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Abstract—The security of fifth-generation (5G) networks
hinges on the robustness and reliability of their software im-
plementations from the core network infrastructure to end-user
devices. Fortifying these networks against emerging threats and
vulnerabilities requires rigorous testing. This paper proposes a
systematic approach for identifying flaws in 5G core network
implementations. Focusing on the attack surfaces at 5G core
network entry points, we identified flaws in handling the next-
generation application protocol (NGAP) and nonaccess stratum
(NAS) protocol with a Fuzzer-in-the-Middle (FitM) architecture
that systematically evaluates multistage 5G core network protocol
implementation; this architecture was applied to well-known
open-source 5G core network implementations for evaluation.
Specifically, the FitM architecture fuzzes valid user and base-
station NAS and NGAP packets, which are then transmitted
to the core network. In addition to recognizing 20 known
implementation flaws, the FitM approach successfully recognized
eight unknown flaws in various network functions in the core
network implementations. The findings were reported to the
developer community, and the issues have been fixed in most
implementations. The proposed approach can be seamlessly
integrated into the software development life cycle. The approach
is both practical and extensible and can help communities develop
more reliable core networks.

Index Terms—S5G, core network, fuzzing, implementation flaw,
software vulnerability

I. INTRODUCTION

HE 3rd Generation Partnership Project (3GPP) began
standardizing fifth-generation (5G) mobile communica-
tion systems in 2017, publishing both standalone (SA) and
non-standalone (NSA) specifications. The advent of 5G com-
munication heralds a new telecommunications era character-
ized by an open and software-based design. Rooted in global
standards set by the 3GPP, 5G networks leverage open ar-
chitectures that foster interoperability among diverse vendors,
enabling a dynamic ecosystem. The software-centric nature of
5G accelerates deployment and facilitates agile updates and
system enhancements; both are crucial for adapting to rapidly
evolving technological landscapes. Because of this confluence
of openness and software-driven innovation, 5G technologies
are resilient and adaptable and will shape a future in which
connectivity is fast and seamlessly responsive to the evolving
needs of a connected world.
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To achieve the aforementioned vision, SG technologies must
be secure. A vulnerability is defined as an error, a flaw,
or a mistake in computer software that permits or causes
an unintended behavior to occur [1]. The specifics of a
vulnerability differ between organizations; for example, the
National Institute of Standards and Technology states that
vulnerabilities include both software flaws and configuration
problems, whereas “vulnerability” strictly refers to software
flaws! in the security content automation protocol. Although
human-written software is invariably flawed, software errors
must be minimized to ensure robust, secure, and reliable
5G networks. Therefore, a steadfast commitment to identi-
fying, addressing, and preventing vulnerabilities in software
is essential. Researchers have proposed several methods for
rigorously scrutinizing and fortifying the code underpinning
5G infrastructure. However, most studies [2], [3], [4], [5], [6],
[7] have examined the behavior of specific 5SG core network
protocols in isolation. An integrated understanding of the
broader network’s state is crucial because the behavior of
the 5G core network is intrinsically linked to the system’s
operational status. Systematic vulnerabilities within the 5G
core network are difficult to identify; however, a fuzzing test
system capable of controlling a 5G network’s operational state
can facilitate the discovery of such vulnerabilities.

This paper proposes a systematic approach for detecting
implementation flaws in 5G core networks. Specifically, we
target three open-source and well-known 5G core network
implementations: freeSGC, Open5GS, and OpenAirInterface-
CN-5G. The proposed approach focuses on the implementation
of the entry points of the core network, which handles packets
sent from a mobile client. The proposed approach differs
from existing solutions by addressing the following challenges
typically encountered in the evaluation of complex network
protocol implementations:

1) Network protocol implementation complexity: Testing
5G protocols is challenging because their implementa-
tions are inherently complex on account of their require-
ments for high-speed data transfer and support for diverse
applications, communication scenarios, and device types
in a dynamic ecosystem. Therefore, conventional testing
methods may overlook corner cases arising from complex
interactions between network components. In the present
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study, valid simulated 5G traffic was used as an initial seed

for fuzzing to effectively capture the complexity of actual

systems.

2) Network operational state maintenance: 5G protocols
are adaptive to network conditions and user demands;
thus, replicating a network state for testing is challenging.
Moreover, transitioning between states can result in failures
whose simulation and detection require a sophisticated
testing environment. An innovative testing approach that
can navigate the intricacies of protocol state maintenance
is essential.

3) Payload encryption: Encrypted 5G payloads present
unique challenges during system validation because they
cannot be inspected directly, limiting the scope of vulner-
ability assessments. However, encryption is a cornerstone
of 5G security. Therefore, effective testing strategies for
encrypted data are critical for ensuring the resilience of
encrypted 5G payloads against emerging threats.

The proposed approach includes several novel elements
for handling complexity, maintaining states, and validat-
ing encrypted traffic. First, we leveraged a user equipment
(UE)/radio access network (RAN) emulator [8] to generate
valid protocol message payloads (Section IV-C). Second, we
propose a Fuzzer-in-the-Middle (FitM) architecture to handle
multistage protocol states and encrypted protocol payloads
(Section IV-D). The FitM can be configured to mutate pro-
tocol messages during a selected handshake stage. Finally,
we integrated protocol parsers to recognize protocol fields
and perform field-aware black-box mutation operations to
enhance fuzzing performance (Section IV-E). The proposed
FitM architecture operates between the RAN and the access
and mobility management function (AMF) and can recognize
possible attack surfaces for the entry point of the core network.
Our evaluation results indicate that the proposed approach
successfully recognized more than 20 implementation flaws,
including eight previously unknown flaws, in the selected
open-source 5SG implementations. We reported the newly rec-
ognized flaws to the developer community, and the flaws have
been fixed.

The remainder of this paper is organized as follows. Sec-
tion II discusses the literature on long-term evolution (LTE)
and 5G protocol testing and details the features and limita-
tions of relevant studies. Section III presents the necessary
background regarding the 5G core network architecture, NG
application protocol (NGAP), and nonaccess stratum (NAS)
protocol. Section IV describes the threat model, overall struc-
ture, and operation of the proposed FitM architecture. Sec-
tion V provides a detailed introduction to the experimental
environment and discusses the experimental results. Finally,
Section VI presents the conclusions.

II. RELATED WORK

Numerous studies have evaluated the security and reliability
of mobile networks; however, many challenges remain. This
section briefly discusses relevant studies and unsolved chal-
lenges in this field. Specifically, it focuses on the evaluation
of 5G interface security, which is crucial in the 5G architec-
ture [9].

A. Test Case Design

Srinath et al. [3] designed Berserker, a fuzzer that can be
used with any version of the 4G and 5G Radio Resource
Control (RRC) technical specifications. Their approach ex-
tends the ASN.l-based RRC message format to fuzz NAS
messages enclosed in RRC packets. In contrast to typical
fuzzing frameworks, Berserker omits the implementation of
RRC procedure handling and state management. Instead, it
relies on a concrete implementation of UE for uplink fuzzing
and a RAN for downlink fuzzing; this approach enables
communication networks to be set up such that RRC messages
can be delivered to the target system. Hussain et al. [4]
proposed a framework called 5GReasoner, which analyzes
a protocol’s technical specifications to generate an abstract
cellular protocol model and extract desired security properties.
Chen et al. [5] proposed creating test cases by leveraging
natural language processing and machine learning techniques
to scan large volumes of LTE specification documents. Kim
et al. [10] proposed LTEFuzz for 4G/LTE networks. LTEFuzz
generates test cases based on security properties retrieved from
LTE control plane specifications. It enhances the efficiency
of test case generation and considerably improves the depth
of security analyses. Apart from specification-based test case
generation, Yang et al. [11] proposed generating test cases
based on formal verification of 5G network specifications.
They focused primarily on authentication flows and generated
fuzzing test cases specifically for flows that were classified as
uncertain or unsafe.

B. Protocol Message Fuzzing

One typical approach for fuzzing a network protocol is
black-box fuzzing. Boofuzz [12] is a well-known black-box
fuzzer that has been studied in the literature. This fuzzer is
the successor of the Sulley [13] fuzzer, which can be used to
fuzz network protocols. In Boofuzz, the protocol architecture
model must be defined manually before it can begin fuzzing.
Boofuzz can generate various types of data to send to a target
and monitor whether the target is active. It also provides
crash analysis and reporting features to assist users in finding
problems.

In addition to black-box fuzzing, gray-box tools have been
used to fuzz network protocols. One popular gray-box net-
work fuzzer is American Fuzzy Lop for Network Fuzzing
(AFLNET) [14]. AFLNET is seeded with recorded messages
exchanged between two communication parties. It then acts
as one party and replays variations of the original sequence
of messages sent to the other party. Variations that were
effective at increasing the code coverage or state space are
retained. AFLNET can automatically connect with a target
system to fuzz the network protocol. Although this method
enables the discovery of network vulnerabilities or anomalous
behavior, each fuzzing iteration requires a network connec-
tion to be re-established. Although this requirement incurs
substantial time costs, the aforementioned method is con-
sidered an efficient network fuzzer. Some gray-box network
fuzzers with improved efficiency, such as Nyx-Net [15] and
SNPSFuzzer [16], have been developed. Both fuzzers adopt



snapshot technology to preserve the network state before
testing different inputs; this approach enables them to recover
an initial state, ensuring that testing is repeatable. Test results
from ProFuzzBench [17]indicate that both fuzzers consider-
ably outperform AFLNET in terms of coverage and fuzzing
speed. Furthermore, Nyx-Net can identify some vulnerabilities
that AFLNET cannot. Snapshotting considerably reduces time
costs when behaviors are repeated and improves fuzzing per-
formance. However, black-box and gray-box tools, which act
as clients that send mutated network payloads, often generate
payloads ineffectively, and their exploration of the runtime
states is limited.

C. Mutation Technique

Mutation methods for fuzzing can be broadly categorized
as those that send malformed packets and those that assign
specific field weights. Yebei et al. [2] used a malformed
packet method to analyze the security of the packet for-
warding control protocol. Specifically, they tested whether
a target system accepted data packets with incorrectly sized
protocol fields and recorded any unexpected errors. Zujany et
al. [18] designed an open-sourced 5G network traffic fuzzer
called 5Greplay, which generated malformed Stream Control
Transmission Protocol (SCTP) packets to evaluate the robust-
ness of the AMF against unexpected entries during runtime.
Weighted packet field methods include that of Fengjiao et
al. [6], who reviewed the NAS specifications and designed
a new rule extractor. Their program identifies several key
fields and applies various mutation strategies to these fields
on the basis of the field attributes. This method increases
the intelligence of the message mutation process. Hu et al.
analyzed the NGAP [19] to assemble mutant fields and normal
fields as NGAP-compatible packets, which were sent to the
core network. They monitored the current operating status of
the core network to allocate field weights.

Field-based mutation has been demonstrated to improve
the fuzzing process. Angora [20] and RedQueen [21]are two
effective field-aware mutation fuzzers that improve testing
efficiency. These fuzzers can discover vulnerabilities by con-
ducting a deep analysis of program logic followed by intel-
ligent mutations of specific fields. Angora performs dynamic
tracing of branch conditions during program execution and
employs a gradient-based search strategy to precisely adjust
input data to explore more execution paths, especially hid-
den paths requiring specific conditions. RedQueen employs
“input-to-state correspondence” techniques to identify key
conditions during program execution and automatically adjusts
its mutation strategies to bypass or meet these conditions.
The commonality between the aforementioned fuzzers lies in
performing targeted mutations on specific input fields; such
targeting is not performed in conventional fuzzing methods.
Although input field recognition requires in-depth program
instrumentation and analysis, which can be infeasible for
complicated 5G core network systems, incorporating field-
based mutation in black-box fuzzers still benefits their overall
performance.

In summary, generating appropriate test cases for fuzzing
is vital for network fuzzers. Studies have attempted to create

test cases by implementing customized traffic generators or
replaying prerecorded protocol messages. Customized traffic
generators require an in-depth understanding of the protocol
specification or message grammar to enhance fuzzing capa-
bility; achieving this goal is challenging in the modern era
of rapidly evolving protocol specifications. However, replay
methods suffer from protocol state management problems. The
proposed FitM architecture employs a novel design to address
these problems by leveraging protocol emulators and focusing
primarily on core fuzzing tasks. It seamlessly bridges real-
world spec-compliant network flows with black-box fuzzing
algorithms and can systematically perform in-depth fuzzing
for selected multistage bidirectional 5G protocols.

III. BACKGROUND

This section briefly introduces the required background for
the design and implementation of the proposed approach. The
architecture of the FitM network is described first, followed
by the encryption algorithms and involved protocol messages,
including the NGAP and NAS protocols.

A. Architecture of the Adopted 5G Core Network

Figure 1 depicts the architecture of the 5G network [22],
[23] adopted in the proposed approach, including the access
and 5G core networks. The access network comprises the
UE and a base station, which is called a gNodeB, and
connects to the 5G core network. An essential element of the
5G core network is its service-based architecture, which has
a modular framework in which different network functions
interact with each other through a service-based interface
(SBI) [22]. SBIs are usually based on HTTP/2 or other modern
protocols, and interactions occur through RESTful application
programmable interfaces [24]. Authorized network functions
can access services available on the data bus through control
plane protocols. The N1 interface between the UE and the
AMF exchanges signaling and control information, such as
mobility management and authentication information. The N2
interface connects a gNodeB and the AMF and primarily
processes signaling and control messages, including those
related to RRC message forwarding and session setup. The N3
interface between a gNodeB and the user plane function (UPF)
is dedicated to user data transmission; it manages the flow
of data plane information. Because our approach focuses on
recognizing possible attack surfaces from the access network,
we focused on the N1 and N2 interfaces. Details regarding
the relevant components in the architecture are provided as
follows.

User Equipment (UE). The UE [25] is a device used
to establish connections with the 5G core network. This
device usually comprises two parts: mobile equipment (ME)
and a universal subscriber identity module (USIM) card. The
ME is a hardware device that supports user communication.
This device stores an international ME identity number that
uniquely identifies it. A USIM card is issued by the operator
and stores information such as the subscriber’s subscription
permanent identity (SUPI), the root key, and the operator’s
public key. This information can uniquely identify a legitimate
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Fig. 1: Architecture of the 5G network adopted in the proposed
approach.

subscriber and enables the completion of mutual authentication
whenever the UE attempts to access the 5G network. The UE
accesses the 5G core network through a gNodeB, and the
NI interface between the UE and the AMF processes NAS
messages.

gNodeB. A gNodeB [26] is a 3GPP-compliant implemen-
tation of a 5G New Radio (NR) base station. It comprises in-
dependent network functions that implement 3GPP-compliant
NR RAN protocols. The N2 interface between a gNodeB and
the AMF processes NGAP packets, including NAS messages
from the UE. This interface supports control plane signaling
between the RAN and the 5G core for UE context management
and packet data unit (PDU) session resource management
procedures. The N3 interface between a gNodeB and the UPF
conveys user data from the RAN to the UPF.

Access and Mobility Management Function (AMF).
The AMF involves the termination of NAS signaling on the
network side and is responsible for registration management,
connection management, reachability management, and mo-
bility management in the 5G core network.

Authentication Server Function (AUSF). The AUSF is
responsible for UE authentication through a backend service
that computes the authentication data and keying materials
when 5G authentication and key agreement (AKA) or EAP-
AKA’? is used.

Unified Data Management (UDM). The UDM unit per-
forms data management functions, such as computing authen-
tication data and keying materials for the AUSF in accordance
with the selected authentication method.

B. 5G Security Architecture

Understanding the 5G security architecture is essential for
handling encrypted protocol payloads. Figure 2 presents the
5G-AKA-based procedure for primary AKA; this procedure
involves mutual authentication between the UE and the net-
work and helps the two parties agree on the keys KAUSE,
KSEAF, and KAMF [27]. The procedure is initiated by
sending an AUTHENTICATION REQUEST to the UE. The
network then starts the timer T3560° [28]. The authentication
procedure fails if an AUTHENTICATION REJECT message
is received or the timer expires.

2EAP-AKA’ is an improved version over EAP-AKA.
3The timer is typically set to 6s.
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Fig. 2: 5G-AKA-based primary authentication procedure.
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Fig. 3: Key derivation and distribution scheme in a 5G
network.

Figure 3 shows the key derivation and distribution scheme in
5G networks [27]. In the present study, we focused on the keys
related to authentication, starting from keys K and CK/IK. In
the case of EAP-AKA’, the keys CK’ and IK’ are derived from
CK and IK, respectively. The key hierarchy includes the fol-
lowing keys: KAUSF, KSEAF, KAMF, KNASint, KNASenc,
KN3IWEF, KgNB, KRRCint, KRRCenc, KUPint, and KUPenc.
The most relevant keys for our approach are KNASint and
KNASenc, which are used for the integration verification
operation and encryption/decryption operation, respectively.
Therefore, creating testing NAS packet payloads requires
using these keys to ensure the core network components can
appropriately handle encrypted mutated messages. Given that
K is known in the evaluation environment, our approach must
follow the key derivation and distribution scheme to generate
the required subkeys appropriately for each involved compo-
nent, including the ARPF, AUSF, SEAF, and AMF. Readers
may refer to Appendix A for more detailed introductions to
the terms relevant to the key derivation process.

C. Next-Generation Application Protocol (NGAP)

The NGAP [29] supports the N2 interface between the AMF
and a gNodeB. An NGAP message includes an elementary
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procedure (EP) that represents the primary intention of the
message. EPs can be classified as those requiring responses
(Class 1) and those not requiring responses (Class 2). Class 2
EPs are always considered successful. Invoking a Class 1 EP
leads to a successful or unsuccessful response. Figure 4 [29]
shows a successful signaling message (PDU session resource
modification request) that has been completed with the receipt
of a response. By contrast, Figure 5 [29] shows an unsuccess-
ful signaling message (initial context setup request). A Class 1
EP may be unsuccessful if an expected response is not received
because of message expiration.

D. Non-Access-Stratum (NAS) Protocol

NAS [28] is a protocol of the N1 interface, which is the
control plane interface between the UE and the AMF for 3GPP
and non-3GPP access. The main functions of the NAS protocol
are supporting UE mobility, including typical procedures such
as identification, authentication, UE configuration updates, and
security mode command procedures. Moreover, it supports
session management procedures to establish and maintain data
connectivity between the UE and the data network.

Figure 6 shows the NAS message sequence for the attach
procedure of the 5G core network. The first message of the
attach procedure is the initial NAS message sent after the UE
has established a radio link with a gNodeB. The UE sends
cleartext (unencrypted) information elements (IEs) containing
the UE’s identity information for verification by the AMF.
The authentication procedure is then initiated when the UE’s
identity is confirmed. In the NAS protocol, integrity and
confidentiality protection are enabled by sending the “secure
mode command.” Subsequently, the derived keys, namely
KNASint and KNASenc, are used to secure the NAS protocol
payloads. To implement this process appropriately, an in-depth
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Fig. 6: The attach procedure of the 5G core network.

protocol implementation evaluation system must be capable of
inspecting and mutating secured protocol messages.

E. Effects of Flaws in 5G Core Network Implementations

Many 5G core network implementations are software-based,
making them susceptible to typical software vulnerabilities.
This article evaluates several open-source 5G core network
solutions in later sections. Vulnerabilities in key components,
such as the AMF, AUSF, and UDM, can be exploited through
fuzzing techniques, which may trigger crashes and expose
underlying flaws. Such crashes can disrupt the operation of
the entire 5G core network, rendering it unable to deliver
services. More seriously, memory-related bugs, such as buffer
overflows, use-after-free, and heap corruptions, can lead to
severe consequences beyond service disruption. These vulner-
abilities may be exploited to achieve remote code execution
(RCE), allowing an attacker to gain unauthorized control
over critical 5G core components. In such cases, an attacker
could manipulate network behavior, exfiltrate sensitive data,
or persist within the system, posing significant threats to the
security and integrity of the entire 5G infrastructure.

IV. APPROACH

A. Threat Model and Scope

Figure 7 illustrates the network scenario considered in this
study and two possible threat sources. We assume that a
gNodeB or the UE can be malicious. A malicious gNodeB
can connect to the AMF directly and send NGAP messages.
It can then send crafted NGAP and NAS protocol messages.
By contrast, the UE can only send (malicious) NAS protocol
messages to the core network through a gNodeB. Because
a gNodeB might not inspect NAS protocol messages, it
might forward a malicious NAS protocol message to the core
network, which is then processed by flawed components in
this network.

The proposed approach results in the systematic generation
of real-world test cases that trigger core network implemen-
tation flaws; it does not involve anomaly detection. None
of the flaws recognized by the proposed approach are false
positives; the detected flaws should be addressed appropriately
to enhance network reliability.
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B. System Architecture for the Proposed Approach

Figure 8 displays the system architecture for the proposed
approach. The architecture comprises the host environment
and runtime environment.

The host environment executes and monitors the entire
testing process. The process is initiated by the controller (D),
which loads the testing configuration and boots all components
in order, including the FitM (@), UE/gNodeB @), and 5G core
network (3). The component boot order is critical for avoiding
service dependency problems. When a component sends a
request, a corresponding service for handling the request must
be available.

In the runtime environment, each involved component is
containerized; Docker containers are used in the designed sys-
tem. The controller requests each UE and gNodeB component
to repeatedly perform operations until it detects an abnormal
event or the testing process is terminated by a user. The
testing network traffic flows from the UE/gNodeB @), passes
the FitM architecture (2), and reaches the target [i.e., the 5G
core network (3]. When packets between the gNodeB and
the AMF pass the FitM, the FitM inspects the packet content
and performs mutation operations to generate test cases for
each system configuration. All links involved in the network
topology are emulated using wired virtual local area network
links. Specifically, the wireless link between the emulated UE
and the gNodeB is emulated using the ZeroMQ messaging
library [30].

Two essential components in the host environment are the
monitor Q) and logger (6. The monitor checks whether the
core network containers remain active during the test process.
These checks can be performed (1) by ensuring that the core
network containers are still active by using process inspection
utilities and (2) by ensuring that the network is still connected
by periodically sending network packets from the UE/RAN
emulator. If abnormal behavior is detected, the logger collects
information from the FitM and core networks; the collected
information includes the generated test cases, console logs, log
files, and crash dumps. The controller then restarts the testing
process by recovering all containers to their initial state.

Our system leverages containerization to efficiently manage
the complexities of 5G core network implementations; this
approach ensures that tests are repeatable and reproducible.
The system architecture enables dynamic testing for various
network configurations and protocol interactions, thus facili-
tating the comprehensive evaluation of the network’s perfor-
mance and reliability. Although our framework is optimized
for containerized networks, it also accommodates noncon-
tainerized implementations. Manual resets may slow down
testing for these networks; however, our system minimizes
this inefficiency and conducts a comprehensive evaluation
regardless of the network’s deployment method.

In summary, our streamlined approach addresses the chal-
lenges of testing complex 5G networks, offering a robust
and flexible testing environment that captures the intricacies
of core network implementations. The details of the runtime
components are provided in the rest of this section.

C. UE/RAN Emulator

The UE/RAN emulator is an essential component in the
runtime environment. We employed UERANSIM [8] to gen-
erate network flows for testing. UERANSIM is a cutting-
edge tool that has emerged as a valuable asset in 5G net-
work development and testing. Developed as an open-source
project, UERANSIM is designed to emulate the UE and RAN
(gNodeB) in a 5G network to test various scenarios and
functionalities in simulated environments. This tool is pivotal
in validating the performance, security, and interoperability of
5G network elements.

UERANSIM has many of the required functionalities for
attaching to 5G core networks and establishing communication
channels. It generates spec-compliant NGAP and NAS proto-
col messages. UERANSIM implements the NGAP features
of critical operations, session resource management, context
setup and modification, messaging, and error indication; it also
supports many essential NAS features, such as primary AKA,
security mode control, identification, and various registration
and session management processes. In this study, the network
flows generated by UERANSIM were forwarded and mutated
by the proposed FitM to generate test cases to trigger unex-
pected behavior in the evaluated core network.

Using UERANSIM reduces the complexity of network
protocol implementation in a fuzzing scenario. The success
of a fuzzing process heavily relies on the quality of its initial
seeds (test cases). Thus, applying mutation to valid messages



exchanged between the emulator and the core network con-
siderably shrinks the exploration space for finding appropriate
test inputs.

D. Fuzzer-in-the-Middle (FitM) Architecture

The FitM module is the most crucial component of the
proposed approach. The proposed FitM comprises three sub-
modules: a controller agent, a forwarder, and a fuzzer. The
controller agent is the interface between the FitM and the
host controller. It configures the FitM module and reports the
testing status to the host controller. A user can also configure
the FitM module to evaluate a target protocol, such as the
NGAP or NAS protocol, or target states, such as the procedure
code in the NGAP or the message type in the NAS protocol.
The FitM module addresses two of the primary challenges
discussed in Section I: network operational state maintenance
and payload encryption.

Complex communication protocols often involve state tran-
sitions, and the appropriate management of these states is
crucial for maintaining the stable operation of the fuzzing
process. The proposed FitM module maintains correct pro-
tocol states by forwarding spec-compliant network flows with
selective protocol message mutations. Algorithm 1 describes
the workflows of the forwarder and fuzzer in the FitM module.
The forwarder processes the packets received by the FitM
module. On the basis of the configured target testing protocol,
procedure code, and message type of the FitM module, the
forwarder decides whether the fuzzer should mutate a packet
before forwarding it. If the packet fields match a target
protocol or state in the fuzzer configuration, the packet is first
passed to the fuzzer for mutation; otherwise, the packet is
forwarded to the next hop directly.

The proposed fuzzer focuses on the N1 and N2 interfaces,
for which payloads conform to the NAS protocol and NGAP.
The FitM module first identifies fields consistent with the con-
figured testing protocol, procedure code, and message type and
randomly selects some of these fields for mutation. For each
mutation request, the fuzzer mutates the same packet multiple
times; each mutated packet is then returned for forwarding.
The fuzzing process continues until a user terminates the FitM
module from the controller or the number of fuzzed test cases
reaches a user-defined threshold.

After user authentication is completed, all messages be-
tween the UE and the core network are encrypted; this process
is challenging in the mutation method. Therefore, the FitM
employs a cryptographic module to process encrypted protocol
messages. First, the forwarder detects whether a packet is
encrypted; encrypted packets are decrypted before they are
passed to the fuzzer. Subsequently, following mutation, the
mutated packets are re-encrypted, digitally signed if required,
and forwarded to the next hop.

To perform decryption, encryption, and digital signing, the
cryptographic module must have access to the K, IK, and CK
keys of the core network as well as the nonces* exchanged
between the two endpoints. In our testing scenario, these
keys were easily obtained because the UE, gNodeB, and core

4Numbers used only once.

Algorithm 1 Workflow of the proposed FitM

Input: proto: Target protocol

Input: proc: Target procedure code

Input: msgtype: Target message type

Input: keys: cryptographic keys: K, IK, and CK
1: nonce = ()
2: while not stopped do
3 pkt = receive_packet()

timeout period

> blocking mode with a

4 if pkt == None then

5: log_report_and_restart()

6: end if

7: update_nonce(nonce, pkt) > Track nonces
8: if state_match(pkt, proto, proc, msgtype) then
9: p = is_security_protected(pkt)

10: if p == True then
11: pkt = decrypt(pkt, keys, nonce)
12: end if
13: mutated_pkts = fuzzer(pkt)

14: Jor s € mutated_pkts do

15: if p == True then
16: epkt = encrypt_and_mac(s, keys, nonce)
17: end if
18: forward_packet(epkt)

19: if check_service_state() == Dead then
20: log_report_and_restart()
21: end if
22: if stopped then
23: terminate()
24: end if
25: end for
26: go to I3
27: else
28: forward_packet(pkt)
29: if check_service_state() == Dead then
30: log_report_and_restart()
31 end if
32: end if

33: end while

network were completely controlled in the simulations. The
forwarder tracks the nonces exchanged between two endpoints
and provides them to the cryptographic module.

During testing, the forwarder also monitors whether the
AMF is reachable by identifying NGAP connections that fail
to establish or become disconnected. If such connections are
detected, the forwarder reports an abnormal status to the host
controller, which logs the event and restarts the testing process.

It is important to note that our proposed algorithm is
designed for a black-box fuzzer, rather than a grey-box one.
While a detailed exploration of grey-box fuzzing is beyond
the scope of this study, our preliminary experiments indicate
that integrating lightweight grey-box instrumentation for cov-
erage collection, maintenance, and synchronization results in
performance degradation of over 10x compared to the black-
box approach. Additionally, incorporating grey-box mutation
techniques may conflict with our state-aware packet fuzzing
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Fig. 9: Format of an NGAP packet.

strategy. In particular, mapping code coverage back to specific
protocol states poses significant challenges because: (1) the
same code paths may be exercised across multiple states, (2)
some state transitions do not correspond directly to distinct
code branches, and (3) coverage signals can be noisy or
ambiguous due to shared or reused execution paths.

E. Fuzzer: The Protocol Mutator

The goal of the proposed approach is to explore the attack
surfaces at the entry point of the core network; therefore, the
FitM is located between a gNodeB and the AMF, and this
fuzzer evaluates the implementation of the NGAP and NAS
protocol. This section provides details regarding how the FitM
handles protocol payloads.

Figure 9 displays the format of an NGAP packet. The
NGAP can be used to signal the UE/RAN emulator and the
core network. The “procedure” code in the NGAP packet
specifies the signal to be delivered. Typical signals include
NGSetup, InitialContextSetup, InitialUEMessage, and NAS-
related procedures such as UplinkNASTransport and Down-
linkNASTransport. For each procedure, several IEs may also
be included in the packet. The mutator is applied to both the
protocol fields and IEs.

NAS payloads are enclosed in the protocol IE with id
38 in NGAP packets. Although NAS protocol messages are
also sent over the NGAP, a dedicated mutation algorithm is
implemented for handling NAS procedure codes because the
UE can initiate a NAS protocol message and send it to the
core network without the message being carefully inspected
at the RAN (gNodeB). An attacker can leverage this lack of
inspection to use NAS protocol messages to launch attacks
directly against the core network.

Figures 10 and 11 depict the formats of plaintext and
encrypted NAS protocol messages. NAS messages are initially
transmitted in plaintext format; after security procedures are
invoked and completed, subsequent NAS messages are sent in
the secure format. Both secure and plaintext NAS messages
can be mutated using the cryptographic module in the FitM.

1) Field-Aware Mutation: Fuzzing research works [20],
[21] have indicated that fuzzing performance improves if
mutation is performed with knowledge of field boundaries.
Therefore, the proposed FitM employs a field-aware mutation
strategy to ensure that precise field mutations can be per-
formed. The open-source pycrate [31] library is an efficient
library that supports format manipulations of various cellular

0 1 2 3 4 5 6 7

Extended Protocol Discrimininator
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Security Header Type

Message Type
NAS Message Field

Fig. 10: Format of a plain NAS packet.
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Message Authenticate Code

Sequence Number

Security-protected NAS Message

Fig. 11: Format of a security-protected NAS packet.

network signaling packets. In the present study, pycrate was
used to parse the format of NGAP and NAS packets. Pycrate
provides a runtime for encoding and decoding data structures,
including CSN.1 and ASN.1 notations typically used in LTE
and 5G network protocols. Moreover, we observed that per-
forming black-box fuzzing directly against the entire packet
often resulted in malformed packets that were dropped in
the initial processing stages. Therefore, our protocol mutator
decomposes each received packet into individual protocol
fields, randomly selects protocol fields for mutation, and then
reassembles the original and mutated protocol fields into a
packet that appears valid. These steps considerably increase
the likelihood that the core network components perform in-
depth processing of the mutated packets.

To ensure that the mutator was independent of the core
network implementation, we employed the open-source black-
box fuzzing library Radamsa [32] in the proposed FitM.
The operations in this library involve the mutation of input
strings on the basis of a random seed. Radamsa differs from
standalone fuzzers such as Sulley [13] or Boofuzz [12], which
are specifically designed for fuzzing network protocols. The
mutation operations in Radamsa are summarized in Table I.
Throughout this paper, all available mutation operations were
applied unless otherwise mentioned. The effect of each mu-
tation strategy on performance was evaluated, and the results
are provided in Section V-B.



TABLE I: Summary of Employed Mutation Strategies.

Class: Line-based mutation

Operation ~ Description
1d Delete a line
1lds Delete many lines
1i Copy a line nearby
lis Insert a line from elsewhere
1p Swap the order of lines
1r Repeat a line
1r2 Duplicate a line
1rs Replace a line with one from elsewhere
1s Swap two lines

Class: Binary-based mutation

Operation ~ Description
sd Delete a sequence of bytes
sr Repeat a sequence of bytes
bd Drop a byte
bed Decrement a byte by one
bei Increment a byte by one
ber Swap a byte with a random one
bf Flip one bit
bi Insert a random byte
bp Permute some bytes
br Repeat a byte

Class: Other

Operation  Description
num Try to modify a textual number
fn Likely clone data between similar positions
fo Fuse previously saw data elsewhere
ft Jump to a similar position in the block
ui Insert funny Unicode
uw Try to make a code point too wide
Xp Try to parse XML and mutate it
ab Enhance silly issues in ASCII string data handling

V. EVALUATION
A. Environment Setup

We evaluated the proposed approach on three well-
known open-source 5G core networking implementations:
freeSGC [33], OpenSGS [34], and OpenAirlnterface-CN-
5G [35] (OAI-CN-5G). We deploy the selected core networks
in docker containers [36]. Each core network was implemented
in Docker containers [36] based on the provided official
Dockerfiles and images of each network project. All software
programs were installed and run on a single machine equipped
with an Intel Core i7-7600 CPU having 16GB of RAM and
running the Ubuntu 20.04.4 LTS operating system. Although
the proposed approach can work with any target, including
closed-source implementations without modifications, open-
source projects were selected to enable better measurements of
the effectiveness of the approach because these projects sup-
port using compiler features to collect runtime code coverage
data. While the proposed approach is a black-box fuzzer, we
try our best not to touch the default configurations of each
target under testing unless necessary.

B. Mutation Strategy

We evaluated how each mutation strategy affected the
overall fuzzing performance. Each mutation strategy involved
a set of mutation operations and the detection of encrypted
payloads. Ideally, a fuzzer should explore as many codes as
possible in the targeted system. A basic block is the minimum
control flow unit at the machine code level; a fuzzer that visits
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Fig. 13: Fuzzing coverage for each tested mutation strategy.

more blocks has better coverage and performs a more intensive
test of the program. Therefore, the selected performance metric
was the number of visited basic blocks.

Open5GS was the primary target for evaluating the mu-
tation strategies because it is implemented in C; thus,
many code instrumentation tools, such as AFL++ [37] with
afl-clang-1to and LLVM [38] compiler framework, are
available for measuring the number of visited blocks. For each
experiment, the measured visited block coverage was stored
in shared memory.

The Radamsa mutation strategies were classified as binary-
based, line-based, and other; the operations in each class are
listed in Table I. The efficacy of each class was tested for



TABLE II: Identified Network Function Implementation Flaws for Each Procedure (Code) in the NGAP and NAS Protocol.

CN Ver. Selected State Comp. Crashed Location / Reason New
Open5GS-1 v2.6.4 InitialUEMessage (15) AMF amf_ue_set_suci: Assertion ‘suci’ failed Yes
Open5GS-2 v2.6.4 Registration Request (65) * UDM ogs_supi_from_supi_or_suci: Expectation ‘supi’ failed Yes
Open5GS-3 v2.6.4 Registration Request (65) * AUSF ausf_ue_add: Assertion ‘ausf_ue’ failed Yes
Open5GS-4 v2.4.8 InitialContextSetup(14) AMF amf_gnb_add: Assertion ‘gnb’ failed Yes
Open5GS-5 v2.4.8 InitialUEMessage(15) AMF amf_state_operational: Assertion ‘OGS_FSM_STATE(&amf_ue—>sm) -
Open5GS-6 v2.4.8 InitialUEMessage(15) AMF amf_ue_find_by_message: Assertion ‘suci’ failed -
Open5GS-7 v2.4.8 InitialUEMessage(15) AMF ogs_hash_set_debug: Assertion ‘klen’ failed -
Open5GS-8 v2.4.8 InitialUEMessage(15) AMF udm_ue_add: Assertion ‘udm_ue’ failed -
Open5GS-9 v2.4.8 Registration Request (65) * AUSF server_send_response: Assertion ‘fd != INVALID_SOCKET" failed -
Open5GS-10 v2.4.8 Registration Request (65) * AMF common_register_state: Assertion ‘true == amf_ue_sbi_discover_and_send -
(OpenAPI_nf_type_AUSF, amf_ue, NULL, amf_nausf_auth_build_authenticate)’ failed
OAI-CN-5G-1 v1.5.0 Any AMF In sctp::sctp_server::sctp_receiver_thread(void*) Yes
OAI-CN-5G-2 v1.5.0 Registration Request (65) * AMF In nas::RegistrationRequest::decodefrombuffer(nas::NasMmPlainHeader*, unsigned char*, int) Yes
OAI-CN-5G-3 v1.4.0 In Initial UEMessage(15) AMF In nas::_5GSMobilityIdentity::imeisv_decodefrombuffer(unsigned char*, int) -
OAI-CN-5G-4 v1.4.0 In Initial UEMessage(15) AMF In nas::_5GSMobilityldentity::getSuciWithSupilmsi(nas::SUCI_imsi_s&) -
OAI-CN-5G-5 v1.4.0 In InitialUEMessage(15) AMF In nas::_SGSMobilityldentity::suci_decodefrombuffer(unsigned char*, int, int) -
OAI-CN-5G-6 v1.4.0 Registration Request (65) * AMF In nas::_5GSMobilityIdentity::_Sg_s_tmsi_decodefrombuffer(unsigned char*, int) -
OAI-CN-5G-7 v1.4.0 Registration Request (65) * AMF In nas::NAS_Message_Container::decodefrombuffer(unsigned char*, int, bool) -
OAI-CN-5G-8 v1.4.0 Registration Request (65) * AMF In nas::EPS_NAS_Message_Container::decodefrombuffer(unsigned char*, int, bool) -
OAI-CN-5G-9 v1.4.0 Registration Request (65) * AMF In nas::LADN_Indication::decodefrombuffer(unsigned char*, int, bool) -
OAI-CN-5G-10 v1.4.0 UplinkNASTransport (46) AMF In nas::EAP_Message::decodefrombuffer(unsigned char*, int, bool) -
OAI-CN-5G-11 v1.4.0 UplinkNASTransport (46) AMF In nas::Authentication_Response_Parameter::decodefrombuffer -
free5GC-1 v3.3.0 InitialUEMessage(15) AMF In aper.GetBitString, “dstBytes[byteLen-1]" index out of range Yes
free5GC-2 v3.3.0 InitialUEMessage(15) AMF In nasType.(*Mobileldentity5GS).GetSUCI, "bits.RotateLeft8(a.Buffer[4], 4)” index out of range Yes
free5GC-3 v3.2.1 InitialUEMessage(15) AMF In gmm.HandleRegistrationRequest, “mobileldentitySGSContents[0]” index out of range -
free5GC-4 v3.2.1 InitialUEMessage(15) AMF Signal SIGSEGV: invalid memory address or nil pointer dereference -
free5GC-5 v3.2.1 Registration Request (65) * AMF In nasMessage.(*RegistrationRequest). DecodeRegistrationRequest, slice bounds out of range -
free5GC-6 v3.2.1 UplinkNASTransport (46) AMF In nasMessage.(* AuthenticationFailure).Decode AuthenticationFailure, slice bounds out of range -
free5GC-7 v3.2.1 UplinkNASTransport (46) AMF In nasMessage.(* AuthenticationResponse).Decode AuthenticationResponse, slice bounds out of range -

Note: Asterisks in the “selected state” column indicate that most flaws were identified through NAS fuzzing.

the NGSetup connection phase. FitM applied all mutation
operations from the selected class to all recognized fields
for fuzzing, and the coverage was measured. The results in
Figure 13 indicate that the binary-based mutation operations
resulted in the fuzzer visiting the most blocks; however, the
line-based and other mutation operations also increased the
coverage substantially. To ensure a comprehensive evaluation,
all operations were considered by the fuzzer, and fuzzing op-
erations were selected randomly from all classes for mutation.

The effect of the cryptographic module was evaluated for
secure UL NAS transport messages. The FitM was applied
with and without the cryptographic module, and the fuzzer’s
efficacy was again assessed in terms of the total number
of visited basic blocks. Figure 14 reveals that the number
of visited blocks only increased with the payload ID when
the cryptographic module was activated. This phenomenon
occurred possibly because the fuzzer without the cryptographic
module might have corrupted the encrypted packets; such
corrupted packets would have been ignored by the AMF. These
results highlight the vital role of the cryptographic module
in improving the effectiveness and efficiency of fuzzing by
ensuring that more packets are processed by the core network.

C. Comparison with Boofuzz

The performance of our proposed fuzzer and the open-
source black-box fuzzer Boofuzz was compared [12]. Our
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Fig. 14: Fuzzing coverage with and without the cryptographic
module.

fuzzer was not compared against the black-box fuzzer 5Gre-
play [18] because 5Greplay simply replays core network
packets from a prerecorded packet trace file, corrupts the
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Fig. 15: Performance of FitM and Boofuzz.

packets, and repeatedly sends the packets to the AMEFE. It
does not consider protocol stages and focuses only on the
service availability of the AMEF. Although sending many
malformed packets can reveal NGAP parsing faults and DoS-
based attacks, the scope of the testing coverage is limited.
Therefore, 5Greplay is not directly comparable to FitM. The
black-box fuzzer of He et al. [6] also performs field-aware
mutation; it does so by assigning weights to selected fields.
Although its fuzzing architecture is similar to that of Boofuzz,
the aforementioned fuzzer was unavailable and could not be
used for comparisons. Therefore, we selected Boofuzz for the
comparison.

Boofuzz lacks support for the SCTP and does not recognize
5G core network protocols. Therefore, we implemented these
two features in Boofuzz for the performance evaluations.
Boofuzz requires the user to develop a customized packet
format parser and re-assembler. We applied the same parsing
method for the NGAP packets as for the FitM, and the
extracted protocol fields were then passed to Boofuzz for
mutations. Figure 15 depicts the performance of Boofuzz and
FitM. The number of visited blocks for Boofuzz increased
considerably more slowly than that for the proposed FitM. This
result was attributed to the monotonous linear and determin-
istic mutation pattern employed in Boofuzz, which generates
many ineffective test cases from scratch. Specifically, Boofuzz
applies specific mutation rules to each field based on its type.
For example, an integer field may be tested with edge-case
values such as 0, 1, -1, INT_MAX, INT_MIN, or subjected to
bit-level mutations like random bit flips. Consequently, even
after extended fuzzing, the total number of visited blocks
remains limited. Note that Boofuzz did not find any crashes
in this evaluation experiment.
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D. Summary of Recognized Implementation Flaws

For each selected configuration, we requested the fuzzer to
generate 2 million mutated packets to evaluate the selected
core network functions. The proposed solution successfully
recognized implementation flaws for NGAP fuzzing in the Ini-
tialUEMessage, UplinkNasTransport, InitialContextSetup, and
PDUSessionResourceSetup procedure codes and recognized
flaws for NAS fuzzing in the Registration Request, Regis-
tration Complete, Authentication Response, Security Mode
Response, and UL NAS transport procedures.

Figure 12 presents the unique implementation flaws rec-
ognized by the proposed approach for each core network.
The details of each flaw are listed in Table II. The “Crashed
Location / Reason” field presents the report of each recog-
nized flaw collected by the logger. The “New” field in the
table indicates a previously unknown implementation flaw
recognized by our approach; we have reported these new
flaws to the development team of the corresponding projects.
Open5GS implements an anomaly self-detection feature (ref:
Section V-E), which reports the origin component of an issue
when abnormal behavior is detected (refer to Table II). For
freeSGC and OAI-CN-5G, abnormal behavior was detected
by evaluating the behavior of the AMF; thus, all “Component”
fields are labeled as “AMF” for these networks.

In the remainder of this section, we discuss several inter-
esting test cases that revealed implementation flaws for each
evaluated core network. We further discuss how the root cause
of each flaw was identified. In general, the proposed system
detects unexpected behavior by identifying whether the target
program crashes or triggers an exception. We retrieved the
backtrace from the corresponding crash dump or exception
logs and analyzed these records to recognize the root cause of
the issue.

E. Open5GS

Open5GS is a prominent open-source project that has
emerged as a key player in the development and implemen-
tation of 5G core network solutions. This versatile platform
provides a comprehensive and flexible framework for deploy-
ing and testing various elements of 5G networks, including
the core network functions. Open5GS is mainly implemented
in C, and its code has many strict assertions; if any assertion
is violated, the network functions of Open5GS are shut down.
Violations include an unexpected state, decoding errors for
received packets, file descriptor errors, and length-too-long
errors. These assertions are helpful for developers investigating
the root cause of abnormal system states.

In our evaluation, we successfully reproduced seven known
issues that have been discussed in the developer community.
Furthermore, the proposed system recognized four new issues
in its latest version (v2.6.4 as of writing). The recognized
issues have been reported to the relevant developers.

The Open5GS-1 test case listed in Table II is discussed here
as an example of issue recognition. The payloads that triggered
the flaw can be mutated from the NGAP InitialUEMessage
packet or the NAS Registration Request used in the attach
procedure. The root cause of the selected issue is the use of



1 [amf]: [ERROR] Cannot get the SUCI from Mobile

Identity (../src/amf/context.c:1766)

2 0000: 4100£110 00000000 21436587 59

3 A.......!Ce.Y

4 [amf] [INFO]: [Added] Number of AMF-UEs is now 2
(../src/amf/context.c:1563)

5 [gmm] [INFO]: Registration request (../src/amf/gmm
—-sm.c:1061)

6 [nas] [ERROR]: Not implemented SUPI format [4]
(../lib/nas/5gs/conv.c:86)

7 [amf] [FATAL]: amf_ue_set_suci: Assertion ’suci’
failed. (../src/amf/context.c:1906)

8 [core] [FATAL]: backtrace() returned 12 addresses

(../lib/core/ogs—-abort.c:37)

9 ./open5gs-amfd (+0x20f6d) [0x558cl16721f6d]
10 ./open5gs—amfd (+0x9d715) [0x558c1679e715]
11 ./openSgs—amfd (+0x3£f4£8) [0x558c167404£8]
12 ./openSgs—amfd (+0x38adf) [0x558cl6739adf]
13 /openS5gs/install/lib/x86_64-1linux-gnu/libogscore.

so.2 (ogs_fsm_dispatch+0x149) [0x7fl19a8c6bde3]

14 ./openSgs—amfd (+0x4£f7£8) [0x558c167507£8]

15 /open5gs/install/lib/x86_64-1linux—-gnu/libogscore.
so.2 (ogs_fsm_dispatch+0x149) [0x7fl19a8c6bde3]

16 ./openSgs—amfd (+0x12bc7) [0x558c16713bc7]

17 /open5gs/install/lib/x86_64-1linux—gnu/libogscore.
s0.2 (+0x1c9dc) [0x7f19a8c599dc]

18 /1ib/x86_64-1linux—-gnu/libpthread.so.0(+0x8609) [0
x7£19a79a0609]

19 /1ib/x86_64-1inux—-gnu/libc.so.6 (clone+0x43) [0
x7£19a78c5133]

Fig. 16: Backtrace of the Open5GS core network for the
implementation flaw in case Open5GS-1.

an unsupported SUPI format. The TS 23.501 specification [22]
currently defines that only 0 and 1 are valid values in the IMSI
(0) and NAI (1) formats. Our mutator created a test case by
using an undefined type of 4, which led to a subsequent parsing
error in the packet that finally crashed the core network func-
tion. The crash log reports from Open5GS (Figure 16) were
used to recognize the root cause. The log pinpoints the crashed
line numbers and relevant filenames; this information is highly
helpful for security engineers and developers attempting to fix
the vulnerability.

We reported the detected issue to the Open5GS development
team, and a workaround was provided in a recent com-
mit by adding SUPI format checks in src/amf/context.c and
src/amf/gmm-handler.c. The context.c code primarily man-
ages the 5G AMF context with functionalities such as user
registration, connection management, and resource allocation.
The gmm-handler.c code implements parts of the GMM func-
tionality in the 5G network, such as UE registration, status
management, identity recognition, and mobility management,
ensuring that users can communicate and move correctly
within the 5G network. The fix is shown in Figure 17.

All other implementation flaws in Open5GS (Open5GS-
2 to Open5GS-10) were related to the use of an unchecked
NULL pointer. Although Open5GS employs many assertions
in its codes to detect unexpected system conditions, the
lack of appropriate handling may cause system instability in
production networks.

12

1 mobile_identity_suci

S L

W

if (mobile_identity_suci->h.supi_format

= (
ogs_nas_5gs_mobile_identity_suci_t )
mobile_identity->buffer;
| =
OGS_NAS_5GS_SUPI_FORMAT_IMSI) {
ogs_error ("Not implemented SUPI format [%d]",
mobile_identity_suci->h.supi_format);
return NULL;

Fig. 17: Open5GS: Check SUPI format in src/amf/context.c
and src/amf/gmm-handler.c.

1 panic:

2 goroutine 52

runtime error: slice bounds out of range
[:46] with length 13
[running] :

3 github.com/.../nasMessage. (xRegistrationRequest) .

DecodeRegistrationRequest (0xc0006dc8£f0, O
xc000643850)

4 /go/.../nas@vl.0.7/nasMessage/

NAS_RegistrationRequest.go:196 +0x1b57

Fig.

18: Sample log for slice-bounds-out-of-range errors in

free5SGC version 3.2.1 and NAS version 1.0.7.

1 func

(S R SR )

=)}

(a *RegistrationRequest)
DecodeRegistrationRequest (byteArray x[]lbyte) {
buffer bytes.NewBuffer (xbyteArray)

case RegistrationRequestCapability5GMMType:

a.Capability5GMM nasType.NewCapability5GMM (
ieiN)

binary.Read (buffer, binary.BigEndian,
Capability5GMM. Len)

a.Capability5GMM. SetLen (a.Capability5GMM.
GetLen())

binary.Read (buffer, binary.BigEndian, a.
Capability5GMM.Octet[:a.Capability5GMM.
GetLen()])

&a.

Fig.

19: Flawed DecodeRegistrationRequest function in

free5SGC versions up to version 3.2.1.

1 case RegistrationRequestCapability5GMMType:

2

3

oo

10

11
12

a.Capability5GMM = nasType.NewCapability5GMM (

ieiN)
if err := binary.Read(buffer, binary.BigEndian,
&a.Capability5GMM.Len); err != nil {
return fmt.Errorf ("NAS ...: Sw", err)

}
if a.Capability5GMM.Len < 1
Len > 13 {
return fmt.Errorf ("invalid
Capability5GMM. Len)

|| a.Capability5GMM.

sd", a.

}

a.Capability5GMM. SetLen (a.Capability5GMM.GetLen
)

if err binary.Read (buffer, binary.BigEndian,
a.Capability5GMM.Octet[:a.Capability5GMM.
GetLen()]); err != nil {

return fmt.Errorf ("NAS

sw", err)

Fig.

20: Fixed DecodeRegistrationRequest function in

free5GC version 3.3.0.
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panic: runtime error: index out of range
[18446744073709551615] with length O

goroutine 15 [running]:

runtime/debug.Stack ()

/usr/.../stack.go:24 +0x65

github.com/.../service.handleConnection. funcl ()

/go/.../service.go:184 +0x58

panic ({0xc4£f860, 0xc000414ab0})

/usr/.../panic.go:1038 +0x215

github.com/.../aper.GetBitString ({0xc00002624a,
xb7e540, 0x12c36a0}, 0x0, 0x0)

/go/.../aper@vl.0.4/aper.go:54 +0x247
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Fig. 21: Sample log for index-out-of-range errors in free5SGC
version 3.3.0.

E free5GC

free5GC is a noteworthy open-source project at the fore-
front of advancing 5G technology. Designed as a 5G core
network framework, freeSGC offers a versatile and accessible
platform for developers, researchers, and network operators
to explore, implement, and optimize 5G core network func-
tionalities. With a commitment to open standards, freeSGC
enables seamless integration and interoperability within the
evolving landscape of 5G networks. Its modular architecture
and comprehensive feature set make it a valuable resource for
those seeking to understand, experiment with, and contribute
to developing robust and scalable 5G infrastructure. freeSGC
is implemented in the Go programming language, which
is targeted toward developing scalable and secure systems.
Runtime messages from goroutine threads were evaluated to
identify three common classes of implementation flaws at the
AMEF: slice bounds out of range, index out of range, and
invalid memory address or nil pointer dereference.

The class “slice bounds out of range” is often found in NAS
decoding procedures. Interestingly, implementation flaws in
this class are usually recognized by the NGAP fuzzing module
instead of the NAS fuzzing module because the NGAP fuzzing
module corrupts the format of the NAS message, whereas the
NAS fuzzing module generates protocol-compliant messages.
A sample log message reported for case freeSGC-5 is shown in
Figure 18. The logged information and corresponding source
codes are shown in Figure 19. This figure indicates that
a received packet is considered to be a NAS Registration
Request if its message type is RegistrationRequestCapabil-
itySGMMType. The code attempts to load the NAS payload
into the CapabilitySGMM.Octet byte array without checking
the array size (line 7 in Figure 19). Therefore, if the NAS
payload’s length exceeds the array size, a slice-bounds-out-
of-range error is triggered. This class of implementation flaws
can be easily fixed through a length check before data are
loaded into an array, as shown in Figure 20.

Index-out-of-range crashes are similar to slice-bounds-out-
of-range errors. These crashes are also usually triggered by
the NGAP fuzzing module. A sample log message reported for
case free5GC-1 is shown in Figure 21. The logged information
and corresponding source code shown in Figure 22 reveal that
when the variable numBits has a value of 0, a byte array
dstBytes of length O is created (lines 8-10). Consequently,
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1 func GetBitString(srcBytes
numBits uint) (dstBytes

[lbyte, bitsOffset uint

’ [lbyte, err error){

2 bitsLeft := uint (len(srcBytes))x*8 — bitsOffset

3 if numBits > bitsLeft {

4 err = fmt.Errorf ("Get %d, leftBits: %d",
numBits, bitsLeft)

5 return

6 }

7 byteLen := (bitsOffset + numBits + 7) >> 3

8 numBitsBytelLen := (numBits + 7) >> 3

9 dstBytes = make ([]byte, numBitsBytelen)

10 numBitsMask := byte (0xff)

11 if modEight := numBits & 0x7; modEight != 0 {

12 numBitsMask <<= uint8(8 - (modEight))

13 }

14 for 1 := 1; i < int(bytelen); i++ {

15 dstBytes[i-1] = srcBytes[i-1]<<bitsOffset |
srcBytes[i]>>(8-bitsOffset)

16 }

17 if byteLen == numBitsByteLen ({

18 dstBytes[byteLen-1] = srcBytes[byteLen-1] <<
bitsOffset

19 }

20 dstBytes [numBitsBytelLen-1] &= numBitsMask

21 return

22}

Fig. 22: GetBitString function in free5SGC version 3.3.0.

subsequent accesses to the array always trigger an index-out-
of-range error. This phenomenon was observed in free5GC
version 3.2.1 (CVE-2022-43677) but was not fixed in the next
release, namely version 3.3.0. We helped the development
team by generating test payloads that can reproduce this CVE
and fix the issue.

Finally, in every test state, “invalid memory address or
nil pointer dereference” crashes were observed as originating
from the ListenAndServe network function of the AMF (case
freeSGC-4). We concluded that freeSGC exhibits a race con-
dition issue when it handles high packet traffic and the high-
frequency establishment of the monitor’s SCTP connection to
the AMF. If a racing thread unexpectedly releases a shared
SCTP session, another thread trying to reuse the session
causes the aforementioned type of error. The aforementioned
three types of errors were revealed by the implementation
flaws summarized in Table II. Overall, the aforementioned
results demonstrate the effectiveness of our approach in finding
problems within free5SGC.

G. OpenAirlnterface-CN-5G (OAI-CN-5G)

OAI-CN-5G is an open-source project focusing on evolving
5G core network solutions. This project provides a flexible
and extensible platform for developing, testing, and deploying
various components, contributing to the ongoing innovation
and standardization of 5G technologies. OAI-CN-5G supports
open standards, which foster collaboration and enable interop-
erability within the dynamic landscape of 5G networks. This
project is mainly implemented in C++. It is worth noting
that the container for OAI-CN-5G by default activates the
AddressSanitizer feature to categorize recognized implementa-
tion flaws into decoding and network-associated issues. While
Address Sanitizers are designed to detect a wide range of



#0 __ GI_abort () at abort.c:107
#1 0x00007£934aed6837 in __ _libc_message (action=
action@entry=(do_abort | do_backtrace),
fmt=fmt@entry=0x7£934b003869 "*x* $s *x*x: $s
terminated\n") at ../sysdeps/posix/
libc_fatal.c:181
#2 0x00007£934af81b5f in _ GI___ fortify_fail_abort
(need_backtrace=need_backtracel@entry=true,
msg=msg@entry=0x7£934b0037e6 "buffer overflow
detected") at fortify_fail.c:33
#3 0x00007£934af81b81 in _ GI___ fortify_ fail
msg@entry=0x7£934b0037e6 "buffer overflow
detected")
at fortify_ fail.c:44
#4 0x00007£934af7£870 in
chk_fail.c:28
#5 0x00007f934af8laba in __ fdelt_chk
out>) at fdelt_chk.c:25
#6 0x0000556c85476395 in sctp::sctp_server::
sctp_receiver_thread(voidx*) ()
#7 0x00007£934d5bc6db in start_thread (arg=0
x7£9343d84700) at pthread_create.c:463
#8 0x00007£934af6e6lf in clone () at ../sysdeps/
unix/sysv/linux/x86_64/clone.S:95

(msg=

__GI chk_fail () at

(d=<optimized

Fig. 23: Backtrace of the OAISG-CN core network for the
implementation flaws demonstrated in case OAI-CN-5G-1.

memory errors, including those that may not immediately lead
to a crash, the bugs identified in this study all result in crashes.
As a result, the impact of employing Address Sanitizers for
detecting non-crashing memory bugs cannot be fully assessed
in this context.

Most OAI-CN-5G cases (from OAI-CN-5G-2 to OAI-CN-
5G-11) were attributable to decoding errors. The NGAP
fuzzing module corrupted the content of NAS messages,
leading to inconsistencies in the retrieved and actual payload
lengths following decoding. Consequently, memory copy oper-
ations based on the retrieved length and actual payload length
led to buffer overruns and crashes.

Network issues were related to high data packet traffic and
frequent establishment of SCTP connections between a mon-
itor and the AMF (case OAI-CN-5G-1). During the testing of
case OAI-CN-5G, regardless of which procedure code was se-
lected for fuzzing, an AMF crash occurred after approximately
200 iterations. Because OAI-CN-5G is mainly implemented
in C++, we could recognize the root cause in this case by
using the function call backtrace generated from the crash core
dump (Figure 23). Although an ABORT signal abnormally
terminated the process, the backtrace shows that the crash
originated from a function call from sctp_receiver_thread (#6)
to _ fdelt_chk (#5), which is a function used to check the
validity of a passed file description in the C library.

On the basis of the clues in the crash dump, the critical
codes that led to the aforementioned error were identified
within the sctp_server::sctp_receiver_thread function (Fig-
ure 24). Upon investigation, the clientsock variable was
discovered to continuously increase during testing, potentially
exceeding the limit of FD_SETSIZE, which is 1024 by default
in Linux. When this value is greater than or equal to 1024 and
an FD_SET operation is attempted, an overflow issue occurs
that ultimately causes the AMF to crash. This issue can be

1 if(FD_ISSET (i, &read_fds)) {

2 if (i == ptr->getSocket()) {

3 if((clientsock = accept (ptr->getSocket (), NULL
, NULL)) < 0) {

4 Logger::sctp () .error (

5 "[socket (%d)] Accept () error: ")

6 pthread_exit (NULL) ;

7 } else {

8 FD_SET (clientsock, &master);

9 if (clientsock > fdmax) fdmax = clientsock;

10 }

11 } else {

12 int ret = ptr->sctp_read_from_socket (i, ptr->
app_->getPpid());

13 if (ret == SCTP_RC_DISCONNECT) {

14 FD_CLR (i, &master);

15 if (i == fdmax) {

16 while (FD_ISSET (fdmax, &master) == false)

fdmax -= 1;
17 y)1}

Fig. 24: OAI-CN-5G: sctp_receiver_thread function.

addressed and prevented by checking whether clientsock
is less than FD_SETSIZE before executing the FD_SET oper-
ation. Moreover, when SCTP connections are being terminated
or closed, a close operation must be explicitly performed
on the file descriptor (fd) to release resources after calling
FD_CLR. Suitably managing file descriptors would ensure that
the value of clientsock returned from the accept system
call does not continually increase.

VI. CONCLUSION

This paper presents a systematic fuzz testing approach
for probing implementation flaws in the 5G core network.
The proposed system uses a UE/RAN emulator to simulate
the UE and a gNodeB for communication with a 5G core
network using the NAS protocol and NGAP. The proposed
FitM architecture mutates NAS and NGAP messages to trigger
crash events. To explore additional test states in the protocol
procedures, the FitM was modified to process encrypted NAS
messages. Our approach was evaluated on three popular open-
source 5G core networks, namely Open5GS, freeSGC, and
OAI-CN-5G; this fuzzer discovered novel implementation
flaws in all three networks. Most exception events originated
from “InitialUEMessage” in NGAP fuzzing and “Registration
Request” in NAS protocol fuzzing. We successfully triggered
crashes in various network functions of the AMF, AUSF, and
UDM, discovered eight new crash events, and successfully
reproduced 20 similar problems that were previously reported
in the developer community. Our experimental results indicate
that the proposed approach can considerably improve protocol
integrity and network security.
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APPENDIX A
5G KEY DERIVATION

The key derivation and distribution scheme presented in
Figure 3, based on [27], outlines the procedures for deriving
all keys within the 5G core network. The following keys are
implemented in this paper:

« Keys in the ARPF. The ARPF stores the long-term key K,
which must be 128 or 256 bits long.

o Keys in the AUSF. The AUSF derives the anchor key,
Kspar, from the authentication key material received from
the UDM during the authentication and key agreement
process.

« Keys in the SEAF. Upon successful primary authentication,
the SEAF receives Kggapr from the AUSF and derives
Ky from it. This key is then forwarded to the AMF.

« Keys in the AMF. The AMF receives K ap/r either from
the SEAF or another AMF. It then derives K/, from
K ) F for use in inter-AMF mobility, where the receiving
AMF adopts Ky, as its own K 4. Additionally, the
AMF derives Knagint and Knasenc to secure the NAS
layer.



