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Abstract
Dynamic point clouds are simple and versatile representations for
volumetric video. A challenge in processing and analyzing dynamic
point clouds is the lack of explicitly defined structure and motion
information across frames. This paper addresses a novel motion pre-
diction problem that jointly learns point clouds and motion vectors
by moving the points from a key frame to construct the following
non-key frames while approximating the rendered 2D views of the
input non-key frames. Our motion prediction algorithm is built
upon augmented dynamic 3D Gaussian Splatting (3DGS) training
algorithms with a lightweight point cloud converter and optimal
parameter selector. Extensive experiments show that our resulting
motion vectors lead to a PSNR (Peak Signal-to-Noise Ratio) gain
of up to 8.71 dB and SSIM (Structural Similarity Index Measure)
increase of up to 0.27, compared to the current practice. The com-
puted motion vectors can be leveraged in multiple downstream
applications, such as error concealment, temporal super-resolution,
and source coding. Using the learned motion vectors for error con-
cealment, we observe quality improvement by, at most, 3.93 dB in
PSNR and 0.28 in SSIM, compared to a state-of-the-art end-to-end
neural network.

CCS Concepts
• Computing methodologies→ Graphics systems and inter-
faces; Supervised learning; • Information systems→Multi-
media information systems.

Keywords
Dynamic point clouds, motion prediction, reconstruction
ACM Reference Format:
Cheng-Tse Lee, Yuan-Chun Sun, Yuang Shi, Mufeng Zhu,Wei Tsang Ooi, Yao
Liu, Chun-Ying Huang, and Cheng-Hsin Hsu. 2025. Joint Learning of Point
Clouds and Motion Vectors for Volumetric Video. In The 17th International
Workshop on IMmersive Mixed and Virtual Environment Systems (MMVE ’25),
March 31-April 4 2025, Stellenbosch, South Africa. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3712677.3720458

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMVE ’25, March 31-April 4 2025, Stellenbosch, South Africa
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1468-9/2025/03
https://doi.org/10.1145/3712677.3720458

1 Introduction
Dynamic point clouds have emerged as a versatile and efficient
representation of volumetric video. Unlike other 3D representa-
tions such as meshes, 3D point clouds can flexibly capture com-
plex, non-manifold shapes and represent a variety of attributes.
Furthermore, point clouds can be produced directly from sensors
such as Light Detection and Ranging (LiDAR) and RGB-D cameras.
Without topological information, point clouds are more compute-
and memory-efficient. MPEG has recently standardized two point
cloud compression formats, allowing compatible volumetric video
processing, streaming, and visualization, across applications and
devices. These benefits of point clouds have driven its use in many
applications, including: (i) eXtended Reality (XR) to enhance the
immersive experience through real-time 3D capturing and ren-
dering [7, 19]; (ii) networked collaboration systems to share 3D
scenes [10, 21]; (iii) cultural heritage preservation to record detailed
structures of historical sites [36]; and (iv) self-driving cars to model
environments for object detection and path planning [18].

An underlying property that leads to the simplicity and versatil-
ity of dynamic point clouds is that each frame is just an unstructured
list of 3D points with attributes. Such lack of structure, unfortu-
nately, is a double-edged sword, especially when multiple frames
of a dynamic point cloud sequence captured from a natural scene
need to be jointly analyzed and processed. A typical processing
pipeline produces each point cloud frame independently, optimized
for accurate 3D representation of the objects being captured. As
a result, there is no explicit relationship among the points across
different frames in a sequence. For example, each frame from the
well-known 8i Voxelized Full Bodies dataset [4] is just a list of points
without any correspondence between two points with the same
indices in adjacent frames. Such lack of structures complicates the
analysis and processing of dynamic point cloud sequences along
the temporal domain [31]. An important missing information is the
motion vectors–the motion of a point between two frames, which
are critical for many downstream applications, such as enabling
interpolation for error concealment and temporal super-resolution
and leveraging temporal redundancy for source coding.

To estimate the motion vectors between two unstructured point
cloud frames, prior studies resorted to point-matching heuristics.
For example, Hung et al. [13] proposed search algorithms to identify
similar points between two frames to infer their motion vectors.
Some other works chose to employ neural networks for point match-
ing [14, 22, 23, 32, 35, 39, 40], which assumed a fixed number of
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points across the frames. Such a strong assumption, unfortunately,
does not hold in dynamic point cloud sequences of natural scenes.
These studies focus on estimating motion vectors between two fixed
point cloud frames. This constraint severely limits the accuracy of
motion vectors, as it is too restrictive–after all, the goal of a point
cloud is to reproduce the visual appearance of a 3D scene when
rendered, and many possible point clouds can lead to the same
visual appearance. In this paper, we demonstrate that we can obtain
more accurate motion vectors if we allow modification to the points
in one of the frames, while retaining the visual appearance.

Fig. 1 illustrates our key idea. Given a sequence of point cloud
frames, we designate the first frame as the key frame and the rest as
non-key, predicted frames. For each predicted frame, we re-generate
a point cloud so that: (i) the rendered views of this point cloud
is as close to those of the corresponding input frame, and (ii) the
motion vectors between this and its previous frame are explicitly
defined. We refer to this problem as the motion prediction problem,
and propose an algorithm to solve it.

Our motion prediction algorithm consists of the following steps.
First, we render an input non-key frame (in dynamic point clouds)
into multiple representative 2D views with different camera param-
eters. Next, inspired by neural networks for training dynamic 3DGS
(3D Gaussian Splatting) representations [3], we construct a pre-
dicted non-key frame (in 3D Gaussian splats) with the best possible
quality of their rendered 2D views. Last, we propose a lightweight
procedure to convert this predicted non-key frame from 3D Gauss-
ian splats to a point cloud, with minimal quality degradation of the
rendered views while providing corresponding motion vectors.

This paper makes the following contributions:
• We develop a novel motion prediction algorithm for point
matching in dynamic point cloud sequences. Instead of in-
direct and vague mappings, we derive the motion vectors
from individual points of a non-key predicted frame to those
of its key frame.

• We demonstrate the potential use of the derived motion vec-
tors in a sample downstream application: error concealment,
in which some point cloud frames are lost, late, or corrupted
and need to be concealed at the receiver side using the suc-
cessfully decoded frames.

We conducted extensive experiments to evaluate our motion predic-
tion algorithm and the sample downstream application. Compared
to the current practice, the motion vectors produced by our mo-
tion prediction algorithm lead to: (i) higher 2D video quality by up
to 8.71 dB in PSNR (Peak Signal-to-Noise Ratio) and 0.27 in SSIM
(Structural Similarity IndexMeasure) [11]; (ii) higher 3D point cloud
quality with up to 61.31% reduction in average geometry distortion
and 55.49% increase in average luminance PSNR; and (iii) reasonable
running time. For error concealment, compared to the state-of-the-
art heuristics [13] and end-to-end neural network [2], our motion
vectors result in better 2D video quality: boosts by up to 1.29 dB
and 3.93 dB in PSNR as well as 0.07 and 0.28 in SSIM are observed.

2 Related Work
Heuristic-based point matching. Several prior studies [13, 17,
26, 28, 29] proposed some heuristics to match points among dif-
ferent frames of a dynamic point cloud sequence. For instance, Li
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Figure 1: Overview of our proposedmethod for joint learning
of point clouds and motion vectors.

et al. [17] developed 3D-to-2D projection methods for improving
the quality of 2D motion vectors in 2D video-based point cloud
coding. Shi et al. [28] presented a source coder for LiDAR point
clouds. For 3Dmotion vectors, Hung et al. [13] proposed three point
matching heuristics: (i) point-to-point matching based on position
and color similarity, (ii) triangular matching between a point and
multiple neighboring points, and (iii) cube matching among fixed
size cubes (instead of points). Different from our work, these prior
works derived some point mapping, which are typically not good
approximations of actual motion vectors.

Neural-network-based point matching. Neural networks
were also used to match points across different frames [8, 14, 22, 23,
32, 35, 39, 40] for frame interpolation or extrapolation. Their core
concept involved downsampling dynamic point clouds into a fixed,
predefined number of points, and then using a neural network to
compute the matching among these points. For example, Viola et
al. [32] proposed a two-stage neural network that takes 2,048 points
as input and minimizes the 𝐿2 error between predicted and actual
point positions. Similarly, Zeng et al. [39] proposed to match 1,024
points with a loss function based on Earth Mover’s distance [5].
These neural networks came with some, if not all, of the following
limitations: (i) fixed, and often too few, number of points per frame,
(ii) high computational complexity, and (iii) no color supports, and
are not well-suited to real-time applications with natural scenes.

End-to-end neural networks. Instead of explicit point match-
ing, some existing neural networks [1, 2, 6, 38] solved down-
stream applications in an end-to-end fashion. For instance, Ye et
al. [38] presented a two-stage neural network to model the re-
lationships among features computed from points for temporal
super-resk, lution. Akhtar et al. [2] transformed point cloud frames
into a multi-scale feature space and searched for spatial and tem-
poral patterns for temporal super-resolution. Their method was
also generalized to source coding [1], which employed matching
techniques in the feature space to reduce temporal redundancy
across frames. Fan et al. [6] applied multi-scale feature analysis
to identify matching among different frames to improve coding
efficiency. These studies did not provide point matching or motion
vectors, limiting their use in alternative downstream applications.

3 Motion Prediction Problem
3.1 Formulation
We first develop the formulation of our motion prediction problem.
Each sequence of dynamic point clouds is divided into recurring
Groups of Frames (GoFs), where a GoF consists of 𝐹 input frames.
We refer to the first frame, 𝐹1, as the key frame and the following
𝑁 − 1 frames, 𝐹2, 𝐹3, · · · , 𝐹𝑁 , as the non-key frames. We denote
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Figure 2: Our proposed motion prediction algorithm.

the number of points of 𝐹𝑛 (𝑛 ∈ {1, 2, ..., 𝑁 }) as 𝑀𝑛 . In general,
𝑀𝑛1 ≠ 𝑀𝑛2 ;∀𝑛1, 𝑛2 ∈ {1, 2, · · · , 𝑁 } and 𝑛1 ≠ 𝑛2. Each point𝑚 in
𝐹𝑛 (𝑛 ∈ {1, 2, · · · , 𝑁 } and𝑚 ∈ {1, 2, · · · , 𝑀𝑛}) is composed of a set
of attributes, including the positions 𝑃𝑛,𝑚 , which are the {𝑥,𝑦, 𝑧}
coordinates and the colors𝐶𝑛,𝑚 , which are the {𝑟, 𝑔, 𝑏} components.

Our motion prediction problem creates 𝑁 − 1 predicted non-
key frames as output, where each of these frames has 𝑀1 points,
i.e., the same as the key frame. We use 𝐹 ′𝑛 (𝑛 ∈ {1, 2, · · · , 𝑁 }) to
denote the predicted frames, where 𝐹 ′1 = 𝐹1. Upon getting the
predicted non-key frames, their “motion vectors" are defined with a
generalized meaning of difference in various attributes, not limited
to positions (x, y, z coordinates). In particular, we use 𝑃 ′𝑛,𝑚 and
𝐶′
𝑛,𝑚 to denote the positions and colors of point 𝑚 in predicted

frame 𝐹 ′𝑛 (𝑛 ∈ {2, 3, · · · , 𝑁 } and𝑚 ∈ {1, 2, · · · , 𝑀1}). We then write
motion vectors of positions and colors as Δ𝑃𝑛,𝑚 = 𝑃 ′𝑛,𝑚 − 𝑃𝑛,𝑚 and
Δ𝐶𝑛,𝑚 = 𝐶′

𝑛,𝑚 −𝐶𝑛,𝑚 , respectively. We collectively write all motion
vectors of a frame 𝐹 ′𝑛 as Δ𝑃𝑛 and Δ𝐶𝑛 for brevity.

The objective of our problem is to maximize the rendered view
quality of predicted non-key frames 𝐹 ′𝑛 (𝑛 ∈ {2, 3, · · · , 𝑁 }). Let V be
a set of representative virtual camera parameters for rendering the
point cloud frames. Each 𝑉 ∈ V contains virtual camera positions,
orientation, and intrinsic/extrinsic parameters. We use 𝑅(𝐹,𝑉 ) to
denote the rendered view of frame 𝐹 , where 𝐹 ∈ {𝐹1, 𝐹2, · · · , 𝐹𝑁 } ∪
{𝐹 ′1, 𝐹

′
2, · · · , 𝐹

′
𝑁
} and 𝑉 ∈ V. Last, we define 𝑄 (𝑅(𝐹𝑛,𝑉 ), 𝑅(𝐹 ′𝑛,𝑉 ))

to be the visual quality of the predicted frame 𝐹 ′𝑛 (𝑛 ∈ {2, 3, · · · , 𝑁 }),
compared to the input frame 𝐹𝑛 . The quality function could be based
on any objective quality metric, such as PSNR and SSIM.

With all the notations developed thus far, our motion prediction
problem can be written as:

argmax
{Δ𝑃𝑛,Δ𝐶𝑛 |∀𝑛=2,3,· · · ,𝑁 }

𝑁∑︁
𝑛=2

∑︁
𝑉 ∈V

𝑄 (𝑅(𝐹𝑛,𝑉 ), 𝑅(𝐹 ′𝑛,𝑉 )) . (1)

This motion prediction problem takes 𝐹𝑛 , ∀𝑛 ∈ {1, 2, · · · , 𝑁 }, as in-
put and produces 𝐹 ′𝑛 , ∀𝑛 ∈ {2, 3, · · · , 𝑁 }. The camera parameters V,
rendering function𝑅(·), and quality function𝑄 (·) are user-specified
system parameters.

3.2 Dynamic 3DGS Training Algorithms
Constructing predicted non-key point cloud frames to maximize
the objective function in Eq. (1) is no easy task. Therefore, we have
decided to leverage recent advances in dynamic 3DGS training
algorithms to develop our motion prediction algorithm. In addi-
tion to the position and color attributes of point clouds, Gaussian
splats come with two more attribute categories: (i) transformation,
including scale and rotation, to control their influence ranges and

orientations, respectively; and (ii) opacity, to determine their con-
tributions to rendered 2D views. Kerbl et al. [15] proposed the first
static 3DGS training algorithm to construct a single 3DGS frame
using: (i) a set of input 2D views, (ii) a set of corresponding cam-
era parameters, and (iii) an initial (random or generated from SfM,
structure from motion) point cloud. Their training algorithm [15]
derives gradients to iteratively update all four categories of at-
tributes to minimize the error between the input (ground truth) and
rendered 2D views. Here, the gradients of position attributes can
be thought of as moving points in the 3D space, while the gradients
of color, transformation, and opacity attributes can be thought of
as changing their values.

A naive way to apply this static 3DGS training algorithm on
a dynamic sequence is to perform frame-by-frame training. Do-
ing so, however, leads to flickering artifacts [27] along the time
domain, which can be attributed to the randomness involved in
the training algorithm and initial point clouds. Several dynamic
3DGS training algorithms have been proposed in the literature to
tackle these artifacts [3]. Like our considered problem, these dy-
namic 3DGS training algorithms divide each sequence into several
recurring GoFs, where each GoF consists of a key frame, followed
by multiple non-key frames. They move Gaussian splats of a key
frame to construct the following non-key frames under some local
rigid constraints instead of independently building individual non-
key frames from scratch. By doing so, they no longer suffer from
flickering artifacts and converge faster. The resulting outputs are
multiple 3DGS frames with the same number of Gaussian splats.
Comparing each non-key frame 𝐹 ′𝑛 (𝑛 ∈ {1, 2, · · · , 𝑁 }) with its key
frame 𝐹 ′1 = 𝐹1, we get Δ𝑃𝑛 (position) and Δ𝐶𝑛 (color)1, as well as:
(i) Δ𝑇𝑛 for transformation that consists of scale 𝑎 and orientation 𝑑
and (ii) Δ𝑂𝑛 for opacity 𝑜 .

3.3 Overview of Our Algorithm
Fig. 2 gives an overview of our proposed motion prediction algo-
rithm, which consists of four components: (i) image renderer, (ii)
dynamic 3DGS trainer, (iii) dynamic point cloud converter, and
(iv) optimal parameter selector. Note that our motion prediction
algorithm does not modify the key frame, which is directly taken
from the dataset and remains unchanged throughout the process.
As for non-key point cloud frames, the image renderer renders
the input 3D frames into 2D views using representative camera
parameters. These 2D views are then fed into the dynamic 3DGS
trainer, serving as the ground truth to construct the non-key 3DGS

1We note that while 3DGS supports view-dependent colors through Spherical Har-
monic (SH) coefficients, they are not widely used in point clouds. Hence, we only
consider view-independent color in this work.
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frames. In particular, the dynamic 3DGS trainer takes the key point
cloud frame as input and generalizes it into the 3DGS key frame
by setting all Gaussian splats’ scale, orientation, and opacity to be
pre-determined fixed values:𝐴0, 𝐷0, and𝑂0, since they do not exist
in point clouds.

The resulting key 3DGS frame is then passed into a modified dy-
namic 3DGS training algorithm, which adjusts the Gaussian splats
of the given key 3DGS frame to construct non-key 3DGS frames.
We note that, unlike existing dynamic 3DGS training algorithms,
such as D3DGS [25], our dynamic 3DGS trainer does not train the
key 3DGS frame. Similar to these algorithms, we adjust the 3DGS
attributes of non-key frames using the differentiable properties of
Gaussian rasterization to ensure their rendered views are as close to
the input 2D views from the image renderer as possible. The given
key and each constructed non-key 3DGS frame𝑛 (𝑛 ∈ {2, 3, · · · , 𝑁 })
define motion vectors Δ𝑃𝑛 , Δ𝐶𝑛 , Δ𝑇𝑛 , and Δ𝑂𝑛 .

The dynamic point cloud converter then turns the non-key 3DGS
frames into point cloud frames by stripping off transformation and
opacity attributes from individual Gaussian splats. Such a conver-
sion could degrade the quality of the rendered views from point
clouds compared to 3DGS frames. To mitigate this issue, we intro-
duce an optimal parameter selector to choose the best parameters,
such as the fixed scale 𝐴0 (of 3DGS) and rendered point size 𝑠 (of
point cloud), to minimize the quality degradation. More specifically,
the optimal parameter selector chooses the parameters through
real experiments to maximize the visual quality (defined in Eq. (1))
of the dynamic point cloud frames. Last, our motion prediction
algorithm returns dynamic point cloud frames along with corre-
sponding motion vectors derived from the optimal parameters.

3.4 Design Decisions
Dynamic 3DGS trainer. A couple of design decisions are made.
First, we need to determine the fixed 3DGS transformation and
opacity attributes, which will be stripped when Gaussian splats are
converted into points. For orientation 𝐷0, we set it to get spherical
rather than elliptical Gaussian splats, also for better approximating
points. Similarly, for opacity 𝑂0, we maximize its value because
point clouds are typically rendered without transparency. As for
scale 𝐴0, we choose a small value for all Gaussian splats to better
match the nature points. Different from 𝐷0 and 𝑂0, the best 𝐴0
value is not obvious, and we empirically derive it later. Second, we
fix these attributes throughout the training process, i.e., we changed
the loss function by removing the terms related to transformation
and opacity attributes. By doing so, our motion prediction algorithm
focuses on the spatial and temporal structures of each dynamic
scene and enjoys a reduced computational complexity.

Optimal parameter selector. Two core parameters need to be
optimally selected: (i) the fixed scale 𝐴0 of Gaussian splats (during
training) and (ii) the point size 𝑠 of point clouds (during rendering).
To cover a wider range of 𝐴0, we use a scale parameter 𝑙 = 𝑙𝑛(𝐴0)
as the control knob, following the original 3DGS paper [15]. Then,
the task we have in hand is to determine the best 𝑙∗ and 𝑠∗ for
the optimal visual quality of the renderer 2D views from predicted
point cloud frames. Because the Gaussian splats are trained with
the representative camera parameters V, here, we use a different
set of parameters V′ to evaluate quality fairly.

Our pilot tests indicated that, compared to 𝑠 , 𝑙 incurs higher im-
pacts on the visual quality of rendered views. Hence, our proposed
algorithm selects 𝑙∗ first and then determines 𝑠∗. The algorithm
comes with a few parameters: (i) initial point size 𝑆0, (ii) initial scale
parameter 𝐿0, (iii) point size step Δ𝑆 , and (iv) scale parameter step
Δ𝐿. We next give the sketch of our algorithm:

(1) We start from point size 𝑠 = 𝑆0, and execute the dynamic
3DGS trainer three times with 𝑙 ∈ {𝐿0 − Δ𝐿, 𝐿0, 𝐿0 + Δ𝐿}.
We then compute the visual quality of their rendered views
using camera parameters V′.

(2) If the visual quality of 𝑙 = 𝐿0 is not higher than both 𝑙 =
𝐿0 ± Δ𝐿0, we denote the 𝑙 = 𝐿0 ± Δ𝐿 with higher visual
quality as 𝑙 ′. We then run the dynamic 3DGS trainer again
with another scale parameter: 𝑙 ′+Δ𝐿 if 𝑙 ′ = 𝐿0+Δ𝐿; or 𝑙 ′−Δ𝐿
if 𝑙 ′ = 𝐿0 − Δ𝐿, to zoom into an interval with a better 𝑙 . By
repeating this exploration step a few times, eventually, we
would reach a scale parameter 𝐿𝑏 that leads to higher visual
quality than 𝐿𝑏 ± Δ𝐿. Next, we let 𝐿𝑢 be the scale parameter
𝑙 that leads to higher visual quality between 𝐿𝑏 ±Δ𝐿. At this
point, we know 𝑙∗ falls between 𝐿𝑏 and 𝐿𝑢 .

(3) We next perform a binary search for 𝑙∗ that maximizes the
visual quality between 𝐿𝑏 and 𝐿𝑢 , with a step size ofΔ𝐿/2𝑘−1,
where 𝑘 = 1, 2, · · · , 𝐾 is the number of iterations. After 𝐾
iteration, we get 𝑙∗.

(4) With the Gaussian splats trained with 𝑙∗, we progressively
increase the point size from 𝑆0 to 𝑆0 + Δ𝑆 , 𝑆0 + 2Δ𝑆 , and so
on, and render the views at each step. The process continues
until no further improvement in visual quality is observed,
at which point we determine the optimal point size, 𝑠∗.

If not otherwise specified, we empirically set 𝐾 = 3, 𝐿0 = −10,
Δ𝐿 = 1, and 𝑆0 = Δ𝑆 = 1. We note that our proposed optimal param-
eter selector terminates after a handful of executions of the dynamic
3DGS trainer (to search for 𝑙∗ in steps 1–3) and 3–4 rendered views
(to search for 𝑆∗ in step 4), which are both manageable.

4 Experiments
4.1 Setup
Implementations. We have implemented our proposed algorithm
in C++ and Python. Specifically, we use Open3D [41] in the image
renderer and optimal parameter selector to generate 2D views from
point cloud frames. The dynamic point cloud converter also em-
ploys Open3D to process (enriched) point clouds. To implement the
dynamic 3DGS trainer, we leverage the differential Gaussian ras-
terization [15] with a modified loss function based on D3DGS [25]
which is the first dynamic 3DGS training algorithm. We have also
implemented an error concealment algorithm as a sample down-
stream application, along with evaluation scripts.

Motion vectors. As there exists no prior work, we implement a
current, traditional practice by: (i) running D3DGS [25] for dynamic
3DGS frames and (ii) stripping off unnecessary attributes for point
cloud frames for comparison.

Four dynamic point cloud sequences: RedandBlack (RNB), Loot
(LOO), Soldier (SOL), and Longdress (LON), with different complex-
ity levels from 8i Voxelized Full Bodies dataset [4] are considered
for evaluation. We train each frame for 2,000 iterations and keep
other settings the same as traditional D3DGS. We randomly take
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(a) (b)

Figure 3: Sample overall quality with different parame-
ters: (a) PSNR and (b) SSIM from Loot.

Table 1: Optimal Parameters and Per-Frame Overhead

Seq. 𝑙∗ 𝑠∗ #T #R T. Time R. Time
LOO -11.00 2 6 (46%) 10 (15%) 97.35 s 5.34 s
SOL -9.5 2 5 (38%) 9 (14%) 119.45 s 6.09 s
RNB -11.00 2 6 (46%) 10 (15%) 96.24 s 5.32 s
LON -10.25 2 5 (38%) 9 (14%) 97.56 s 5.34 s

(a) (b) (c) (d) (e)

Figure 4: Per-sequence motion vector quality in: (a) PSNR, (b) SSIM, (c) CD, (d) HD, and (e) Y-PSNR.

93 frames of each sequence for experiments with a GoF size 31. We
construct the representative camera parameters V by first horizon-
tally dividing the equator at a step of 18° and then repeating this
four times with ±30° and ±60° in latitude, leading to |V| = 100. For
V′, we choose 32 random camera parameters that are not in V. All
cameras are placed at a distance so that the avatars occupy roughly
75% of the rendered image height.

We consider the following performance metrics:

• 2D video quality: (i) PSNR of foreground objects to avoid
bias due to identical background, and (ii) SSIM for human
perceived quality.

• 3D point cloud quality [33]: (i) Chamfer Distance (CD) rep-
resenting the overall point-wise distance, (ii) Hausdorff Dis-
tance (HD) representing the maximal distance of all nearest
point pairs, and (iii) Y-PSNR representing the color difference
between the nearest point pairs.

• Running time: We report per-frame running time on a PC
with an AMD 2.80 GHz CPU and NVIDIA RTX-3090 GPU.

We report the average results with 95% confidence intervals when-
ever possible. Notice that since our algorithm does not change key
frames, they are excluded when calculating 2D and 3D quality.

Error concealment. For comparison, we consider two repre-
sentative heuristics [13]: (i) point-to-point matching (P2P) and (ii)
cube matching (Cube) with their default parameters. Although not
initially proposed for error concealment, we also adopt a neural
network, IDEA-Net (IDEA) [39], for comparison. As IDEA takes
exactly 1,024 points as input, we have to divide each frame into
multiple cubes with 1,024 points and send each cube through IDEA.
We consider three frame loss patterns: 1, 2, and 4 consecutive and
recurring frame losses. We report 2D video quality of concealed
frames with per-frame running time from a PC with an Intel 3.50
GHz CPU and NVIDIA RTX-3080 Ti GPU.

4.2 Results
Optimality of selected parameters.We first check the selected
scale parameter 𝑙∗ and point size 𝑠∗ chosen based on PSNR. Fig. 3
gives sample heatmaps of average PSNR and SSIM from Loot, where
the top row gives the PSNR and SSIM from traditional. The numbers
represent the quality improvements with the selected parameters:
𝑙∗ = 11 and 𝑠∗ = 2: significant boosts of +8.71 dB in PSNR and 0.20
in SSIM compared to traditional. Without our optimal parameter
selector, an exhaustive search in this figure requires 13 3DGS train-
ings (check 𝑙) and 65 image renderings (check 𝑠). In contrast, our
optimal selection algorithm achieves almost optimal quality (with
small gaps of 0.02 dB in PSNR and 0.01 in SSIM), yet only takes
6 trainings (46.15% of the exhaustive search) and 10 renderings
(15.38%).

Table 1 shows the optimal parameters and per-frame overhead
from all sequences. In addition to the training and rendering num-
bers, per-frame running time is also provided. This table confirms
that our optimal parameters can largely reduce the training and
rendering numbers. Moreover, the per-frame training time is < 200
seconds, and the rendering time is < 7 seconds, which are both
reasonable for prerecorded dynamic point clouds. Given the near
optimality of our selected 𝑙∗ and 𝑠∗, we only report their results in
the following.

Our algorithm outperforms the current practice. Fig. 4 re-
ports our derived motion vectors’ 2D video and 3D point cloud
quality. We observe that our motion prediction algorithm consis-
tently outperforms traditional, in terms of 2D video quality: up to
8.71 dB in PSNR and 0.27 in SSIM are observed. Such quality boosts
are as designed because our dynamic 3DGS trainer employs a loss
function based on 2D image quality. For 3D point cloud quality, our
motion prediction algorithm also performs well in CD and Y-PSNR:
up to 61.31% reduction in CD and 7.88% rise in Y-PSNR are observed.

However, Fig. 4(d) shows that our motion prediction algorithm
leads to higher HD, compared to traditional. HD is a metric em-
phasizing the worst-case point pairs. Indeed, a closer inspection
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(a) (b)

Figure 5: A sample frame from RedandBlack: (a) a 2D input
view and (b) a zoom-in rendered view of the predicted frame
with a black background.

(a) (b)

(c) (d)

Figure 6: The 2D video quality of error concealment: (a) sam-
ple PSNR and (b) sample SSIM of concealed frames from
RedandBlack under different numbers of dropped frames; (c)
PSNR and (d) SSIM improvements from our motion vectors
and heuristics, compared to a state-of-the-art neural network
under a single dropped frame.

reveals that some outlying points appear in the background area,
causing high HD. Fig. 5 gives a visual example, whereas Fig. 5(a)
gives a ample input frame rendered into a 2D view with a white
background. Because these outlying points are in white, they im-
pose no negative impacts on the dynamic 3DGS trainers and 2D
video quality. Fig. 5(b) zooms into a region with a black background,
demonstrating the negative impact of the white outlying points on
HD. We believe an updated loss function could mitigate this issue
on HD and even improve 2D video quality, which is one of our
future tasks.

Our motion vectors improve the performance of error con-
cealment. Figs. 6(a) and 6(b) show the 2D video quality of the
concealed frames from a sample sequence: RedandBlack under dif-
ferent frame drop patterns. These figures show that concealing
frames with our derived motion vectors significantly improves over
the latest heuristics [13]: improvements by up to 1.29 dB in PSNR
and 0.07 in SSIM are observed with 4 consecutive frame drops.
Compared to IDEA [39]: improvements by up to 3.93 dB in PSNR

and 0.28 in SSIM are achieved with a single frame drop. Note that
we did not run IDEA with longer consecutive frame drops because
its performance with a single frame drop is already significantly
inferior to others. Figs. 6(c) and 6(d) report the 2D video quality
improvements achieved by heuristics and our motion vectors, com-
pared to IDEA. Across all sequences, our motion vectors outperform
IDEA by 1.97–3.93 dB in PSNR and 0.09–0.28 in SSIM, confirming
the merits of using better-quality motion vectors. Additionally, con-
cealing a missing frame with our motion vectors takes about 200
ms, while doing that with IDEA requires more than 2,000 s.

5 Potential Downstream Applications
Several sample downstream applications could benefit from our mo-
tion vectors: (i) Error concealment reconstructs missing dynamic
point cloud frames by leveraging successfully received frames.
Prior arts, like Hung et al. [13], employed a vague definition of
point matching to approximate motion vectors. These works could
directly benefit from our motion vectors; (ii) Temporal super-
resolution uses motion vectors to interpolate or extrapolate ad-
ditional frames for smoother dynamic scenes. Existing solutions
based on neural networks [14, 22, 23, 32, 35, 39, 40] could adopt our
unique idea to change input point clouds for better performance;
(iii) Source coding compresses dynamic point cloud sequences by
leveraging the spatial and temporal redundancy. Existing source
coders [1, 6, 9] define motion vectors on the input point cloud
frames, and may borrow our idea.

6 Conclusion and Outlook
We studied the problem of jointly learning point clouds and motion
vectors across dynamic point cloud frames, which has never been
considered in the literature. Our proposed motion prediction algo-
rithm employs four components: (i) image renderer, (ii) dynamic
3DGS trainer, (iii) dynamic point cloud converter, and (iv) optimal
parameter selector, to predict point clouds with explicitly defined
motion vectors while retaining high 2D visual quality. Extensive
experiments demonstrated the merits of our proposed algorithm,
which: (i) delivers much higher 2D video quality, (ii) achieves good
3D point cloud quality, and (iii) benefits downstream applications,
like error concealment in point cloud streaming.

Our work can be extended in several directions. For exam-
ple, while the white outlying points do not affect the image
quality of the rendered views, they result in excessive HD and
waste storage/transmission resources. Eliminating the outlying
points with recently proposed approaches, like Sauart et al. [30],
is worth investigating. Moreover, although our motion predic-
tion algorithm can work with any dynamic 3DGS training algo-
rithms [12, 16, 20, 24, 25, 27, 34, 37], we only augment D3DGS [25]
in this paper. Applying our methodology to other training algo-
rithms, potentially some hybrid ones is among our future tasks.
Last, our current motion prediction algorithm relies on Gaussian
splats as proxies. In the future, we could cut the computational
complexity by directly predicting non-key point cloud frames with
differentiable 3D point cloud rasterization. Moreover, broader com-
parisons with other related methods and evaluations on a more
diverse set of datasets could help further validate the effectiveness
and generalization of our method.
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