is
performed in Section IV. A concluding remark is given in
Section V.

II. RELATED WORK

This section reviews relevant research works and approaches
that can be used to determine the validity of a program’s
runtime state. Our approach is entirely software-based, and
we omitted discussions with hardware-based approaches such
as [17] due to space constraints.

A. Control Flow Integrity

Control flow integrity (CFI) [18] is a fine-grained approach
to enforce the execution flow of a program. While CFI
approaches must monitor all call and return instructions to
ensure forward and backward integrities, they usually bring
additional runtime costs and may require specific hardware
assistance. Most CFI solution enforces their policy depending
on a Control Flow Graph (CFG), and it is challenging to
construct a precise CFG without source code. Furthermore,
most existing binary-level CFI mechanisms use dynamic in-
strumentation [19–23] or static rewriting [24–27] to validate
the current target of the call site instead of the whole path. To
our knowledge, control flow enforcement approaches based on
the full call path often depend on hardware tracing features to
obtain the required information [28–31]. While many solutions
enforce backward CFI policies [18, 20, 27, 32], they incur
significant overhead. Although researchers have proposed so-
lutions such as the parallel shadow stack [33] and the dual
stack [34, 35] to reduce performance overheads, they could be
bypassed by exploiting the information in the stack. Another
type of CFI enforcement approach uses a coarse-grained policy
to restrict a return address to only those adjacent to the call
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site [21, 24, 28], which still leaves many attack surfaces.
To this end, we propose a practical approach for CFI full-
path enforcement without hardware tracing dependencies at
the binary level. Our proposed approach differs from CFI
approaches as we focus on the enforcement of system calls,
the most critical interfaces for executing attacks.

B. System Call Enforcement

Several research works have been proposed to enforce sys-
tem calls. Forrest et al. [36] first proposed a practical intrusion
detection approach through the sliding window to analyze the
sequence of system calls in 1996. They build up a database
to define normal behavior and detect anomalies with the
percentage of abnormal sequences. New model architectures
for the system calls are then proposed in subsequent research
works. Linn et al. [37] proposed a binary rewriting method to
mitigate remote code injection attacks. Typically, they add the
address of each system call instruction to the ELF executable
as a new section called IAT, allowing it to detect injected
system calls. Sensitive system calls play a vital role in various
attacks. Therefore, system call filtering is one of the defense
techniques. It aims to minimize the attack surface by disabling
unallowed system calls. DeMarinis et al. [7] proposed a binary
analysis-based framework named sysfilter. They restricted the
system call set through static program analyses based on
the function-call graph. Jelesnianski et al. [38] proposed a
novel system call integrity called BASTION. They implement
a compiler and a runtime monitor to demonstrate the three
introduced context integrity. However, compared to CASE,
BASTION needs source code. Ghavamnia et al. [9] present
the limiting system call set for each initialization and serving
phase. Nevertheless, these defense mechanisms still permit
system calls to be invoked during legitimate execution phases.
A more fine-grained control on enforcing system call usage is
required to ensure a system can be well-protected.

III. APPROACH

In this section, we explained the design and challenges of
our proposed approach. Our approach comprises two parts:
static analysis (Sections III-B and III-C) and runtime enforce-
ment (Sections III-D, III-E, and III-F). The static analysis is
performed once per binary, while the runtime system loads
the analyzed results and enforces protection with minimal
overhead.

A. Architecture Overview and Threat Model

Figure 3 shows the general architecture of our proposed
approach. The involved modules can be classified into two
categories: the modules used in the preprocessing phase and
the modules used in the runtime phase. Modules used in the
preprocessing phase collect required information for runtime
validation. The information includes the entry points of the
executable, the required stack size information, and functions
and the code segments that can form function call chains in
the program. The preprocessing phase can be done offline.

In contrast, modules used in the runtime phase are used
to monitor the program execution state and determine if the
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Fig. 3: Architecture overview of our proposed approach.

monitored state is valid or invalid. The program is terminated
(or continued with alerts) when an invalid state is detected to
prevent it from compromising the system. Before introducing
our proposed approach, we list the assumptions and the threat
model used in this study.
• Given that not all the targets have source codes accessible,

we assume that both the proposed approach and the attackers
can access only binary files without source codes.

• We assume the runtime phase is deployed by the system
administrator. It runs within a privileged process different
from the monitored executable in the user space and cannot
be tampered with by attackers.

• We assume that the targets to be protected are not ob-
fuscated, as our approach is designed to secure benign
applications. Most legitimate applications avoid obfuscation
to prevent being mistakenly classified as malicious.

• An attacker can access and analyze the target service binary
files offline. It is a typical process in which attackers conduct
reconnaissance before launching attacks against a target.

• An attacker invokes at least one system call in the attack
process. System calls can be injected by an attacker or
executed by leveraging gadgets in the target.

• The protected targets of the proposed approach are limited
only to user space applications.

The details of the involved modules are further introduced in
the rest of this section.

B. Entry Point and Stack Size Recognition

One essential module used in our context validation ap-
proach is recognizing a program’s possible entry points and
stack sizes. Our approach uses the recognized entry points and
stack sizes to determine whether an identified call path is valid.
The entry point of a program can be directly retrieved from
the header of its executable file. For Executable and Linkable
Format (ELF) files, the e_entry field in the ELF header
records the entry point of the whole program. However, from
the perspective of the program runtime state, a multi-threaded
program would have multiple valid entry points for a call path
in addition to the program entry point. Therefore, identifying
thread entry points is also critical to entry point-based context
validation.
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Suppose that only binary executables are available in the
preprocessing phase. Special entry points, such as a thread’s
entry point (thread start routine) or a signal handler, can be
identified through static taint analysis of pointers passed to
relevant sink points, such as the standard pthread_create

function call or the clone system call. Note that running
taint analyses could be time-consuming or inaccurate. There-
fore, our static analysis against thread entry points is limited
only to pointers passed within the same function. For the
rest of the cases, we use information collected in runtime
by hooking the pthread_create function and the clone

system call. The runtime parts are integrated with the system
call monitor module introduced in Section III-D. Note that
although thread creation can be done via different interfaces,
e.g., std::thread in C++ or other variants, most of them still
call the underlying pthread_create function or the clone

system call. Therefore, hooking the aforementioned two types
of application programming interfaces (APIs) is sufficient for
most cases.

Note that an attacker may overflow the stack and then
craft a valid call path. Therefore, we propose the anchored
entry points approach to minimize possible attack surfaces
by crafting call path attacks at runtime. The details of the
approach are further introduced in Section III-D.

One essential piece of information required by our proposed
approach is stack size information. Given the binary codes
of a function, our approach has to determine the stack size
consumed by the function when performing function calls
and system calls. With the control flow graph of a function
and the identified stack-relevant instructions, the size of the
stack consumed by the function can be statically analyzed by
performing taint analysis against instructions that manipulate
stacks. The stack-relevant instructions include push, pop, and
arithmetic operations (usually add and sub) that operate on
the stack register, e.g., rsp on x86 64 architecture. Figure 4
shows a simple example of the __libc_start_call_main

function. The first few instructions at the beginning of the
function consume an additional 152 bytes of stack, which leads
to 160 bytes of stack consumption when calling the main

function (return address inclusive). The stack size consumed
at any arbitrary address is obtained by analyzing assembly
instructions for each recognized control flow. In our imple-
mentation, we leverage the open-sourced radare2 [39] tool
to perform the static analysis. A simple script that works
with the aaaa and aflj radare2 commands can be used to
obtain functions and their corresponding basic blocks. Note
that our static taint analysis marks a function as having an
indeterministic stack size if it employs dynamic stack memory
allocation, such as when using alloca() or variable-length
arrays (VLA) with a value provided at runtime. However,
dynamic stack memory allocation is generally discouraged
and considered a bad practice from a secure programming
perspective. For instance, the Linux kernel has been VLA-free
since version 4.20 [40]. Industry standards also discourage
dynamic stack allocation, such as C11 [41] (which makes
VLAs optional) and MISRA C [42] (where rule 18.8 prohibits
the use of VLAs). For real-world applications, only 52 out of
2558 functions (2%) in GNU libc and 1 out of 910 functions

1 0000000000029d10 <__libc_start_call_main>:
2 +8 29d10: push rax
3 -8 29d11: pop rax
4 +152 29d12: sub rsp,0x98
5 29d19: mov QWORD PTR [rsp+0x8],rdi
6 29d1e: lea rdi,[rsp+0x20]
7 29d23: mov DWORD PTR [rsp+0x14],esi
8 29d27: mov QWORD PTR [rsp+0x18],rdx
9 29d2c: mov rax,QWORD PTR fs:0x28

10 29d35: mov QWORD PTR [rsp+0x88],rax
11 29d3d: xor eax,eax
12 29d3f: call 421e0 <_setjmp>
13 ...

Fig. 4: Disassembled __libc_start_call_main assem-
bly codes from glibc.

00001234 <A>:

  1234	push rbp
  1235	mov rbp, rsp

  ...
  1254	mov rsp, rbp

  1255	pop rbp

  1256	ret


00001257 <B>:

  1257	push rbp

  1258	mov rbp, rsp

  ...
  call 1277 <C>

  ...
  1261 ret
  ...
  1274	mov rsp, rbp

  1275	pop rbp

  1276	ret
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Fig. 5: Correct and incorrect identification of function bound-
aries.

(0.1%) in the Firefox browser distributed with Debian Linux
11.6 employ dynamic stack memory allocation, indicating that
our proposed approach can effectively secure the target in most
cases.

C. Call Chain Identification

The call chain identification module is another essential
module used in the preprocessing phase. This module aims to
identify the required information for validating whether a call
path in the current context is valid. The preprocessing phase
statically analyzes both the ELF header and assembly codes
of an ELF file. We decompose the details of this module into
three parts, i.e., the identification of function boundaries, the
identification of direct calls, and the identification of indirect
calls.

1) Identification of Function Boundary: A call path is
composed of multiple caller-callee relationships. By definition,
a caller is a function that calls another function, and a callee
is a function being called. To validate a call path, we have
to know what caller-callee relationships are valid and then
determine the validity of the entire call path. The first step to
identifying correct caller-callee relationships is to recognize
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function boundaries and identify all valid callees called by
a caller. Identifying function boundaries is to retrieve the
precise starting address and the ending address of a function.
However, it is a non-trivial task to identify function bound-
aries. Figure 5a shows one piece of a program with three
functions: A, B, and C. If we use the call instruction to
identify the beginning of a function, we can get functions A
and C but would miss function B, as shown in Figure 5b.
Similarly, if we use the ret instruction to identify the end of
a function, we may accidentally split one into two functions,
as shown in Figure 5c. The most critical part here is that
the function boundaries recognized here must be the same as
those functions recognized when performing stack unwinding
operations. Otherwise, it could lead to incorrect classification
of valid or invalid program runtime states.

In addition to identifying function starting addresses using
the call instruction, we use two existing pieces of informa-
tion embedded in binary files to identify function boundaries
precisely. The first one is the symbol table. We read the symbol
table in binary executables when available. Symbol tables may
not be available in stripped binaries. However, all library files,
e.g., .so files, must have a dynamic symbol table. Although
the dynamic symbol table may not cover all functions in a
library file, it still provides accurate information for identifying
exported functions.

The other reliable source for identifying functions is the
Exception Handling (EH) frame. The EH frame information
records how to find the starting address of a call stack frame
for a function call. The starting address is usually relative to
the content of a register such as RBP. With the information,
a debugger of an exception handler can quickly identify the
stack frame and perform required operations. Each frame
description entry (FDE) stored in the ELF file’s .eh_frame

section usually records a function’s starting address and size.
Since the EH frame information is often used for exception
handling, it is unlikely to be removed. Bastian et al. [16]
proposed to rebuild missing EH frame information based on
binary analysis tools [43]. We also show that the EH frame
has been widely deployed in modern UNIX-like operating
systems. More details can be found in Section IV-A.

2) Identification of Direct Caller-Callee Edge: Once func-
tion boundaries are recognized, the next step is to obtain
valid caller-callee relationships of a calling function. Suppose
a function call from caller A to callee B forms an edge.
We must identify the caller’s valid calling edges for each
recognized function. We tackle this problem by inspecting all
call and jump-like instructions within a caller. We discuss
direct calls (jumps) in this sub-subsection and indirect cases
in the following sub-subsection.

We use the address followed by the call instructions to
identify a direct call edge. Suppose a target being called is
an address within the executable. In that case, a calling edge
is recorded as fA ⇒ fB , where fA and fB are the caller’s
and the callee’s addresses, respectively. Similar to the call

instruction, we use the same approach to recognize the targets
of all jump-like instructions. However, readers must notice that
jump records are not visible on the stack. Therefore, to obtain
a caller-callee edge visible on the stack, we have to follow

jumps to identify the real callee of a caller. Suppose we use
the annotation fB → fC to represent a jumping edge from
function B to function C. If there is an identified relationship
fA ⇒ fB → fC , it implies a caller-callee edge fA ⇒ fC .
To handle the exceptional cases caused by jumping edges
inside an executable, which we call internal jumps, we add
all the jump targets of a function to the callee set of the
function. Internal jumps starting from a caller may happen
multiple times before reaching a real callee, which forms an
internal jump chain. Therefore, updating the callee set based
on jumping targets must be recursively done.

Note that a call (jump-like) instruction may call (jump) to
a function stored at an unpredictable address that requires run-
time resolution. It usually happens for functions in a dynamic
library. We call these cases gadget call (jump) cases. Our
observations show that gadget cases are often implemented by
calling (jumping to) gadgets generated in the .plt section.
Although gadget call (jump) cases sound like indirect calls
(jumps), we still classify them as direct calls (jumps) because
the relative addresses of .plt symbols can be resolved offline,
and their real addresses can be known once the base address
is known on loading the library. We use two strategies to
handle the gadget cases. In the first strategy, we preserve
only the symbol name of the calling (jumping) gadgets. When
performing stack unwinding operations, we resolve the actual
address of the calling (jumping) targets in runtime. In the
second strategy, we statically perform symbol name resolution
based on the dynamic linker library dependencies and use the
resolved target addresses as the calling (jumping) targets.

3) Handle Indirect Caller-Callee Edge: Another typical
implementation of a function call is named an indirect call
(jump). Instead of calling a known address or symbol, an
indirect call target is usually a register or a memory address
that stores a callee’s address. To validate a call path, we also
have to handle indirect call cases and identify possible targets
of an indirect caller. The significant challenge of handling
indirect calls is that the actual addresses to be called are often
known in runtime compared to direct calls. Therefore, this sub-
subsection summarizes the statically analyzed heuristics we
used to validate indirect call paths and narrow down possible
callees of an indirect caller based on our observed real-world
cases.
• Return address-based validation. It is straightforward that

if we do not have caller-callee information for indirect calls,
the validity of a call path cannot be validated. It implies that
even if we can backtrack a call path to the program or the
thread entry point, there is (at least) one broken link between
a caller and a callee. A broken link between a caller and
a callee means no valid caller-callee edge can be found.
Assuming that indirect calls cause broken links, one simple
heuristic to validate the broken link is to verify if a callee’s
return address is right after an indirect call from the caller
or a direct call that calls the function with an indirect jump.
The implementation of this heuristic is simple. Our call
chain identification module only has to statically identify
the calls used in each function, including indirect calls and
direct calls whose targets contain indirect jumps, and then
record their corresponding return addresses to support this
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heuristic.
• Argument-based validation. Van der Veen et al. [22] also

validate the number of arguments passed between a caller
and its callee to determine the validity of a function call and
mitigate the attacks leveraging indirect calls. We employ
a similar check but enforce the policy when performing
backtracking. Specifically, on backtracking (returning) from
function b to function a, we compare the number of argu-
ments handled by b against those passed from a.

• Calling global variables. One possible approach to narrow
down the possible callees for indirect calls is to perform
taint analysis against function pointers stored as global
variables. Given that global variables often reside in the
.bss (uninitialized data) or .data (initialized data) section.
Suppose a calling (jumping) target is loaded from the .bss

or the .data section. One can retrieve the actual callee
address by analyzing the assignment operations to the global
variable memory address based on the assigned values. The
caller-callee relationship can then be built based on the
retrieved addresses.

• Calling dynamically loaded symbols. One implementation
to make an indirect call is to load symbols dynamically. We
can recognize callers of dynamic symbol loading functions
and retrieve the parameters passed to these functions to get
the corresponding information, including library and symbol
names. The analysis above can be done statically. With the
obtained information, we can then use the symbol names to
look up possible target addresses of this type of indirect call
and add the target address to the callee set of the caller.
We perform the aforementioned static analysis for binary

files and retrieve all the caller-callee relationships. If a broken
link is recognized in the runtime, we use the return address-
based and argument-based validation heuristics to perform
further checks. Note that the heuristics return address-based
validation, calling global variables, and calling dynamically
loaded symbols do not produce false positives. A violation
of the three heuristics can be rejected directly. However, the
argument-based validation heuristic using only binary codes
could be imprecise compared to source code-based analysis.
Our radare2 and Ghidra-based [44] implementation shows
that the current implementation achieves 89.64% precision
in recognizing the number of arguments. Once the calling
(jumping) addresses and caller-callee relationships are recog-
nized, we store all the information on a per-file basis for each
statically analyzed executable. These files are loaded when
an executable is launched by our program launcher, i.e., the
system call monitor introduced later in Section III-D.

D. System Call Monitor

Due to the incurred overhead, it is infeasible to monitor
and perform program state snapshots continuously. Therefore,
our approach only monitors and takes program state snapshots
when a system call is to be invoked. Since the sink of a
typical attack would involve a system call to interact with
the operating system, e.g., invoking a shell, we believe that
performing system call filtering based on context validation is
sufficient for defending against most attacks.

Many existing works [45–48] can be used for monitoring
and hijacking system calls. To focus more on the design of the
approach, we use the built-in mechanism in the modern Linux
kernel. To intercept system calls, we first attempt to work
with the ptrace(PTRACE_SYSCALL) feature. In the usage
scenario of ptrace, there is a tracer and a tracee, where the
tracer is the process to perform process state monitoring by
invoking ptrace-relevant system calls, and the tracee is the
process to be monitored. When ptrace(PTRACE_SYSCALL)

is invoked, a tracee process is stopped whenever it is going
to enter or leave a system call. Once a tracee is stopped, the
tracer can access the tracee’s registers and memory, which
is suitable for retrieving the data needed to check the state.
However, working with ptrace(PTRACE_SYSCALL) could
stop a tracee even when it uses some harmless but frequently
used system calls such as futex, poll, and read. System call
interceptions incur context switches, which could degrade the
performance and the user experiences of a monitored process.
Therefore, the number of interceptions should be minimized.

To minimize the number of system call interceptions, we
use ptrace with SECCOMP_RET_TRACE rules instead of using
ptrace(PTRACE_SYSCALL). SECCOMP_RET_TRACE is a
feature provided by seccomp [49], a computer secu-
rity feature offered by the Linux kernel to operate
on the secure computing state of a process. With
SECCOMP_RET_TRACE, a ptrace-based tracer can be noti-
fied before an execution of a system call. Working with
SECCOMP_RET_TRACE has two significant benefits. First, a
tracer can be notified only when entering a system call.
Therefore, the number of interruptions is cut to half. Second,
SECCOMP_RET_TRACE rules can be customized using bpf

programs [50], which are built-in filtering mechanisms imple-
mented in the OS kernel. With bpf, our approach can focus
only on suspicious system calls instead of handling noises
triggered by harmless system calls. Based on the aforemen-
tioned mechanisms, a monitored process only stops when a
registered seccomp SECCOMP_RET_TRACE is triggered. When
a SECCOMP_RET_TRACE rule is triggered, the tracer is notified
with a SIGSTOP signal having PTRACE_EVENT_SECCOMP flag
set. A notified tracer can then read registers and memories
from a tracee to determine the validity of the program state.

We mentioned that seccomp allows a tracer to register bpf-
based rules for system call filtering so that our approach
can focus on suspicious system calls. To build the filtering
list for suspicious system calls (or we called it a watch
list for short), we collect 144 and 37 shellcodes running on
x86 and x86 64 systems, respectively, from the shell-storm
database [2] and emulate the shellcodes with the unicorn
engine [51]. We then observe the system call usage from the
emulated shellcodes and select suspicious system calls from
the observations. The identified systems for constructing the
watch list are summarized in Table I. Please note that the
users can configure the selected system calls. Due to dataset
availability and popularity, the system calls summarized in
Table I are for demonstrating one possible set that works
effectively for shellcode injection attacks.

As mentioned in Section III-B, we propose the anchored
entry points approach to minimize possible attack surfaces
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TABLE I: List of suspicious system calls from shellcodes.

socket ioctl open vfork fork access
pause chmod connect kill mmap creat
reboot bind setsid listen munmap exit
pwrite64 clone setreuid chdir mprotect setuid
clone3 setregid execve lseek execveat setgid
rt_sigprocmask sethostname

by crafting call path attacks at runtime. The approach is
implemented in runtime as one part of the monitor. The
anchored entry point approach records the stack address that
stores the return address to the entry point when loading a
program and creating a new thread. Since the stack frame for
the entry point does not change until the program (or a thread)
terminates, validating the stack address that stores the return
address to the entry point can guarantee a valid (or crafted) call
path must be returned to the expected entry point. It increases
the difficulties in crafting valid call paths.

E. Process Snapshot

On interruption of a program due to registered system
calls, our approach takes a program runtime state snapshot
and performs stack unwinding based on the snapshot. Stack
unwinding is an operation that recognizes the stack frames
of function calls back toward the previous caller. Stack un-
winding is a critical operation in exception handling. When
an exception is thrown, the program flow must be transferred
to an appropriate exception handler, which could reside in
a parent or grandparent function. Therefore, the exception-
handling mechanism recovers stack states by performing stack
unwinding operations. It ensures the stack state can be cor-
rectly recovered when running the exception handler.

In many processor architectures, including x86, x86 64, and
ARM, executing a call instruction pushes the address of the
subsequent instruction onto the stack as the return address.
It then changes the program counter to the called function.
Therefore, iteratively performing stack unwinding lets us know
the past function calls at the current state, and this information
can be used to recognize the call chain. Note that our approach
performs stack unwinding just for building call paths. Unlike
exception handlers, we do not modify or change the state of
the stack. Once a call chain is identified, we pass it to the next
stage, the context validation module. The call chain passed to
the context validation module is based on the results of stack
unwinding. For each identified function call on the stack, it
has a four-tuple record in the following form:

{base, function-offset, next-addr, stack-frame-size}.

The base is the loaded memory base address of the executable
(or library) containing the function. The function-offset is the
function address relative to its base. The next-addr is the next
program counter address to be invoked relative to the function
address. Since we are performing stack unwinding, the next-
addr is equivalent to the current program counter for the top
stack frame. For each non-top stack frame, the next-addr is
the return address of its succeeding frame. The stack-frame-
size indicates the size of the current stack frame. Note that the

Algorithm 1 The path validation algorithm

Input: frames: Stack unwinding results and the corresponding
function information.

Input: funclist: List of all recognized functions.
Input: indRetAddr: Return addresses for all indirect calls.
Input: anchors: The anchors of the entry points.
Output: Validation result: Valid (True) or Invalid (False)

1: top = frames[0] // frames[0] is the top stack frame
2: Refresh funclist & indRetAddr if top.base is unknown
3: if (top.base, top.offset) is not in funclist then
4: return False
5: end if
6:
7: caller = None; callee = top
8: for each caller in frames[1:] do
9: Refresh funclist & indRetAddr if caller.base is unknown

10: if (caller.base, caller.offset) is not in funclist then
11: return False
12: end if
13: if callee in callee set of(caller) then
14: if callee.return-addr ̸= caller.next-addr then
15: return False
16: end if
17: callee = caller; continue
18: end if
19: if caller.next-addr in indRetAddr then
20: if caller.argument < callee.argument then
21: return False
22: end if
23: callee = caller; continue
24: end if
25: return False
26: end for
27: return True if the backtrace reaches a valid anchor and

passes frame size check else False

size varies in different locations of the same function. This is
because a function may allocate spaces on the stack for diverse
purposes, and the stack-frame-size changes depending on how
the stack is manipulated in the function.

F. Context Validation

The last module in our approach is the context validation
module, which aims to check the validity of an obtained
call path from the program runtime state snapshot. The call
chain retrieved from the process snapshot module, along with
the information received from the entry point identification
module, call chain identification module, and system call
monitor module, is used to perform the validation. The context
is validated based on the call path and the stack size on the
invocation of a system call. It is comprised of a path validation
algorithm and stack size check mechanism. Note that if a call
chain contains a function with an indeterministic stack size,
it only needs to pass path validation. In general, the context
validation is performed on a per-edge basis. Given the caller
and the call of an identified edge in the call chain, the edge is
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valid if we can find the callee from the callee set recognized
by the call chain identification module. The entire call path
is valid if every edge in the call path is valid and the sum of
stack frame sizes matches the expected size.

The path validation algorithm is summarized in Algo-
rithm 1. The algorithm starts from the top of the stack frame,
the function that invokes the system call. We then check
whether all the required information has been loaded in mem-
ory, including the base address of each involved executable
and library, the required function list, and the return addresses
for indirect calls. We must ensure that the last function being
called resides in a valid segment in the process memory.
When everything is ready, we start to backtrace all stack
frame records one by one iteratively until all the frames have
been validated. In each iteration, we have to ensure that all
the functions on the stack frame are valid (lines 10–12), the
callee is a valid one for the caller, and the return address of
each callee is as expected (lines 13–18). If a broken link is
recognized, we further verify whether the caller is invoking an
indirect call and check the relation of the argument count of
the caller and callee (lines 19–24). Once everything is done,
we finally check if the backtraced path reaches the correct
entry point and passes the frame size check, which recognizes
the functions on the current call path and determines whether
the total consumed stack size matches the expected size of the
call chain.

We formalize the frame size check mechanism as a subset-
sum problem with digraph constraints [52]. In the subset-sum
problem, given a finite set S ⊂ N and a target t ∈ N , we
have to determine whether there is a subset S′ ⊆ S whose
elements sum to t.

subset-sum =
{⟨S, t⟩: there exists a subset S′ ⊆ S st. t =

∑
s∈S′ s}.

(1)
The subset-sum with digraph constraints further extends the
problem by adding more constraints. Given a directed graph
G = (S,A) and a non-negative weight w(s) for every node
s ∈ S. The weight of S′ ⊆ S must satisfy the following
constraints.

∀s ∈ S′, (s, t) ∈ A ⇒ t ∈ S′ (2)∑
s∈S′

w(s) = t (3)

While the subset-sum problem is NP-complete [53], re-
searchers have proved that the subset-sum problem with di-
graph constraints is an NP-hard problem. It means that given
the function caller-callee relationships and the corresponding
stack-frame-sizes, it is computationally difficult to find a
valid set of functions to build a feasible attack path. If the
caller-callee relationships are unavailable, the difficulty of
valid path reconstruction falls back to the typical subset-
sum problem, which is still an NP-complete problem. An
attacker may analyze the target application offline based on
our threat model. However, constructing a valid path also
requires the four-tuple records of library functions deployed in
the system, which could be unavailable to attackers. It could
be even more challenging for attackers to bypass the context

TABLE II: Programs used for evaluations in this study.

Binary Package Version
x264 x264 2:0.163.3060+git5db6aa6
tar tar 1.34+dfsg
ls coreutils 8.32
find findutils 4.8.0
bzip2 bzip2 1.0.8
rg ripgrep 13.0.0
openssl openssl 3.0.2
diff diffutils 1:3.8
ps procps 2:3.3.17
gcc gcc 4:11.2.0
⟨Multiple⟩ SPEC CPU 2006
nginx nginx 1.18.0
sftp-server openssh-sftp-server 1:6.6p1
Live DVD debian live-11.6.0-amd64-gnome.iso
Live DVD debian live-11.6.0-amd64-kde.iso
Live DVD manjaro gnome-22.0.1-230124-linux61.iso
Live DVD manjaro kde-22.0.1-230124-linux61.iso
Live DVD ubuntu 22.04.1-desktop-amd64.iso

validation mechanism when the precise information of the
libraries installed on the system is unknown.

It is worth noting that although the proposed approach
reconstructs the context information by performing a return-
address-based backtrace, it is not designed to tackle only
the return-address-based control flow hijacking attacks. The
context can be used to perform runtime state detection (based
on caller-callee relationships) to determine whether a system
call is valid. Therefore, the approach works even if an attacker
manipulates a forward function call chain to launch attacks,
e.g., by leveraging user-after-free, if any system call in the
forward calling chain is invoked. Readers may refer to Sec-
tion IV-F for more details.

IV. EVALUATION

We evaluate our proposed approach in this section. We
implement a proof-of-concept (PoC) implementation using
standard features available in most Linux distributions. The
system call monitor is implemented based on ptrace and
seccomp RET_TRACE features. The stack unwinding feature
is implemented by leveraging libunwind. We implemented
the static analysis tool to build caller-callee relationships and
the context validation part. Our implementation uses a single
tracer to follow all fork() and thread-creating routines to
ensure a target service can be fully protected. The entire code
base contains about 3000+ lines of C++ and Python codes.
Table II summarizes the targets we used for evaluation. Note
that we only require SPEC CPU test cases to be compiled
by ourselves. The rest of the binary files are downloaded
from the package repositories of standard Linux distributions.
No source codes are involved in the evaluations. We believe
using binary files from publicly available repositories would
be better for open research. All the experiments are performed
on a server with an Intel i9-13900K CPU and 16GB RAM.

A. EH Frame and Backward Traceability

This section attempts to measure whether 1) EH frames have
been widely deployed and cover the text segments for function
boundary, and 2) The backtrace mechanism can always back-
trace a program runtime state to its entry point. Therefore,
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we perform a large-scale measurement against binary files
available in Linux Live Desktop DVD ISO images listed in
Table II.

To observe the deployment of EH Frame, we implement a
scanner to scan ELF files stored in the /usr/bin directory
and the directory stores libc.so.6. The scanner recognizes
function symbols from the files and checks whether EH
frame records cover the recognized functions. We boot each
live DVD and run our scanner inside the live DVD runtime
environment. We scanned about 16,353 executable and library
files from the five DVDs and observed that about 2.5% (407)
of the files had functions not covered by EH frames. It shows
that EH frame information has been widely embedded into
different flavors of Linux distributions. We further look into
those functions not covered by EH frames. Many functions
not covered by EH frames are constructor or deconstructor
functions such as _init, _fini, register_tm_clones,
deregister_tm_clones, __do_global_dtors_aux, and
frame_dummy. One particular case is the OpenGL library, e.g.,
libGL.so and libGLESv2.so. If we look into the library
files, we find that many of these functions not covered by EH
frames are gadget-like implementations and irrelevant to stack
operations, such as the glTexCoord4s function is libGL.so.
In short, EH frames have been widely deployed in modern
Linux distributions and can be effectively used for backtrace.

For backward traceability, we boot each live DVD and in-
voke all applications available on the desktop shortcut. Specifi-
cally, the evaluated desktop apps include browsers (Firefox and
Konqueror), email apps (Evolution), file managers (Gnome-
and KDE-builtin), music players (Rhythmbox), and office tools
(LibreOffice). We implant our process snapshot module as a
standalone executable to perform snapshots for all running
processes in the live DVD. Finally, we validate if the backtrace
can reach a valid entry point. All five live DVD environments
contain a total of 543 running processes, and most of them
can be correctly backtraced to the expected entry point.
We observed that a few processes that cannot be correctly
backtraced are implemented in the Go programming language,
including snap, snapd, and zsysd, which is not currently
supported by our entry point analysis module. Some non-
standard entry points were also observed in our experiments.
For example, the Konqueror (the Qt-based browser) uses
QtWebEngineCore::processMain as the entry point for
their child processes. These limitations can be handled by
implementing additional plug-ins in our approach to recognize
non-standard entry points.

B. Call Chain Path Length Statistics

Our context validation iterates through all functions in the
call chain when a program invokes the system call to ensure
path validity. To estimate the possible context validation costs,
we measure the length of the call chain in this sub-subsection.
We use the top ten selected programs listed in Table II for the
evaluation. To prevent the selected program from terminating
directly without doing anything, we use the corresponding
commands listed in Table III to invoke the programs. The
measured call chain length is presented in Figure 6. Figure 6a
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Fig. 6: Observations of the call chain length CDF.

TABLE III: List of commands to run the selected programs.

Binary Command
x264 x264 -o bbb.mp4 big_buck_bunny_720p_stereo.avi
tar tar cf linux-5.15.90.tar linux-5.15.90/
ls ls -l linux-5.15.90/
find find linux-5.15.90/ -iname *.S
bzip2 bzip2 linux-5.15.90.tar
rg rg -j1 ptrace linux-5.15.90/
openssl openssl genrsa -out rsa.private 2048
diff diff linux-5.15.90/arch/x86/entry/entry_64.S \

linux-5.15.90/arch/x86/entry/entry_32.S
ps ps aux
gcc gcc -S hello.c

shows the cumulative distribution function (CDF) plot of call
chain lengths for all system calls. The smoothly increasing
curve in the plot indicates that the call chain lengths are
evenly distributed. The longest call chain length is 36, which
is observed from the tar binary. However, when a system
call watch list is employed, it shows that more than 85%
of the call chain lengths are less than or equal to 10, and
more than 98% of the lengths are less than or equal to
16, as shown in Figure 6b. Our proposed context validation
approach can be handled efficiently based on the observations.
We also measure the performance of our context validation
implementation. The processing time for validating a function
call path requires about 1300ns for invoking the validation
API, with an additional 26ns for validating a function call
edge on average. Our proposed solution is performant, given
that over 99% of the call chain paths are less than 30 in all
cases.

C. Performance Overhead

1) Static Analysis Performance: We also measure the over-
head of static analysis using the Linux live DVD runtime
environment. We run our call chain identification module
against the binary files stored in the path /usr/bin and the
shared library files stored in the same path as libc.so.6.
Because the measurement results for different Live DVDs are
similar, we only present the results obtained from Debian
Live Gnome in Figure 7. The results show that the static
analysis time depends mainly on the number of functions
in an executable or library file. For executable files stored
in /usr/bin, almost all of the analysis can be completed
in 10 seconds, except for three outliers. These three outliers
found in Figure 7a are shotwell (40s), python3.9 (52s),
and lto-dump-10 (∼1000s). For the library files, 97.4% of
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Fig. 7: Static analysis performance (Debian Live Gnome).
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Fig. 8: Measured runtime performance.

the analysis can be finished in 10s, and 99.7% of the analysis
can be finished within 90s. The three library files that take
longer than 90s found in Figure 7b are libmozjs-78.so

(205.79s), libjavascriptcoregtk-4.0.so (764.62s), and
libz3.so.4 (837.78s). Although statically analyzing the
caller-callee relationships could be time-consuming, it can be
done only once unless the analyzed binary files have been
replaced or updated.

2) Runtime Performance and False Positive: In this sub-
section, we measure the runtime performance of our proposed
approach and false positives. To break down each component’s
performance, we incrementally activate the modules and mea-
sure the execution time using the frequently used tools selected
from the SPEC CPU 2006 test suite. The settings we used to
measure the performance are summarized as follows.
1) original (orig): Run the command directly.
2) watchlist (nobt): Intercept system calls listed in the watch

list but do not perform stack unwinding.
3) backtrace (bt): (2), and performing stack unwinding.
4) validation (va): Activate all the features.

Figure 8 shows the measured performance of tools selected
from the SPEC CPU 2006 test suite. Note that our PoC
implementation leverages standard features available in typical
Linux distributions. Therefore, there would be many spaces
for improving its performance. For example, ptrace may
be replaced with other dynamic instrumentation tools. The
libunwind implementation may be replaced with the one

TABLE IV: Performance measurement results for nginx.

Page size = 10 bytes
orig nobt bt va

Requests/s (RPS) 24942.98 -2.02% -0.36% -2.94%
Transfer Rate (TR) (KB/s) 6065.24 -2.02% -0.36% -2.94%

RPS w/ tc 49.43 -0.04% +0.04% -0.22%
TR w/ tc 12.02 0% 0% -0.25%

Page size = 1 kilobytes
orig nobt bt va

Requests/s (RPS) 24193.96 -0.87% -0.97% -1.79%
Transfer Rate (TR) (KB/s) 29368.26 -0.87% -0.97% -1.79%

RPS w/ tc 49.41 +0.08% -0.02% +0.12%
TR w/ tc 59.98 +0.08% -0.03% +0.12%

Page size = 1 megabytes
orig nobt bt va

Requests/s (RPS) 4410.85 -1.34% -0.71% +0.36%
Transfer Rate (TR) (KB/s) 4.31e6 -1.34% -0.71% +0.36%

RPS w/ tc 16.46 -0.36% -0.06% -0.61%
TR w/ tc 16080.12 -0.35% -0.06% -0.64%

Page size = 100 megabytes
orig nobt bt va

Requests/s (RPS) 42.22 -0.07% -1.02% -0.40%
Transfer Rate (TR) (KB/s) 4.12e6 -0.08% -1.01% -0.41%

RPS w/ tc 1.78 0% 0% 0%
TR w/ tc 1.74e5 -0.02% -0.05% +0.04%

implemented by Théophile et al. [16]. The more features are
activated, the more overhead can be observed. To focus on
the performance of our proposed approach, we discuss more
the cost incurred by context validation. The optimization of
the involved standard components is out of the scope of this
paper.

We selected 17 SPEC CPU tasks typically used in the
other CFI works. SPEC CPU 2006 executes the selected
tasks with predefined inputs sequentially. It runs for three
rounds by default and reports the median to mitigate variances
caused by different machine statuses. Figure 8 shows the
overhead of the worst task 403.gcc is only 2%. The average
overhead is less than 1%, which is much less than other
works, including Bin CFI [21] (4.29%), ROPecker [30] (2.6%),
PathArmor [31] (3%), BinCC [25] (22%), TypeArmor [22]
(2.5%), PT-CFI [32] (21%), and τCFI [23] (2.89%). Our in-
depth analysis shows that more than 90% of the overhead
mainly comes from stack unwinding, indicating that the con-
text validation implementation is quite efficient. As long as we
can improve the efficiency of stack unwinding, the overhead
can be further decreased.

We collect the false positives of our proposed approach
when running the runtime performance evaluation. A false
positive is defined as incorrectly determining a valid call path
as invalid. We find no false positives from the test cases
summarized in Table III and all the involved test programs
from SPEC CPU 2006 test suite. Note that our implementation
relies solely on CPU computational power, and we bench-
marked its performance by executing 10,000 iterations of a
25-level recursive function call chain, correlating the measured
execution time (rt) with the single-core event count (evts) from
sysbench [54]. Testing across five hardware configurations,
including four x86-64 machines and one ARM64 machine,
showed a strong negative correlation (-0.97) between rt and
evts, indicating consistent performance across architectures.

D. Performance on Real Server

To understand the performance impacts of our proposed
approach, we benchmark the performance of a popular web
server nginx secured by our approach. We use the Apache
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TABLE V: Summary of ROP gadgets close to indirect call
return addresses.

Distance Number of
(in Insn.) Gadgets List of Controllable Registers

1 10 (4) rax (3), rbx (4), rdx (3)
2 10 (5) rax (2), rbx (4), rdx (2), rbp (2), r12 (1), r13 (1)
3 20 (7) rax (1), rbx (5), rdx (2), rbp (5), r12 (1), r13 (1)
4 16 (6) rbx (2), rdx (1), rbp (5), r12 (4), r13 (1)
5 15 (4) rdx (1), rbp (2), r12 (2), r13 (1)
6 7 (3) rbx (1), rbp (1), r12 (1), r13 (1)
7 13 (7) rbx (5), rbp (6), r12 (3), r13 (2)
8 12 (3) rbx (3), rbp (2)
9 10 (2) rbx (2), rbp (1), r12 (1), r13 (1)

10 10 (0) None

HyperText Transfer Protocol (HTTP) server benchmarking
tool (ab) to perform the evaluation. The nginx server is
configured to be a static web page server without enabling
secured HTTP (HTTPS). We serve webpages of different
sizes on the server and measure two performance metrics, the
request per second (RPS) and the transfer rate (TR, in KBps),
for different configurations. The benchmark is performed on
the same machine via the loopback interface. To better emulate
real-world network conditions, we consider adding a small
value of latencies to the loopback interface using the tc tool.
Durairajan et al. [55] measured the communication latencies
between Network Time Protocol (NTP) clients and servers in
the United States and reported that the latencies mostly fall in
the range between 10ms and 40ms. Based on the measurement
results, we only add 5ms latency to our loopback interface,
which is much lower than the observed cases.

Table IV shows the measured results for the nginx server.
The results show that the performance impact on the server
is negligible. For both the RPS and the TR, the worst case
is degradation by 2.94%. If network latency is configured
on the loopback interface, the performance degrades at most
0.6%, which is almost equivalent to running the server without
protections.

E. Minimizing Surfaces for Return Address-based Attacks

One strategy we used to determine a valid broken backtrace
link is to validate whether the return address of a broken
link returns to the address right after an indirect call. To
validate how many attack surfaces can be eliminated based on
the approach, we perform a measurement to understand the
relationships between Return-Oriented Programming (ROP)
gadgets and indirect calls.

We first collect ROP gadgets from libc.so.6 from
glibc-2.35 using the default settings to run the command:

ROPgadget --binary /lib/x86_64-linux-gnu/libc.so.6.

There are 111,032 gadgets reports from the binary. Among all
these gadgets, only the addresses of 38,822 (35%) gadgets
are aligned to valid instruction address disassembly from
libc.so.6. It means that the rest 65% of the ROP gadgets
return to an unexpected address in a function, e.g., in the
middle of a valid instruction, which could never be the address
right after an expected indirect call. Of the 38,822 gadgets,
only 231 are recognized from functions having indirect calls.
We further measure the distance (in terms of the number of in-
structions) between a gadget and the closest indirect call. Only

1 /* header files omitted */
2 typedef void (*fptr_t)(int s);
3 static fptr_t *ptr = NULL;
4
5 void shell() {
6 _exit(execlp("/bin/sh", "/bin/sh", NULL)); }
7 void handler(int s) { if(ptr!=NULL) (*ptr)(s); }
8 void good_bye(int s) {
9 fprintf(stderr, "Good Bye (%d)!\n", s); }

10
11 int main() {
12 char *msg = NULL;
13 if(ptr = (fptr_t *) malloc(sizeof(fptr_t))) {
14 *ptr = good_bye;
15 free(ptr); /*** should not be freed ***/
16 signal(SIGINT, handler);
17 }
18 if(!(msg = (char *) malloc(17))) return -1;
19 if(read(0, msg, 16) < 0) return -1;
20 fprintf(stderr, "Press Ctrl-C to quit ...\n");
21 pause();
22 return 0;
23 }

Fig. 9: A case study with the use-after-free vulnerability.

ten are right after an indirect jump, effectively minimizing the
possible surfaces for attackers. The detailed statistics for the
gadgets closest to indirect calls are summarized in Table V.
For the case of the distance of one, i.e., the gadget right after
an indirect call, there are ten gadgets, and four of them are
capable of controlling some registers listed in the table. The
number enclosed right after a register is how many gadgets can
control the value of the register. The table shows that only a
few limited registers can be controlled. Even if we look at all
the 213 gadgets that might be reachable from an indirect call,
only 68 of them are capable of controlling register values. The
controllable registers are still limited only to rax, rbx, rdx,
r12, and r13.

F. Case Study: Use-After-Free Vulnerability

We use a case study involving a use-after-free (UAF) vulner-
ability to demonstrate that CASE can detect different flavors of
attacks. Figure 9 presents source code containing a use-after-
free vulnerability. Specifically, at line 15, the free function is
improperly called, leading to the subsequent memory alloca-
tion function call at line 18 returning the same address pointed
to by the function pointer stored in the global variable ptr.
An attacker can exploit this behavior by supplying malicious
input to manipulate the function call flow and execute the
shell. Our proposed approach successfully mitigates this
attack by defending against the invocation of the execlp

call. This is achieved because the backtrace originating from
within the shell function does not match any valid context
created for the binary. Note that CASE successfully defends
against the UAF attack because the prototype of the shell

function differs from the type of the function pointer fptr_t.
If the two prototypes were identical, the static analysis would
consider shell a valid target, resulting in a possible evasion
of the context validation. However, because the success of
evasion depends on whether an attacker can find a useful
gadget that has exactly the same number of arguments as a
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writable function pointer, our proposed approach effectively
reduces the attack surface by imposing stricter constraints on
potential exploit paths for attackers.

G. Security Capability
In this section, we compare the capability of CASE against

similar system call works and summarize the results in Ta-
ble VI. We list the approaches mentioned in Section I and
Section II. These approaches can primarily be categorized into
debloating, system call filtering, and system call sandboxing.
We further discuss the limitations of existing solutions, includ-
ing whether they require access to the source code, the prin-
ciple used to collect required information (static or dynamic
analysis), runtime overhead, and protection granularity.

In the context of debloating research, exemplified by Nib-
bler [3], RAZOR [4], and µTrimmer [6], the identification of
unused functions and instructions is performed at the binary
level. These tools reduce the number of reachable syscalls
at a coarser granularity, focusing on minimizing the attack
surface rather than thoroughly validating their legitimate use.
Although debloating can help reduce resource overhead by
removing unnecessary system calls, they often focus on static
code elimination. Thus, these methods do not incur additional
runtime overhead. Also, even combined with CFI, debloating
is incapable of preventing all code-reuse attacks.

System call filtering tools, such as sysfilter [7], Confine [8],
sysverify [11], BASTION [38], and C2C [10], are used to deny
specific system calls. These techniques generate the system
call set via static analysis and then restrict the availability
according to the list. Sysfilter resolves dependencies to dy-
namic shared libraries, constructs function-call graphs, and
filters out unused syscalls. Confine identifies all the library
functions that the program uses and the system calls that these
library functions rely on. Both of them generate seccomp
configuration solely based on whether the program will use
these system calls. Therefore, we consider their granularity to
be coarse. Sysverify checks if the indirect-call-related syscalls
are really triggered by the secure path at runtime. BASTION
not only blocks the unused system calls but also verifies the
legitimate path to a system call and the arguments passed to
the system call call-sites. C2C prunes configuration-dependent
conditional branches in the control flow graph and allows
precise basic block-level identification. These methods take
into account more than just the usage of system calls, and
as a result, we consider them as fine granularity approaches.
Except for BASTION, permitted system calls can still be ex-
ploited illegitimately, resulting in a significant attack surface.
While BASTION claims that it can defend against ROP and
Counterfeit Object-Oriented Programming (COOP) attacks, it
requires access to the source code, which can be challenging
because commercial software is typically distributed without
the source code. Compared to BASTION, CASE expands the
protection to invisible library codes compared to source code-
based solutions, minimizing possible attack surfaces led by
control flow violations occurring in library calls. Furthermore,
by incorporating both caller-callee relationships and stack size
protection, CASE makes path reconstruction attacks computa-
tionally difficult for attackers.

Sandboxing methods such as SPEAKER [12] and Mining
Sandbox [13] are designed to enhance container security by
restricting access to OS resources. Mining Sandbox generates
the set of system calls by automatic testing. SPEAKER re-
moves unnecessary system calls from the running phase. These
tools analyze docker images and block more system calls than
the default sandbox. Nevertheless, the use of dynamic analysis
may not be comprehensive and could lead to the omission of
specific system calls during the preprocessing phase.

It is worth noting that system call-based approaches employ
process-based enforcement for system calls, which is not
sufficiently granular to secure scenarios such as the motivating
example shown in Figure 1. While ROP is one of the major ap-
proaches for implementing exploitation and triggering system
calls nowadays [56–58] due to the employment of emerging
memory access protections, defending against ROP attacks
would further improve overall security.

CASE performs stack unwinds to obtain the call path and
validates both the sequence of the context and the sizes of the
stack frames. Therefore, an attacker needs to fulfill the two
conditions. First, they need to forge a stack with the same
size as the original stack. Second, the function in the stack
needs to pass the context validation. That is, the sequence
of the function calls must be a valid record recognized in the
preprocessing phase. We have shown that the problem could be
more computationally difficult in Section III-F. Thus, CASE
effectively enforces the system call usage at a finer granularity.

H. Real-World Vulnerable Server

To demonstrate that our approach can effectively protect a
real-world server from a remote code injection attack, we eval-
uate it with the sftp-server available in the openssh-6.6

package. Horn [59] disclosed the vulnerability that can be
exploited if an sftp server is configured without enabling
the ChrootDirectory option. Therefore, an sftp user can
access /proc/self/mem and modify the stack content of
the sftp process to execute any arbitrary instructions. For
example, one return address on the stack can be set to the
address of the system() function in the standard C library to
execute arbitrary shell commands for attackers.

We reproduce the vulnerable environment by leveraging
the root filesystem from the ubuntu-14.04-server cloud image,
which has a preinstalled openssh-6.6 package. We mount
the root filesystem and then compile and install our PoC
implementation to the root filesystem. We then ‘chroot’ into
the root filesystem and launch the service. The exploit used to
perform the attack is the PoC written by Simuntis and Slusnys
and is available on ExploitDB [60]. The exploit first reads
memory mappings to figure out the base address of glibc

and the stack. It then edits /proc/self/mem to fill in the
ROP payload on the stack, which redirects the control flow to
execute the system() function and creates two files in /tmp.

The stack traces before and after the attack are depicted
in Figure 10. Before the attack invokes a command, the
last valid path we observed from the lseek system call is
shown in Figure 10a, which attempts to move the file access
position to a target address. In contrast, when the control flow
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TABLE VI: Comparison of relevant system call protection approaches.

Type Approach Require Source Information Gathering Runtime Protection Overhead Granularity ROP Protection
Filtering CASE (our approach) no static analysis ptrace+seccomp < 1% fine-grained yes

sysfilter [7] no static analysis static patch+seccomp < 1% coarse-grained no
Confine [8] no static analysis seccomp – coarse-grained no
sysverify [11] yes static analysis syscall hook+seccomp 1% fine-grained no
BASTION [38] yes static analysis static instrumentation+seccomp 0.60%-2.01% fine-grained yes
C2C [10] yes static analysis static instrumentation+seccomp 1s-100s fine-grained no

Debloating Nibbler [3] no static analysis1 – – coarse-grained no
RAZOR [4] no dynamic analysis1 – 1.7%2 coarse-grained no
µTrimmer [6] no static analysis1 – – coarse-grained no

Sandboxing Speaker [12] no dynamic analysis seccomp – coarse-grained no
Mining Sandbox [13] no dynamic analysis seccomp 0.6% - 2.14% coarse-grained no

1: Debloating determines the set of used functions rather than the set of system calls. Here, we discuss the methods they used to obtain the list of legitimate
functions and instructions.
2:It is the average overhead to debloat programs, not the runtime overhead for RAZOR.

0x57b0
+0x9e4

0x4a50
+0x87

LSM0x3051
+0x29

__libc_start_main

llseek
+0x10

lseek

syscallentry point

(a) The valid call path of the lseek system call used to change
the file access offset of /proc/self/mem.

exit
+0x0

0x460c0
+0xf7

RS

syscall: rt_sigprocmask(do_system)

(b) The call path on the invocation of rt_sigprocmask system
call from the system() function in the ROP payload.

Fig. 10: Call paths for benign and attacked system calls.

has been transferred to invoking the system() function, the
rt_sigprocmask system call used in the system function
triggers our context validation mechanism. The obtained call
path is shown in Figure 10b, which cannot pass the context
validation check, and the exploit is stopped from performing
unauthorized operations.

V. CONCLUSION

We propose a practical approach that can prevent attackers
from invoking inappropriate system calls to compromise a
program. Our proposed approach is a software-only solution
and prevents attacks by validating call paths snapshotted at
our (or user) selected checkpoints. Several novel designs,
including anchored entry points, return address-based valida-
tion, and frame size check, are employed in our design to
harden the execution path of a protected program. We show
that compromising our proposed approach is computationally
difficult by formalizing CASE as creating NP-hard challenges
for attackers. It can be used to defend against real-world
code reuse attacks while the unwind and context validation
operations incur less than 2% overhead in most cases. The
performance evaluations show that our proposed approach is
effective and efficient.
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