
1

DPAF: Image Synthesis via Differentially Private
Aggregation in Forward Phase

Chih-Hsun Lin , Chia-Yi Hsu , Chia-Mu Yu , Senior Member, IEEE,
Yang Cao , Member, IEEE, Chun-Ying Huang , Senior Member, IEEE

Abstract—Differentially private synthetic data is a promising
alternative for sensitive data release. Many differentially private
generative models have been proposed in the literature. Unfortu-
nately, they all suffer from the low utility of the synthetic data,
especially for high resolution images. Here, we propose DPAF,
an effective differentially private generative model for high-
dimensional image synthesis. Unlike previous private stochastic
gradient descent-based methods, which add Gaussian noise in the
backward phase during model training, DPAF adds differentially
private feature aggregation in the forward phase, which brings
advantages such as reducing information loss in gradient clipping
and low sensitivity to aggregation. Since an inappropriate batch
size has a negative impact on the utility of synthetic data, DPAF
also addresses the problem of setting an appropriate batch size
by proposing a novel training strategy that asymmetrically trains
different parts of the discriminator. We extensively evaluate
different methods on multiple image datasets (up to images of
128 × 128 resolution) to demonstrate the performance of DPAF.

Index Terms—Differential Privacy, Synthetic Dataset.

I. INTRODUCTION

The widespread use of IoT devices involves the collection of
data and the development of corresponding applications, which
are typically encrypted to ensure secure transmission to server
databases. As technological advancements rely on various data
for analysis and multiple downstream tasks, for example, deep
neural networks such as computer vision, natural language
processing, speech recognition, etc., require a large amount
of high-quality data. Unfortunately, much valuable data is
privacy sensitive, and direct use of the data becomes infeasible.
Synthetic data has been proposed as a means to overcome the
above difficulty. In particular, synthetic data from generative
models can have the same statistical information as the original
data, and thus leads to great data utility, which means that the
analytical result on the synthetic data is similar to the one
on the original data. Synthetic data sampled from the data
distribution estimated by generative models is usually assumed
to be decoupled from the original data and therefore implies
privacy. However, recent studies reveal that the generative
models still leak privacy information [1], [2], [3].

Differential Privacy (DP) [4] is the gold standard for privacy.
Differentially private deep learning (DPDL), a variant of deep
learning with the DP guarantee, can be used to provably
preserve the privacy of DL models. For example, Abadi et
al. [5] propose differentially private stochastic gradient descent
(DPSGD) to train a DP classifier by adding the Gaussian
noise to the clipped gradient. A majority of subsequent works
apply DPSGD during the training of generative adversarial
networks (GANs) to derive differentially private generative

Chih-Hsun Lin, Chia-Yi Hsu, Chia-Mu Yu (corresponding author, chia-
muyu@nycu.edu.tw), and Chun-Ying Huang are with National Yang Ming
Chiao Tung University, Taiwan. Yang Cao is with the Tokyo Institute of
Technology, Japan.

adversarial networks (DPGANs). Although DPSGD remains
the most popular method for training a DPDL model, DPSGD
has negative [6] effects on the model utility. Thus, the proper
design of DPGANs is far from trivial.

In this work, we aim to design a DPGAN for image
synthesis by relying on DPSGD. The primary goal of our
work is to generate high-dimensional images in a DP manner
so that the downstream classification task can have high
classification accuracy. It has been widely known that the
utility of DPSGD-based DPGANs is degraded due to two
factors, the information loss in gradient clipping and DP
noise. In this sense, our proposed techniques are designed to
reduce both the information loss (by minimizing the size of
the gradient vector) in gradient clipping and DP noise (by
minimizing the global sensitivity).

Several efforts have been made to reduce the information
loss of DPSGD. For example, GS-WGAN [7] minimizes the
information loss by exploiting the 1-Lipschitz property of
WGAN [8]. However, its generative power is also limited by
the WGAN structure. DataLens [9] compresses the gradient
vector by keeping only the top-𝑘 values and then quantizing
them. Since the non-top-𝑘 values in the gradient vector do
not involve gradient clipping, more meaningful quantities can
be retained from the top-𝑘 values. However, the success of
DataLens relies heavily on training a large number of teacher
classifiers, which hampers its practicality due to large amounts
of GPU memory.

Our method takes a different approach, i.e., we perform
a DP feature aggregation in the forward phase during the
training of the NN. The postprocessing of DP ensures that the
number of dimensions of the gradient vector can be effectively
reduced. This greatly reduces information loss from gradient
clipping in DPSGD. On the other hand, choosing a large batch
size is a straightforward way to reduce the negative impact
of DP noise, because the DP noise can be easier to cancel
each other out. Unfortunately, a large batch size leads to much
fewer updates of the discriminator, and thus the training cannot
converge given a fixed number of epochs. In addition, due
to the feature aggregation in our proposed method, the large
batch size also easily makes features indistinguishable, which
is detrimental to the utility of the synthetic data and, in turn,
favors a small batch size instead. We address this dilemma
through an elaborate design of the training strategy.

Contribution. The contributions are summarized below.

• We propose DPAF (Differentially Private Aggregation in
Forward phase), an effective generative model for differen-
tially private image synthesis. DPAF supports the conditional
generation of high-dimensional images.

• We propose a novel framework to enforce DP during GAN
training. In particular, we propose to place a differentially
private feature aggregation (DPAGG) in the forward phase.

https://orcid.org/0000-0002-2668-0556
https://orcid.org/0009-0000-7772-8735
https://orcid.org/0000-0002-1677-2131
https://orcid.org/0000-0002-6424-8633
https://orcid.org/0000-0001-5503-9541

2

Together with a simplified instance normalization (SIN),
DPAGG can not only have a natural and low global sensi-
tivity, but also significantly reduce the dimensionality of the
gradient vector. We also have a novel design of asymmetric
model training, which solves the dilemma that a small batch
cannot effectively reduce the DP noise, but a large batch will
make features indistinguishable.

• We formally prove the privacy guarantee of DPAF. Fur-
thermore, we conduct extensive experiments on DPAF on
popular image datasets, CelebA (rescaled to 64 × 64) and
FFHQ (128×128). Our experimental results show that DPAF
outperforms the previous solutions on CelebA and FFHQ
in terms of both classification accuracy (e.g., [(0.802 −
0.700)/0.700] × 100% = 14.57% improvement on CelebA-
Gender with privacy budget 𝜀 = 1 compared to SOTA)
and visual quality, as DPAF is characterized by its unique
property that the generative capability is maximized for
larger images.

II. RELATED WORK

This paper primarily studies how to synthesize images with
the DP guarantee. The works for DP tabular data synthe-
sis [10], [11], [12] are not in our consideration. In addition,
though DP generative models and DP classifiers [13], [14],
[15], [16], [17] share DPSGD-based training strategies, the
design of DP classifiers is beyond the scope of this paper.

Differentially Private Generative Models. Differentially
private stochastic gradient descent (DPSGD) [5] and pri-
vate aggregation of teacher ensembles (PATE) [18], [19] are
two common techniques that achieve DP generative models.
DPSGD trains a model by injecting DP noise into the gradient
in each training iteration; i.e., the gradient is first clipped to
ensure a controllable global sensitivity and then perturbed by
a proper Gaussian noise. Nevertheless, gradient clipping in
DPSGD incurs significant information loss, which severely
compromises model accuracy. To improve the utility of DPDL
models, PATE partitions the sensitive dataset into disjoint
subsets and trains a teacher model for each subset. The
noisy aggregated teachers vote to determine the class for the
unlabeled public data. PATE possesses the advantage of no
information loss, in contrast to DPSGD. Nonetheless, despite
no information loss, the application of PATE to generative
models is by no means trivial, because the generator may
output synthetic samples with similar labels, and consequently
the teacher models cannot learn to be updated effectively [20].

DPSGD-Based Approach. Although gradient clipping is
beneficial in reducing global sensitivity, it leads to a dramatic
loss of information and therefore hurts the model utility.
Therefore, the majority of works focus on improving the
DPSGD. Zhang et al. [21] cluster the parameters with similar
clipping bounds, and add DP noise to different parts of the
gradient. For better control of the noise scale, McMahan et
al. [22] and Thakkar et al. [23] compute the clipping bound
via adaptive clipping. GANobfuscator [24], GS-WGAN [7],
and Xie et al.’s method [25], all based on the improved
WGAN framework [8], reduce the noise scale by exploiting
the Lipschitz property. In addition, GS-WGAN argues that the
discriminator does not need to be trained via DPSGD because
only the generator is released. By projecting the gradients onto
a predefined subspace [26], [27], one can reduce the global
sensitivity to lower the DP noise scale.

PATE-Based Approach. Through the teacher ensemble,
PATE-GAN uses the noisy labels on the samples generated

by the generator to train both the generator and the discrim-
inator based on the PATE framework. However, an inherent
assumption behind PATE-GAN is that the generator is capable
of generating samples from the entire real sample space, which
is not always true. G-PATE [28] achieves DP on the aggregated
gradient from the teacher ensemble when backpropagating to
update the generator, through the Confident-GNMax aggrega-
tor [19]. Similar to G-PATE [28], DataLens [9] enforces DP
on the aggregated gradient from the teacher ensemble, but the
aggregated gradient is compressed and quantized to limit the
information loss of gradient clipping.

Non-Adversarial Learning-based Approach. DP-
MERF [29] trains the generator by considering the maximum
mean discrepancy (MMD) over random feature representations
of kernel mean embeddings for both the data and generator
distributions. Given the use of MMD, DP-MEPF [30],
DP-NTK [31], and DP-HP [32] consider the pre-trained
perceptual features, the features of the neural tangent kernels,
and the Hermite polynomial features, respectively. Following
a framework similar to DP-MERF, DP-Sinkhorn [33] and
PEARL [34] train the generator instead by minimizing the
Sinkhorn divergence with semi-debiased Sinkhorn loss and by
minimizing the characteristic function distance, respectively.
P3GM [35] considers a two-phase training for the variational
autoencoder (VAE). In particular, P3GM trains the encoder
and then trains the decoder with the frozen encoder. Such a
two-phase training increases the robustness against noise for
DP. Similar to P3GM, DP2-VAE [36] and DPD-fVAE [37] are
also VAE-based approaches. DPGEN [38] takes a different
approach; it applies randomized response (RR) [4] to the
movement direction of the Markov Chain Monte Carlo,
avoiding the information loss of gradient clipping in DPSGD.
Unfortunately, it only supports unconditional generation,
so labeling the synthetic data consumes additional privacy.
Recently, DPDC [39] has been proposed to synthesize data
privately by taking advantage of dataset condensation [40].
The simplest form of DPDC is to apply Gaussian noise to
the aggregated gradient, which is the sum of the gradients
of random samples from a given class. Due to not only the
sequential denoising behavior, but also the non-adversarial
learning, DPDM [41], built upon the diffusion model [42],
[43], is more robust to the DP noise. Ghalebikesabi et
al’s method [44] also relies on diffusion models and shows
remarkably high test accuracies. However, their batch sizes are
set up to 16,384, which is unacceptable for most commercial
machines. DP-promise [45] also uses diffusion models, and
they proposed a two-phase training process with DPSGD and
SGD. PrivImage [46] carefully selected 1% of the public data
by spending a small privacy budget to train the pre-trained
model. Unlike training a generative model, DPSDA [47]
obtains images by querying public APIs.

III. PRELIMINARIES

Here, we introduce some necessary technical background
for DPAF. First, we formulate DP. Then, we briefly describe
generative models and transfer learning. Afterward, we will
introduce how to train a neural network in a DP manner.

Differential Privacy. (𝜀, 𝛿)-differential privacy [4], (𝜀, 𝛿)-
DP, is the de facto standard for data privacy. The privacy of
(𝜀, 𝛿)-DP comes from limiting the contribution of an input
sample to the output distribution. More specifically, 𝜀 > 0
bounds the log-likelihood ratio of any given output when the

3

algorithm is run on two datasets that differ in one sample,
while 𝛿 ∈ [0, 1] is the probability that certain outputs violate
the above bound.

Definition 1: An algorithm M is (𝜀, 𝛿)-DP if for all S ⊆
Range(M) and for any neighboring datasets D and D′,

Pr[M(D) ∈ S] ≤ 𝑒𝜀Pr[M(D′) ∈ S] + 𝛿. (1)

Throughout this paper, D and D′ are neighbors if D can
be obtained by adding or removing a sample from D′ in the
unbounded DP sense [48]. DP can quantify privacy loss; i.e.,
𝜀 in Eq. (1), called the privacy budget, measures the privacy
loss. In essence, privacy gets worse with an accumulated 𝜀.
DP can be achieved by applying the Gaussian mechanism 𝐺𝜎 ,
where the zero-mean Gaussian noise with appropriate variance
is added to the algorithm output. More specifically, given a
function 𝑓 , 𝐺𝜎 ◦ 𝑓 (𝑥) ≜ 𝑓 (𝑥) + 𝑁 (0, 𝜎2) satisfies (𝜀, 𝛿)-
DP for all 𝜀 < 1 and 𝜎 >

√︁
2 ln(1.25/𝛿)Δ2, 𝑓 /𝜀, where the

ℓ2-sensitivity of 𝑓 is defined as Δ2, 𝑓 ≜ maxD,D′ | | 𝑓 (D) −
𝑓 (D′) | |2 for neighboring D and D′.

DP has the following useful characteristics. First, repeated
access to sensitive data leads to an accumulation of privacy
loss. Such privacy loss can be bounded by the sequential
composition theorem or higher-order techniques (e.g., mo-
ments accountant [49], [5]). Second, DP is not affected by
postprocessing. Formally, 𝑔 ◦ M for any data-independent
mapping 𝑔 still satisfies (𝜀, 𝛿)-DP, given that M is (𝜀, 𝛿)-DP.

Generative Adversarial Network (GAN). A GAN consists
of two components, a generator 𝐺 and a discriminator 𝐷.
Specifically, 𝐺 learns to output synthetic samples, while 𝐷,
which takes as input both the synthetic samples and the
sensitive dataset, is trained to discriminate between real and
fake samples. Formally, given the real sample 𝑥 and a sampled
noise 𝑧, 𝐷 is trained with the loss function L𝐷 = − log 𝐷 (𝑥)−
log(1 − 𝐷 (𝐺 (𝑧))). On the other hand, 𝐺 is trained with the
loss function L𝐺 = − log 𝐷 (𝐺 (𝑧)).

GAN can be extended to conditional GAN (cGAN) [50].
The difference between GAN and cGAN is that the latter can
generate samples with a specific class (aka conditional genera-
tion), while the former cannot. cGAN can also be instantiated
by the generator-discriminator architecture above. In addition,
the class label is usually added to either the generator or the
discriminator (or both) to ensure that the synthetic sample is
consistent with the input class label. Examples of cGANs are
AC-GAN [51] and cDCGAN [52].

Transfer Learning. Usually, a DNN model consists of
two parts, feature extractor (FE) and label predictor. Transfer
learning aims to effortlessly train a target model for a specific
task by leveraging the pre-trained FE for another but related
task. In particular, the target model is composed of the pre-
trained FE and a randomly initialized label predictor. During
the training of the target model, the FE is frozen and only
the label predictor is updated with the training set from the
target task. Formally, let 𝑀 (𝑥) be the function of the target
model with 𝑥 as the input vector. 𝑀 can be represented as
𝑀 (𝑥) = 𝑀𝑐 (𝑀 𝑓 (𝑥, 𝜃 𝑓), 𝜃𝑐), where 𝑀 𝑓 , 𝑀𝑐, 𝜃 𝑓 , and 𝜃𝑐 denote
the FE, the label predictor, the parameters of the FE, and
the parameters of the label predictor, respectively. A typical
approach to transfer learning is to optimize the objective,
min𝜃𝑐

∑
𝑥∈𝑋,𝑦∈𝑌 𝐿 (𝑀𝑐 (𝑀 𝑓 (𝑥, 𝜃 𝑓 0), 𝜃𝑐), 𝑦), where 𝜃 𝑓 0 denotes

the parameters of the pre-trained FE, 𝐿 is a loss function, and
𝑋 and 𝑌 are the training data and labels, respectively.

Differentially Private Stochastic Gradient Descent. Dif-
ferentially private stochastic gradient descent (DPSGD) is the

most popular technique to train a DPDL model. Given a
training set {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1, the update of the ordinary stochastic
gradient descent (SGD) is formulated as 𝑤𝑡+1 = 𝑤 (𝑡) −
𝜂𝑡

1
𝐵

∑
𝑖∈B𝑡 ∇L(𝑤 (𝑡) , 𝑥𝑖 , 𝑦𝑖), where L(𝑤, 𝑥, 𝑦) is the loss func-

tion with the model parameter 𝑤, input sample 𝑥, and label 𝑦,
and B𝑡 is the set of samples at iteration 𝑡 with |B𝑡 | = 𝐵. As
the gradient has an unbounded sensitivity, one has to clip the
gradient to ensure a bounded DP noise magnitude. Formally,
the update of DPSGD can be formulated below.

𝑤𝑡+1 = 𝑤 (𝑡) − 𝜂𝑡

1
𝐵

∑︁
𝑖∈B𝑡

clip𝑢
(
∇L(𝑤 (𝑡) , 𝑥𝑖 , 𝑦𝑖)

)
+ 𝜎𝑢

𝐵
𝜉

 , (2)

where 𝜂𝑡 is the learning rate, 𝜉 is sampled from the zero-mean
Gaussian distribution, 𝜎 specifies the standard deviation of the
added noise, and clip𝑢 is defined as clip𝑢 (𝑣) = min{1, 𝑢

| |𝑣 | |2 } ·𝑣
with 𝑢 as a manually configurated clipping threshold. Usually,
𝑢 is used as the ℓ2-sensitivity for SGD.

IV. THREAT MODEL

In practice, DL models are usually trained with privacy-
sensitive data. Thus, keeping the training data private is a
major concern before the real-world deployment of DL-based
systems. Unfortunately, given access to the classifiers only, the
attacker can still infer whether a specific sample is in training
set by launching a membership inference attack (MIA) [53],
[54]. It has been proven that MIA can apply to not only
classifiers [53] but also GANs [1], [2], [3]. Furthermore,
compared to MIAs, model inversion attacks [55] aim to
recover the training samples. Though certain defenses have
been developed, the reconstruction attack can still work [56].

Goal. DP can protect against MIAs and training data
reconstruction. Thus, our goal is to ensure the DP guarantee of
the GANs while maintaining a high utility. More specifically,
we assume that only the generator of a GAN is released for
data synthesis. In other words, the attacker has no access
to the discriminator. An attacker’s access to the generator
should not lead to privacy leakage of training samples, even
if the attacker launches MIAs and the data recovery attacks
mentioned above. In particular, maintaining high utility while
ensuring privacy in DPGANs is very challenging because the
DP noise can dramatically hinder the training of DPGANs.
Here, the utility in our consideration includes the predicting
accuracy of the classifier trained on synthetic samples and
tested on real samples, and the visual quality of the synthetic
samples (see Section VI-A).

V. PROPOSED METHOD

We give an overview in Section V-A, present DPAF in
Section V-B, and have discussions of the design rationale
behind DPAF in Section V-C.

A. Overview
Unlike previous DPGANs, DPAF has a fundamentally dif-

ferent design where DP feature aggregation is performed in
the forward phase. DPAGG, the procedure for implementing
DP feature aggregation, not only sums the vectors from the
forward layer but also requires that each vector undergo
simplified instance normalization to ensure each feature vector
is bounded (detail in The Design of DPAGG in Section V-B).
The aggregated feature makes the image features more robust
against the DP noise. On the other hand, the DP feature

4

(a) w/o DP aggregation. (b) w/ DP aggregation.

Fig. 1: The illustration of the impact of DP feature aggregation
on the size of the gradient vector.

(a) w/o DP aggregation. (b) w/ DP aggregation.

Fig. 2: The impact of DP feature aggregation on the gradient
structure preservation during the backpropagation.

aggregation in the forward phase implies a shortened gradient
vector, resulting in a significant reduction of information loss
in gradient clipping. DPAF is also characterized by the use of
a simplified instance normalization that preserves fine-grained
features and reduces ℓ2 sensitivity. Overall, the five advantages
of performing DP feature aggregation in the forward phase are
summarized below.

Reduction of Information Loss in Gradient Clipping.
The first advantage is the dimensionality reduction of the
gradient vector, as illustrated in Figure 1. More specifically,
gradient clipping in DPSGD inevitably leads to information
loss. However, gradient clipping has less impact on shorter
gradient vectors, resulting in less information loss. As shown
in Figure 1a, the gradient vector to be clipped will be longer
if DP feature aggregation is not used. On the contrary, as
shown in Figure 1b, conv3 has been privatized after DP feature
aggregation due to the postprocessing property of DP, and can
be updated by SGD. As a result, since only conv1 and conv2
need to be updated by DPSGD, the information loss due to
gradient clipping can be mitigated.

Better Preserving Gradient Structure. During backprop-
agation, DPSGD applies noise to the weights in a layer-by-
layer manner, as shown in Figure 2a, which makes training
more difficult because such an updating process destroys the
inherent structure of the gradient vector. Thus, the second
advantage is to better preserve the gradient structure. This is
due to the fact that the aggregated DP vector is a vector of
aggregated noisy image features. As shown in Figure 2b, since
the aggregated features still have the inherent semantics, the
corresponding noisy version remains meaningful. On the other
hand, as also shown in Figure 2b, conv3 can be updated by

Fig. 3: The illustration of the better robustness against the DP
noise after the feature aggregation.

SGD instead of DPSGD, which better preserves the inherent
gradient structure. In this case, only layers (e.g. conv2) need
to be updated by DPSGD, and as a result, only a small fraction
of the parameter structure will be affected by DPSGD.

Better Robustness against DP Noise. The aggregation of
the features from samples makes the aggregated feature more
robust to the DP noise, because the DP noise is added after
the feature value summation. This is illustrated in Figure 3,
where each individual feature is relatively susceptible to the
DP noise, but the aggregated one has the larger values and, as
a result, better robustness.

Better Preserving Image Features. From Figure 3, we
know that the aggregated feature vector, which is robust to
the DP noise, helps in synthesizing realistic samples (because
it is backpropagated to update 𝐺), but such synthetic samples
may be irrelevant for a particular label. In fact, the feature
values should have similar numerical ranges, otherwise 𝐷 will
only pay attention to the features with large values and ignore
the features with small values. As a consequence, 𝐺 cannot
be updated well. We propose to use a simplified instance
normalization (SIN) to ensure that fine-grained features can be
learned. Specifically, SIN is applied to each feature map in-
dividually. Then, the feature vector (concatenated normalized
feature maps) undergoes aggregation. For example, this helps
in synthesizing faces with consistent gender in the conditional
generation of faces. In other words, in general, without SIN,
due to the imbalance of feature values, some feature values
will be devoured by the others, resulting in the disappearance
of certain important feature values that are related to the
specific class.

Low Global Sensitivity. The fifth advantage is the low ℓ2-
sensitivity of the SIN-and-aggregation operation. More specif-
ically, as mentioned above, the feature maps need to be
normalized and then concatenated as the feature vector before
the aggregation. We find that the ℓ2-sensitivity of such an SIN-
and-aggregation operation can be calculated as a relatively
small and controllable value

√
𝑚𝑝, where 𝑚 is the number of

feature maps and the size of the feature map is 𝑝× 𝑝. Properly
setting

√
𝑚𝑝 effectively reduces the noise magnitude, thereby

raising the utility (see Section V-C).

B. DPAF
Here, we present DPAF (Differentially Private Aggregation

in Forward phase), an effective generative model for differ-
entially private image synthesis. The architecture of DPAF is
illustrated in Figure 4. The notation table summarizing the
frequently used notations can be found in Table XVIII in
Supplementary Materials. DPAF is trained by using transfer

5

Fig. 4: The model architecture of DPAF.

learning. Hence, similar to transfer learning, DPAF has two
phases, training a classifier first and training a GAN, both in
the DP manner. We describe each of them below.

Although DPAF uses transfer learning as a subroutine to
improve utility, it does not use warm start [21], a technique to
improve utility by exploiting the extra data with similar data
distribution, because it is not common to find such data for
arbitrary sensitive datasets.

1) Training a Classifier Before Transfer Learning: The
workflow of training the classifier 𝐶 in DPAF before transfer
learning is shown in Figure 5. The classifier 𝐶 is identical
to the discriminator of cDCGAN (in fact, a standard con-
volutional neural network (CNN), see Section V-C), where
there are three parts of convolutional layers (conv1, conv2,
and conv3) and some fully connected (FC) layers, except that
an aggregation layer is added between conv2 and conv3. The
actual numbers of layers for the convolutional and FC layers,
and the number of neurons in the input layer, depend on the
size of the input image. We follow the common setting that
the height/width of the feature maps in the next convolutional
layer is half that of the current convolutional layer.

C
O

N
V

1

C
O

N
V

2

CONV3 & FC

x1 x2 x3

one batch

AGG

x1

x2

x3
Compute gradient

𝑔𝐶𝑂𝑁𝑉2 & 𝑔𝐶𝑂𝑁𝑉3 & 𝑔𝐹𝐶

x1

Compute gradient

𝑔𝐶𝑂𝑁𝑉1
𝑥1

Compute gradient

𝑔𝐶𝑂𝑁𝑉1
𝑥3

x3

…

𝑔𝐶𝑂𝑁𝑉1
𝑥3

𝑔𝐶𝑂𝑁𝑉1
𝑥2

𝑔𝐶𝑂𝑁𝑉1
𝑥1 𝐶𝐿𝐼𝑃(𝑔𝐶𝑂𝑁𝑉1

𝑥1 , 𝐶)

𝐶𝐿𝐼𝑃(𝑔𝐶𝑂𝑁𝑉1
𝑥2 , 𝐶)

𝐶𝐿𝐼𝑃(𝑔𝐶𝑂𝑁𝑉1
𝑥3 , 𝐶)

𝑵(𝟎, 𝑪𝟐𝝈𝟐𝑰)

Σ

𝒈𝑪𝑶𝑵𝑽𝟏=
𝟏

𝟑
𝒓𝒆𝒔𝒖𝒍𝒕

𝒈𝑪𝑶𝑵𝑽𝟏, 𝒈𝑪𝑶𝑵𝑽𝟐, 𝒈𝑪𝑶𝑵𝑽𝟑, 𝒈𝑭𝑪

Updating Classifier

AGG

AGG

AGG

AGG:

AGG:

w/ forwarding aggregation

w/o forwarding aggregation

w/ DP

w/o DP

Fig. 5: The procedure of updating classifier.

The ordinary CNN is designed to classify inputs. However,
because we introduce an aggregation layer (AGG) between
conv2 and conv3, which aggregates multiple normalized fea-
tures in a batch, obviously the CNN can no longer output the
predicted class for a given input image and label. Instead, 𝐶
here is designed to predict the percentage of each class in
a given batch, as shown in Figure 4. To achieve the above
goal, 𝐶 is trained with the labeled sensitive data (img𝑅 in

Algorithm 1: Training of DPAF
1 Notation: number of batches B, mean square error loss

function LMSE, binary cross-entropy loss functions
LBCE, L′BCE, L′′BCE, asymmetry multiplier 𝜇, number
of critic iterations per generator iteration 𝑛critic

/* for-loop below trains the classifier 𝐶 */

2 for 𝑖 = 1 to B do
3 compute LMSE over the 𝑖-th batch
4 perform SGD for updating conv2, conv3, and FC

and then perform DPSGD(𝜀1) for updating conv1
in one round of backpropagation

5 conv1*← conv1 // conv1* and conv1 share

parameters

6 for 𝑖 = 1 to B do
/* computing LBCE on 𝐷 with DPAGG(𝜀3), L′BCE

on 𝐷 that replaces DPAGG(𝜀3) by AGG, and

L′′BCE on 𝐷 without DPAGG(𝜀3),

respectively */

7 compute LBCE over the 𝑖-th batch
/* code below asymmetrically trains 𝐷 */

8 if 𝑖%𝜇 = 0 then
9 compute L′BCE over the [𝑖 − 𝜇 + 1, 𝑖]-th batches

10 SGD for updating conv3* and FC* by LBCE
11 DPSGD(𝜀2) for updating conv2* by L′BCE

12 else
13 SGD for updating conv3* and FC* by LBCE

/* the code below trains 𝐺 */

14 if 𝑖%𝑛critic = 0 then
15 compute L′′BCE over each sample from the 𝑖-th

batch
16 SGD for update of 𝐺

Figure 4) through the mean square error (MSE) loss function,
LMSE. Afterward, in one round of the backpropagation, SGD
is applied to conv2, conv3, and FC for the update of the
corresponding parameters, while the DPSGD with the privacy
budget 𝜀1, DPSGD(𝜀1), is applied to conv1, because only
conv1 will be recycled to be used after transfer learning.
Lines 2∼4 in Algorithm 1 correspond to the above training
procedures. After training, conv2, conv3, and FC are discarded
and will not be released.

𝒈𝑪𝑶𝑵𝑽𝟐∗=

𝟏

𝟑
𝒓𝒆𝒔𝒖𝒍𝒕

C
O

N
V

1

C
O

N
V

2
*

CONV3* & FC*

DPAGG

x1 x2 x3

one batch

𝑮

Compute gradient

𝑔𝐶𝑂𝑁𝑉3∗ & 𝑔𝐹𝐶∗

Protecting
CONV3* (FC*)

frozen

x1

Compute gradient

𝑔𝐶𝑂𝑁𝑉2∗
𝑥1

Compute gradient

𝑔𝐶𝑂𝑁𝑉2∗
𝑥3

x3

…

Protecting
CONV2*

𝑔𝐶𝑂𝑁𝑉2∗
𝑥3

𝐶𝐿𝐼𝑃(𝑔𝐶𝑂𝑁𝑉2∗
𝑥1 , 𝐶)

𝐶𝐿𝐼𝑃(𝑔𝐶𝑂𝑁𝑉2∗
𝑥2 , 𝐶)

𝐶𝐿𝐼𝑃(𝑔𝐶𝑂𝑁𝑉2∗
𝑥3 , 𝐶)

𝑵(𝟎, 𝑪𝟐𝝈𝟐𝑰)

Σ

𝒈𝑪𝑶𝑵𝑽𝟐∗ , 𝒈𝑪𝑶𝑵𝑽𝟑∗ , 𝒈𝑭𝑪∗

Updating
Discriminator

DPAGG

x1

x2

x3

DPAGG:

DPAGG:

w/ DP forwarding aggregation

w/o DP forwarding aggregation

w/ DP

w/o DP

DPAGG

DPAGG 𝑔𝐶𝑂𝑁𝑉2∗
𝑥2

𝑔𝐶𝑂𝑁𝑉2∗
𝑥1

Fig. 6: The procedure of updating GAN.

6

2) Training a DPGAN After Transfer Learning: In this
phase, we aim to train a DPGAN such that a generator
satisfying DP can be released. GAN is known to be composed
of two parts, a generator 𝐺 and a discriminator 𝐷. In DPAF,
the architecture of 𝐷 is identical to 𝐶; the workflow of training
𝐷 in DPAF is shown in Figure 6. The conv1 in 𝐶 is transferred
to be the conv1 in 𝐷; i.e., 𝐶 and 𝐷 share the same conv1
(Line 5 in Algorithm 1). Such a conv1 does not leak privacy
as it is trained by DPSGD, though conv2, conv3, and FC are
trained by SGD1 (see the formal proof in Theorem 1 and
Corollary 1 in Section VII-C). Here, conv2*, conv3*, and FC*
are randomly initialized. Unlike 𝐶, where an AGG is placed
between conv2 and conv3, a DP feature aggregation layer with
the privacy budget 𝜀3, DPAGG(𝜀3), is placed between conv2*
and conv3* of 𝐷. The architecture of 𝐺 is a reverse of 𝐷

without DPAGG(𝜀3).
Training the DPGAN in DPAF is similar to training an

ordinary GAN; i.e., we iteratively train 𝐷 first and then the 𝐺

until the convergence. 𝐷 takes as input the sensitive images
(img𝑅 in Figure 4), synthetic images (img𝐹 in Figure 4), and
the label. Given that conv1 is frozen during the training due
to transfer learning, 𝐷 is trained to differentiate between real
and synthetic images. The general guideline of training 𝐷

is that after binary cross entropy (BCE) loss function LBCE
is calculated on 𝐷 with DPAGG(𝜀3), conv3* and FC* can
be updated via SGD because such an update of conv3* and
FC* still satisfies the DP according to the postprocessing of
DPAGG(𝜀3). Consider �̃� as the discriminator 𝐷 that replaces
DPAGG(𝜀3) by AGG. In addition, another BCE loss function
L′BCE is calculated on �̃�. conv2* will be updated by using
DPSGD(𝜀2) based on L′BCE. Lines 7∼13 in Algorithm 1
correspond to the training of 𝐷. The details about LBCE and
L′BCE are related to our proposed asymmetric training and will
be described later.

Consider �̂� as the discriminator 𝐷 without DPAGG(𝜀3);
i.e., �̂� can be seen as a standard CNN. After updating 𝐷

𝑛critic times, the BCE loss function L′′BCE is calculated on �̂�

and is backpropagated to update 𝐺 through SGD. 𝑛critic is the
number of critic iterations per generator iteration for the better
training [8]. The design of skipping the aggregation in 𝐷 when
training 𝐺 can be attributed to the fact that we aim to learn
how to generate a single image, instead of a mix of images.
Note that LBCE, L′BCE, and L′′BCE all work on the same 𝐷, but
depending on which part of 𝐷 needs to be updated, different
components of 𝐷 are ignored. Lines 14∼16 in Algorithm 1
correspond to the training of 𝐺.

The Design of DPAGG. AGG can be implemented via two
steps. First, the normalized feature maps are concatenated as
a feature vector. Second, the feature vectors from different
samples in a batch are aggregated. We can have DPAGG
when we apply the Gaussian mechanism to the aggregated
feature vector derived from AGG. Below we describe how
our instance normalization works.

Inspired by [57], [58], we propose to use a simplified
instance normalization (SIN) to not only ensure the balance
of feature values but also, more importantly, derive a bound
of the global sensitivity of AGG. SIN can be formulated as

1GS-WGAN (Lines 17 and 19 in Algorithm 1 of [7]), G-PATE (Lines 10
and 14 in Algorithm 1 of [28]), and DataLens (Lines 10 and 14 in Algorithm
1 of [9]) have a similar design, where some parts of the model are trained
by SGD but eventually discarded while the remaining parts are trained by
DPSGD for the eventual release.

Fig. 7: The asymmetric training with 𝜇 = 8 and 𝑛critic = 3.

follows.

𝜇𝑖1𝑖2 =
1

𝐻𝑊

𝐻∑︁
𝑖3=1

𝑊∑︁
𝑖4=1

𝑥𝑖1𝑖2𝑖3𝑖4 ,

𝜎2
𝑖1𝑖2

=
1

𝐻𝑊

𝐻∑︁
𝑖3=1

𝑊∑︁
𝑖4=1

(
𝑥𝑖1𝑖2𝑖3𝑖4 − 𝜇𝑖1𝑖2

)2
,

𝑥𝑖1𝑖2𝑖3𝑖4 =
𝑥𝑖1𝑖2𝑖3𝑖4 − 𝜇𝑖1𝑖2√︃

𝜎2
𝑖1𝑖2

,

(3)

where 𝜇𝑖1𝑖2 is the mean of feature map 𝑋𝑖1𝑖2 , 𝜎2
𝑖1𝑖2

is the
variance of 𝑋𝑖1𝑖2 , 𝑖1 is the index of the image in the batch, 𝑖2
is the feature channel (color channel if the input is an RGB
image), 𝐻 is the height of the feature map, 𝑊 is the width of
the feature map, 𝑥𝑖1𝑖2𝑖3𝑖4 ∈ R is an element of feature map 𝑋𝑖1𝑖2 ,
𝑥𝑖1𝑖2𝑖3𝑖4 is the new value of 𝑥𝑖1𝑖2𝑖3𝑖4 after SIN. One can easily
see that SIN is different from ordinary instance normalization
(IN) in that SIN does not have learnable parameters, center
and scale [57], [58]. Concretely, each normalized feature map
(through SIN) is guaranteed to have the same ℓ2-norm 𝑝,
where 𝑝 × 𝑝 is the size of feature map.

Before applying the Gaussian mechanism to the AGG
output, we calculate the ℓ2-sensitivity Δ2,AGG of the AGG
below:

Δ2,AGG =

√︄ ∑︁
𝑥∈𝑋11

(𝑥 − 𝜇11
𝜎11

)2 + · · · +
∑︁

𝑥∈𝑋1𝑚

(𝑥 − 𝜇1𝑚
𝜎1𝑚

)2

=

√√
1
𝜎2

11

∑︁
𝑥∈𝑋11

(𝑥 − 𝜇11)2 + · · · +
1

𝜎2
1𝑚

∑︁
𝑥∈𝑋1𝑚

(𝑥 − 𝜇1𝑚)2

=

√√√√√ 𝑚∑︁
𝑗=1

𝑋1 𝑗

∑
𝑥∈𝑋1 𝑗 (𝑥 − 𝜇1 𝑗)2

∑︁
𝑥∈𝑋1 𝑗

(𝑥 − 𝜇1 𝑗)2

=
√︁
∥𝑋11∥ + · · · + ∥𝑋1𝑚∥ =

√︃
𝑝2 + · · · + 𝑝2 =

√
𝑚𝑝, (4)

where | |𝑋 | | is the size of feature map 𝑋 , 𝑚 is the number
of feature maps, 𝑥 is an element of feature map 𝑋1 𝑗 for 𝑗 =

1, 2, · · · , 𝑚. In the above calculation of Δ2,AGG, we consider
batch size 1 because we aim to know the amount of difference
to which a single sample in the batch contributes.

Depending on the tasks, the normalization can be placed in a
different position or even multiple layers [59], [60] for better
training. We find that in addition to offering a fine-grained
control of features similar to computer vision tasks, SIN in
DPAF plays a unique role in bounding ℓ2-sensitivity, though
SIN is an easy modification of IN. Note that we apply SIN
to only those feature maps just before DPAGG. Such a design
is supported by our experiments that applying SIN in all the
layers before DPAGG, in turn, degrades the utility because,
unlike IN, SIN lacks the learnable parameters.

Asymmetric Training of 𝐷 in DPAF. In fact, AGG asks
for a smaller batch size because, otherwise, the features will
be mixed and cannot be recognized. Nevertheless, a smaller

7

batch size, in turn, is harmful to DPSGD because the DP
noise will make a greater impact on the gradient. Hence,
DPAF prefers a larger batch size from the DPSGD point of
view. We propose an asymmetric training strategy to resolve
the contradicting requirements of setting a proper batch size.
In essence, in the asymmetric training, when training 𝐷, we
update conv3* and FC* through SGD for every iteration but
update conv2* through DPSGD(𝜀2) for every 𝜇 iterations, as
shown in Figure 7. 𝜇 is called asymmetry multiplier because
it determines the ratio of the privacy budget for conv2* and
the budget for both conv3* and FC*.

More specifically, for each batch, LBCE is calculated by
feeding the samples to 𝐷 and then we update conv3* and
FC* through SGD. At the same time, for the 𝑖-th batch with
𝜇 | 𝑖, L′BCE is calculated by feeding all of the samples from
the 𝜇 latest batches to �̃� and then we update conv2* through
DPSGD(𝜀2). An example of asymmetric training is shown
in Figure 7. Here, we make an important observation that
updating conv2* through DPSGD(𝜀2) for every 𝜇 iterations
virtually increases batch size 𝜇 times for conv2*.

Given that 𝜇 controls the batch size for updating conv2*,
a natural question that arises is whether 𝜇 can be increased
arbitrarily. In fact, we cannot arbitrarily increase 𝜇 because
the increased 𝜇 also leads to a less frequent update of conv2*,
which may, in turn, degrade the utility.

C. Discussion
Here, we discuss the rationale behind the design of DPAF.
Why Not Eliminate conv2*. Consider the case where all of

the layers before the DP feature aggregation belong to conv1*.
The number of learnable parameters in 𝐷 will be much smaller
(i.e., only conv3* and FC*); i.e., no conv2* exists. Such a
setting hurts the training of GANs. This can be attributed to
the fact that one knows from the GAN literature that if 𝐺

(𝐷) is much stronger than 𝐷 (𝐺), the training of GANs will
likely fail to converge. In addition, conv3* and FC* might
have fewer parameters compared to conv2*, depending on
different model structures. It is difficult to well train 𝐷 under
this circumstance. Thus, keeping certain layers as conv2* is
beneficial for adversarial learning.

Why Not More Layers for conv2*. As more learnable
parameters in 𝐷 may help the training of GANs, why conv2*
does not have more layers? This can be explained as follows.
If conv2* has more layers (parameters), because conv2* is
updated through DPSGD, gradient clipping will lead to more
information loss, flattening the feature values. In addition,
if conv2* has more layers (parameters), because conv1 and
conv2* both are trained by DPSGD, the output of (conv1,
conv2*) will be too noisy, hindering the utility.

Why Not More Layers for conv3*. A question that may
arise is why conv3* does not have more layers. As the total
number of layers is fixed given an input image, if conv3*
has more layers, then either conv1 or conv2* (or both) will be
shrunk. Thus, DPAGG is closer to low-level features. In such a
case, 𝐷 cannot have meaningful learning from the aggregation
of level-level features.

Choice of cGAN. The DPAF is designed to support con-
ditional generation. Thus, one needs to consider a cGAN in
DPAF. Compared to GANs, 𝐺 and 𝐷 of cGANs need to
consider the class label to ensure both the indistinguishability
between the real and synthetic samples and the consistency
between the input label and the label of synthetic samples.

In general, there are two straightforward solutions for label
injection. First, the class label is added as part of the input
vector in such a case. If we feed labels to the input layer, the
labels will be diluted in the forward phase and have a weak
signal only. Second, 𝐷 is designed with two loss functions; one
for the ordinary GAN loss and another for the class label. A
representative of such a design choice is AC-GAN [51], which
outputs labels as part of the loss function. Nevertheless, due
to access to the label, such a design leads to a privacy budget
splitting and therefore suffers from utility degradation.

In our design, DPAF follows the architecture of cDC-
GAN [52]. Inspired by [61] stating that the class label is better
added to the first layer, we decide to use cDCGAN though
there are no considerations of aggregation and DP in [61]. In
essence, cDCGAN feeds labels to the second layer by first
computing the embedding (from scalar to vector) of labels,
significantly strengthening the signal. A natural question that
arises is why the class label is not added to the latter layers
of 𝐷, given the class label in the latter layers may preserve
an even stronger signal. The drawback of doing so is that all
the layers before the layer to which the class label is added
can hardly learn anything, because the classifier can know the
portion by looking at the label only.

The Position of DPAGG. DPAF heavily relies on DPAGG
to raise the utility of synthetic samples. Thus, a natural
question that arises is where the best position for DPAGG is.
Without the loss of generality, DPAGG is placed to minimize
the ℓ2-sensitivity Δ2,AGG in Eq. (4). As Δ2,AGG =

√
𝑚𝑝, Δ2,AGG

is dependent on the position of DPAGG. Given the design
of a conventional CNN, where the height/width of feature
maps in the next convolutional layer is half of the ones in
the current convolutional layer, if the input is a 𝜌 × 𝜌 𝑐-
channel image, Δ2,AGG can be calculated as

√︁
𝑐
∏𝑎

𝑖=1 𝑘𝑖 ·
𝜌

2𝑎 ,
where 𝑘𝑖 is the number of filters in the 𝑖-th convolutional
layer and DPAGG is placed behind the 𝑎-th convolutional

layer. Define 𝑅 𝑗 as
(√︃

𝑐
∏ 𝑗

𝑖=1 𝑘𝑖 ·
𝜌

2 𝑗

) / (√︃
𝑐
∏ 𝑗−1

𝑖=1 𝑘𝑖 · 𝜌

2 𝑗−1

)
.

We can easily derive 𝑅 𝑗 =
√︁
𝑘 𝑗/2. Thus, if 𝑘 𝑗 ≥ 4, then

Δ2,AGG is monotone increasing from earlier to latter layers.
As a consequence, from the ℓ2-sensitivity point of view, we
conclude that the best position for DPAGG is between the
first and second convolutional layers. Unfortunately, placing
DPAGG in such a position does not lead to a decent utility in
practice, because it completely destroys the structure of DPAF
(e.g., the disappearance of conv1 and conv2*). Hence, we will
empirically examine the other configurations in Section VI.

Privacy Analysis. We first prove that conv1 satisfies DP in
Corollary 1 in Section VII-C of the Supplementary Materials.
Afterward, we prove that DPAF satisfies DP in Theorem 6
in Section VII-C of the Supplementary Materials. The formal
description of all the theorems, together with their mathmatical
proofs, can be found in the Supplementary Materials.

VI. EXPERIMENT EVALUATION

In this section, we present the experiment evaluation of
DPAF. We chose representative datasets for the task of data
synthesis. After that, DPAF was conducted to generate syn-
thetic data. We then evaluated the utility of the synthetic data
based on different settings of hyperparameters.

8

A. Experiment Setup
We describe the datasets, baselines, evaluation metrics, and

architecture of our canonical implementation of DPAF below.
Dataset. In our experiments, we focus on high-reslution

image synthesis. We considered CelebA and FFHQ datasets.
CelebA contains colorful celebrity images of different sizes.
In our experiments, we rescaled all of CelebA images into
64 × 64 colorful images. Based on CelebA, we created two
more datasets, CelebA-Gender and CelebA-Hair, where the
former is for binary classification with gender as the label
and the latter is for multiclass classification dataset with hair
color (black/blonde/brown) as the label. FFHQ contains 70000
128×128 colorful facial images with gender as label2 and we
created FFHQ-Gender dataset for binary classification.

We followed the default training (182637 samples) and test-
ing sets (19962 samples) for CelebA. FFHQ contains 69471
images with 38388 females and 31083 males. We split the
data into 90% and 10% for training and testing, respectively.

Baselines. We considered the baseline methods, GS-
WGAN [7], DP-MERF [29], P3GM [35], DataLens [9], G-
PATE [28], DP-Sinkhorn[33], DP-HP [32], Nonlinear DPDC
(NDPDC) [39], and PEARL [34]. The implementation of all
the baselines is based on the official code (see Section VII-A
in Supplementary Materials). Though the official code is not
available online, we communicated with the authors of PEARL
to have a copy.

Most of the official codes are written for synthesizing
images of low resolutions. As we mainly focus on the synthesis
of high-dimensional images, we made necessary modifications
such as batch size and input size to make them adaptable to
different settings.

Evaluation Metrics. Given two levels of privacy guarantee,
(1, 10−5)-DP and (10, 10−5)-DP, we aim to evaluate the utility
of DP image synthesis. The utility can have two dimensions;
i.e., the classification accuracy and the visual quality. In the
former case, we calculate the predicting accuracy of the classi-
fier trained by synthetic images and tested by real images. The
architecture of the classifier used in our experiment is the same
as the one used in GS-WGAN, G-PATE, and DataLens and
is shown in Figure 8. We conducted necessary modifications
on the code for DP-MERF, P3GM, DP-Sinkhorn, DP-HP,
NDPDC, and PEARL to derive their accuracies under the same
setting. This explains the inconsistency between the results in
this paper and the results reported in the original papers. On
the other hand, in the latter case, we display the synthetic
images for visualization and report Fréchet inception distance
(FID).

Convolution+ReLU Convolution+ReLU Convolution+ReLU

MaxPool MaxPool MaxPool

Dense

Dense

+

SoftMax

Input: (64, 64, 3)

Number of class: 3

Fig. 8: The architecture of the evaluated classifier

Canonical Implementation of DPAF. Basically, DPAF
adds the DP feature aggregation on the basis of cDCGAN. In

2FFHQ labels from https://github.com/DCGM/ffhq-features-dataset/tree/
master/json.

our canonical implementation, the batch size is 64 for CelebA
and FFHQ. The latent vector sampled from the standard
Gaussian distribution is of dimension 100. The asymmetry
multiplier 𝜇 = 8. We also apply gradient compression [62]
to the per-sample gradient to keep the top 90% values only.
Our DPAF is configured to be C2-C2-C1 for CelebA and C3-
C1-× for FFHQ, where the notation C𝑥1-C𝑥2-C𝑥3 means that
the 𝐷 uses 𝑥1 layers as conv1, 𝑥2 layers as conv2*, and 𝑥3
layers as conv3*. The notation × means that the corresponding
layer does not exist. We always have two FC* layers.

For the privacy budget allocation, the notation
(𝑥1%, 𝑥2%, 𝑥3%) refers to the setting, where conv1, conv2*,
and DPAGG have 𝜀1 =

𝑥1 ·𝜀
100 , 𝜀2 =

𝑥2 ·𝜀
100 , and 𝜀3 =

𝑥3 ·𝜀
100 ,

respectively, given the total privacy budget 𝜀. A similar
notation is (𝑥1,×, 𝑥3), where both conv1 and DPAGG have a
privacy budget 𝜀1 = 𝑥1 and 𝜀3 = 𝑥3, respectively, and conv2*
has the rest. For example, (0.1,×, 0.1) means that conv1,
conv2, and DPAGG have 0.1, 9.8, and 0.1, respectively, if
the total privacy budget is 10. Throughout Section VI-B,
canonical accuracy means the accuracy from the canonical
implementation.

B. Experiment Results

Here, we present our experiment results and ablation study.
All of the experiment results below are derived by averaging
the results from five independent experiments.

DP-MERF

DP-Sinkhorn

DataLens

PEARL

DPAF

NDPDC

DP-HP

Fig. 9: Visual results for 64× 64 CelebA-Gender with 𝜀 = 10.
The left (right) three columns are females (males).

DPAF

NDPDC

Fig. 10: Visual results for 64×64 CelebA-Gender images with
𝜀 = 1. The left (right) three columns are females (males).

https://github.com/DCGM/ffhq-features-dataset/tree/master/json
https://github.com/DCGM/ffhq-features-dataset/tree/master/json

9

𝜀 DataLens DP-HP NDPDC PEARL DPAF
CelebA
-Gender

𝜀 = 1 298 352 235 303 285
𝜀 = 10 320 341 183 302 298

CelebA
-Hair

𝜀 = 1 × 339 239 338 301
𝜀 = 10 × 340 185 337 298

TABLE I: The comparison of FIDs for 64 × 64 CelebA.

1) Visual Quality: We first present the results of the vi-
sual quality evaluation in Figure 9. In particular, the DPAF-
synthesized images appear more realistic and capture more
facial features, such as eyes, lips, and facial shape, compared
to the uniform faces generated by DP-Sinkhorn and the highly
noisy faces generated by the other baselines. Such a gain is
due to the use of SIN and our design of DPAGG, i.e., the
aggregated feature is more robust to the DP noise and better
able to discriminate features after training.

We also present the quantitative results in Table I. We
can see that NDPDC achieves the lowest FIDs, while DPAF
achieves the second lowest FIDs. However, such results are
inconsistent with the visual quality results in Figure 9 (𝜀 = 10),
because obviously DPAF-synthesized images are more realis-
tic than NDPDC-synthesized ones. Figure 10 (𝜀 = 1) also
shows the same phenomenon. While FID has been widely
used to evaluate the quality of synthesized images, this shows
a limitation of FID and can be attributed to the inadequacy of
FID as a perceptual metric [63], [64].

PEARL

(ε=1)

DPAF

(ε=10)

DPAF

(ε=1)

PEARL

(ε=10)

FFHQ

Fig. 11: Visual results for 128 × 128 FFHQ images. The left
(right) three columns are females (males).

2) Classification Accuracy: Table II shows the classifica-
tion results of DPAF and the other baseline methods. One can
see from Table II that DPAF outperforms all other baselines for
CelebA-Gender and CelebA-Hair. We observe that the larger
image size implies more convolutional layers in DPAF, which
strengthens the generative capability. In this sense, our design
may suggest the potential of DPAF to synthesize images with
higher resolutions, since a generator with more layers can be
employed.

To further demonstrate the advantage of DPAF in synthesiz-
ing high-utility and high-dimensional images, we conducted
experiments on FFHQ-Gender, and the visual results are
shown in Figure 11, where the images synthesized by PEARL
look like pure noise, while the images synthesized by DPAF
still preserve facial features. Table III reports the predicting
accuracy on FFHQ-Gender. In the above, we claim that the
generative ability of DPAF increases with image size. At first

glance, we can see from Table III that the accuracy gets worse
compared to CelebA-Gender in Table II. However, this can be
explained as follows. First, CelebA-Gender and FFHQ-Gender
are two different datasets with different distributions. The
direct comparison between the accuracy of CelebA-Gender
and FFHQ-Gender remains doubtful. Second, synthesizing
128×128 images has reached the limit of conventional GANs
without using modern techniques such as residual blocks [65].
Synthesizing higher resolution images requires much more
sophisticated GANs (e.g., PGGAN [66]). Applying the tech-
niques in DPAF to modern GANs remains unexplored, but
would be our future research direction.

3) Privacy Budget Allocation w/o Transfer Learning:
Since we allocate a very limited privacy budget to conv1 in
our canonical implementation, a natural question is whether
transfer learning is necessary. In other words, if conv1 cannot
learn effectively from the data, a reasonable design choice
is to abandon transfer learning and invest the privacy budget
in DPAGG. Below, we examine the predicting accuracy under
three strategies for allocating the privacy budget in the absence
of transfer learning.

Random Parameters for conv1. We considered random
weights of conv1; i.e., all weights in conv1 are sampled
uniformly at random from a zero-mean Gaussian distribution
with a standard deviation of 0.02 and are never updated. The
results are shown in Table IV, where the notation (×, 𝑥3)
means that the privacy budget 𝜀3 = 𝑥3 is allocated to DPAGG,
while the rest of the budget is allocated to conv2*. One can see
that the accuracy of (×, 0.5) and (×, 0.2) is only slightly lower
than the canonical accuracy. Since conv1 is supposed to learn
low-level features, even if conv1 uses random features, the
learning of conv2*, conv3*, and FC* can be adapted to random
conv1 and perform well. However, according to our empirical
experience, we still spent a very limited privacy budget on
conv1 to avoid undesirable cases where some feature maps
happen to contain only zero or near-zero values, rendering
such feature maps useless. Higher variances of (×, 0.5) and
(×, 0.2) also justify the above design choice.

Updating conv1 During Training of 𝐷. Here we did
not perform transfer learning, but still used DPSGD(𝜀1) to
update conv1 during training of 𝐷. Table V shows the results,
where the canonical implementation outperforms the other
configurations. There are two reasons for this. First, while the
update of conv1 is done during the training of 𝐶, since conv2,
conv3, and FC in 𝐶 are updated by SGD, conv1 is more
informative. While conv1 is updated during training of 𝐷,
conv1 is less informative due to noise accumulation. Second,
in the absence of transfer learning, more layers (parameters)
need to be updated during the training of 𝐷, which is more
difficult to train well from an adversarial learning perspective.
Note that (0.1,×, 0.1) in the second column of Table V means
that we updated conv1 by DPSGD(𝜀1) with 𝜀1 = 0.1 in the
training of 𝐷, although the same (0.1,×, 0.1) has a different
interpretation in the context of using transfer learning, as
shown in Section VI-A.

Joint Updating conv1 and conv2* During Training of
𝐷. In this case, conv1 and conv2* are considered together
and are updated together by the DPSGD. We saw (conv1,
conv2*) as a larger component. Compared to the individual
conv1 and conv2*, gradient clipping in DPSGD may cause
more information loss, and DPSGD will cause more damage
to the gradient structure. The results in Table VI support the
above arguments.

10

𝜀 GS-WGAN DP-MERF P3GM G-PATE DP-Sinkhorn DataLens DP-HP NDPDC PEARL DPAF

CelebA-Gender 𝜀 = 1 0.590 0.594 0.567 0.670 0.543 0.700 0.656 0.540 0.634 0.802
𝜀 = 10 0.614 0.608 0.588 0.690 0.621 0.729 0.617 0.600 0.646 0.826

CelebA-Hair 𝜀 = 1 0.420 0.441 0.453 0.499 × 0.606 0.561 0.498 0.606 0.675
𝜀 = 10 0.523 0.449 0.486 0.622 × 0.622 0.474 0.462 0.626 0.671

TABLE II: Classification accuracy results under (1, 10−5)-DP and (10, 10−5)-DP. We have two ×’s because we failed to modify
the code of DP-Sinkhorn and synthesize CelebA-Hair images. The rightmost column shows canonical accuracy.

𝜀 PEARL DPAF

FFHQ-Gender 𝜀 = 1 0.441 ± 0.019 0.567 ± 0.038
𝜀 = 10 0.511 ± 0.027 0.646 ± 0.004

TABLE III: Accuracy comparison for 128×128 FFHQ-Gender.

𝜀 DPAF (×, 0.5) (×, 0.2)
CelebA
-Gender

𝜀 = 1 0.802 ± 0.018 0.752 ± 0.045 0.774 ± 0.012
𝜀 = 10 0.826 ± 0.010 0.793 ± 0.024 0.700 ± 0.093

CelebA
-Hair

𝜀 = 1 0.675 ± 0.013 0.635 ± 0.035 0.667 ± 0.029
𝜀 = 10 0.671 ± 0.014 0.681 ± 0.015 0.670 ± 0.016

TABLE IV: The accuracy of random parameters for conv1.

𝜀 DPAF (0.1, × , 0.1) (33%, 34%, 33%)
CelebA
-Gender

𝜀 = 1 0.802 ± 0.018 0.594 ± 0.112 0.727 ± 0.143
𝜀 = 10 0.826 ± 0.010 0.747 ± 0.100 0.817 ± 0.024

CelebA
-Hair

𝜀 = 1 0.675 ± 0.013 0.424 ± 0.079 0.642 ± 0.038
𝜀 = 10 0.671 ± 0.014 0.599 ± 0.116 0.685 ± 0.018

TABLE V: Accuracy of updating conv1 during training of 𝐷.

𝜀 DPAF (50%, 50%) (×, 0.1)
CelebA
-Gender

𝜀 = 1 0.802 ± 0.018 0.768 ± 0.036 0.748 ± 0.072
𝜀 = 10 0.826 ± 0.010 0.759 ± 0.030 0.790 ± 0.020

CelebA
-Hair

𝜀 = 1 0.675 ± 0.013 0.661 ± 0.034 0.643 ± 0.028
𝜀 = 10 0.671 ± 0.014 0.648 ± 0.038 0.660 ± 0.018

TABLE VI: The classification accuracy of joint updating conv1
and conv2* during training of 𝐷.

Furthermore, by comparing the (0.1,×, 0.1) column in
Table V and the (×, 0.1) column in Table VI (due to their
similar settings), we can see that the accuracy of the former is
consistently lower than that of the latter. Unlike Table VI,
conv1 and con2* are treated separately in Table V, and
thus suffer from privacy budget splitting, resulting in worse
accuracy.

4) Privacy Budget Allocation w/ Transfer Learning: Given
the regular use of DPAF (i.e., DPAF with transfer learning),
we aim to examine the impact of different budget allocations
on accuracy.

A general guideline for allocating privacy budgets is that
the earlier (latter) layers should earn more (fewer) budgets.
The rationale is that the earlier layers learn the low-level
features and the latter layers will be adapted to the low-level
features. Once the earlier layers have only a limited budget
and the parameters fluctuate, the latter layers can hardly be
adapted to the fast change of earlier layers and can hardly
learn informative parameters. However, during the training
of 𝐷, conv1 is frozen and does not need to be updated. In
addition, as mentioned in Section VI-B3, 𝜀1 can be a small
value. The gradient vector may have many small or even nearly
zero values, which can easily be affected by the DP noise.
On the other hand, the aggregated vector output by DPAGG is
designed to have larger values for better robustness against the
DP noise. Thus, a reasonable choice is to have 𝜀2 > 𝜀3. The
above arguments can be confirmed empirically because we can

see from Table VII that the canonical setting (0.1,×, 0.1) that
follows the above discussion outperforms the other settings.

5) Number of Layers for conv1, conv2*, and conv3*: Using
CelebA-Gender and CelebA-Hair as examples, we aim to
know which layer configuration will result in better accuracy.
As both CelebA-Gender and CelebA-Hair are 64 × 64, we
know that there are at most five layers in total. Note that, in
contrast to ordinary GANs, deliberately setting more layers in
DPGANs may, in turn, hurt the training result [67] because the
lengthier gradient will lead to greater information loss, failing
the convergence, according to our experience. There are too
many configurations to exhaustively examine. Table X shows
the only results of accuracy in the cases where conv1 and
conv2* jointly occupy at most four layers. From Table X, we
know that C2-C1-×, C2-C2-×, C3-C1-×, and C1-C3-× result
in better accuracy. Thus, given the above results, we include
the consideration of conv3* in Table VIII, because Table X
does not consider conv3*. The results in Table VIII support
our design choice for the canonical implementation of C2-C2-
C1 because it outperforms the other settings.

6) The Impact of Asymmetry Multiplier 𝜇.: A larger 𝜇

implies a much larger budget for updating conv2*, given
𝜀3 for DPAGG. Obviously, the increased 𝜇 raises accuracy
because conv2* virtually has more budget. Moreover, Table IX
supports our claim in Section V-C that 𝜇 cannot be arbitrarily
increased. The reason is that the increased 𝜇 also leads to a
less frequent update of conv2*, which may, in turn, degrade
the utility.

7) The Other Techniques in Enhancing Accuracy: Many
techniques have been proposed to reduce the negative impact
of DPSGD on model training. We examine three of them to
see whether they provide similar benefits to DPAF.

Pre-Training the Model with Public Data. The recent
development of DP classifiers and DPGANs has witnessed
that extra data may help improve the performance of DP
models [13], [21], [14]. Here, we want to examine whether
pre-training the model with public data helps DPAF raise its
utility. Here, the common setting in Table XI is that we follow
DPAF to train 𝐶, perform transfer learning, and then train
𝐺 and 𝐷 on the CIFAR-10 dataset without considering DP.
After that, DPAF is used to train DPGAN with the pre-trained
𝐷 as 𝐷 and the randomly initialized parameters as 𝐺. We
additionally train DPGAN completely based on the pre-trained
parameters for both 𝐺 and 𝐷. One can see from Table XI that
the extra data still helps the utility of DPAF.

The Impact of Gradient Compression. Gradient com-
pression (GC) [62] is originally proposed to reduce the com-
munication cost in federated learning. The rationale behind
gradient compression is that most of the values in the gradient
contribute nearly no information on the update. Different from
the original case, where GC works on the gradient averaged
over the samples in a batch, the canonical implementation of
DPAF adopts GC to keep only the top 90% values of per-
sample gradients and then performs the averaging. However,

11

𝜀 DPAF (0.1,×, 0.1) (20%, 20%, 60%) (20%, 60%, 20%) (20%, 40%, 40%) (30%, 20%, 50%) (30%, 50%, 20%)

CelebA-Gender 𝜀 = 1 0.802 ± 0.018 0.741 ± 0.074 0.801 ± 0.035 0.793 ± 0.030 0.771 ± 0.035 0.795 ± 0.033
𝜀 = 10 0.826 ± 0.010 0.787 ± 0.018 0.820 ± 0.020 0.790 ± 0.017 0.767 ± 0.040 0.813 ± 0.013

CelebA-Hair 𝜀 = 1 0.675 ± 0.013 0.570 ± 0.144 0.663 ± 0.031 0.657 ± 0.023 0.643 ± 0.046 0.666 ± 0.024
𝜀 = 10 0.671 ± 0.014 0.639 ± 0.031 0.619 ± 0.038 0.659 ± 0.016 0.598 ± 0.050 0.577 ± 0.094

𝜀 (30%, 40%, 30%) (30%, 30%, 40%) (40%, 30%, 30%) (40%, 20%, 40%) (40%, 40%, 20%)

CelebA-Gender 𝜀 = 1 0.791 ± 0.012 0.704 ± 0.164 0.745 ± 0.102 0.759 ± 0.025 0.763 ± 0.038
𝜀 = 10 0.799 ± 0.022 0.799 ± 0.023 0.797 ± 0.015 0.782 ± 0.032 0.798 ± 0.022

CelebA-Hair 𝜀 = 1 0.677 ± 0.011 0.653 ± 0.024 0.646 ± 0.039 0.454 ± 0.150 0.641 ± 0.064
𝜀 = 10 0.610 ± 0.018 0.643 ± 0.012 0.628 ± 0.011 0.634 ± 0.036 0.645 ± 0.021

TABLE VII: The classification accuracy of different privacy budget allocations with transfer learning.

𝜀 DPAF (C2-C2-C1) C1-C3-C1 C2-C1-C1 C2-C1-C2 C3-C1-C1

CelebA-Gender 𝜀 = 1 0.802 ± 0.018 0.448 ± 0.164 0.673 ± 0.099 0.505 ± 0.067 0.800 ± 0.017
𝜀 = 10 0.826 ± 0.010 0.727 ± 0.039 0.803 ± 0.022 0.514 ± 0.091 0.820 ± 0.015

CelebA-Hair 𝜀 = 1 0.675 ± 0.013 0.356 ± 0.077 0.540 ± 0.036 0.354 ± 0.038 0.669 ± 0.018
𝜀 = 10 0.671 ± 0.014 0.368 ± 0.074 0.664 ± 0.035 0.352 ± 0.055 0.670 ± 0.016

TABLE VIII: The classification accuracy of different layer architecture for conv1, conv2*, and conv3*.

𝜀 𝜇 = 2 𝜇 = 4 DPAF (𝜇 = 8) 𝜇 = 10 𝜇 = 20
CelebA-Gender 𝜀 = 1 0.775 ± 0.037 0.688 ± 0.070 0.802 ± 0.018 0.772 ± 0.036 0.773 ± 0.030

𝜀 = 10 0.665 ± 0.162 0.819 ± 0.033 0.826 ± 0.010 0.745 ± 0.010 0.735 ± 0.110

CelebA-Hair 𝜀 = 1 0.578 ± 0.094 0.642 ± 0.038 0.675 ± 0.013 0.656 ± 0.017 0.648 ± 0.011
𝜀 = 10 0.670 ± 0.027 0.666 ± 0.041 0.671 ± 0.014 0.670 ± 0.015 0.668 ± 0.020

TABLE IX: The classification accuracy of different asymmetry multipliers 𝜇’s.

𝜀 C1-C1-× C1-C2-× C2-C1-× C1-C3-× C2-C2-× C3-C1-×
CelebA-Gender 𝜀 = 1 0.629 ± 0.040 0.737 ± 0.025 0.824 ± 0.025 0.661 ± 0.144 0.805 ± 0.021 0.811 ± 0.020

𝜀 = 10 0.720 ± 0.045 0.733 ± 0.038 0.762 ± 0.079 0.729 ± 0.032 0.786 ± 0.018 0.751 ± 0.036

CelebA-Hair 𝜀 = 1 0.423 ± 0.089 0.475 ± 0.120 0.643 ± 0.014 0.662 ± 0.019 0.519 ± 0.095 0.623 ± 0.038
𝜀 = 10 0.565 ± 0.019 0.644 ± 0.024 0.639 ± 0.039 0.657 ± 0.023 0.683 ± 0.022 0.659 ± 0.019

TABLE X: The classification accuracy of different layer architecture for conv1 and conv2*.

𝜀 DPAF Trans(𝐷) Trans(𝐺 + 𝐷)
CelebA
-Gender

𝜀 = 1 0.802 ± 0.018 0.819 ± 0.020 0.820 ± 0.027
𝜀 = 10 0.826 ± 0.010 0.830 ± 0.018 0.831 ± 0.023

CelebA
-Hair

𝜀 = 1 0.675 ± 0.013 0.663 ± 0.038 0.695 ± 0.015
𝜀 = 10 0.671 ± 0.014 0.695 ± 0.036 0.703 ± 0.015

TABLE XI: The accuracy of DPAF with public data pre-
training.

𝜀 DPAF w/o GC TOPAGG [9]
CelebA
-Gender

𝜀 = 1 0.802 ± 0.018 0.725 ± 0.150 0.549 ± 0.075
𝜀 = 10 0.826 ± 0.010 0.818 ± 0.022 0.530 ± 0.097

CelebA
-Hair

𝜀 = 1 0.675 ± 0.013 0.673 ± 0.016 0.359 ± 0.079
𝜀 = 10 0.671 ± 0.014 0.678 ± 0.017 0.375 ± 0.056

TABLE XII: Acc of DPAF with different compression strate-
gies.

𝜀 DPAF w/ TS

CelebA-Gender 𝜀 = 1 0.802 ± 0.018 0.802 ± 0.015
𝜀 = 10 0.826 ± 0.010 0.806 ± 0.025

CelebA-Hair 𝜀 = 1 0.675 ± 0.013 0.594 ± 0.031
𝜀 = 10 0.671 ± 0.014 0.620 ± 0.043

TABLE XIII: Acc of DPAF with tempered sigmoid (TS)
functions.

we still want to examine whether GC can help DPSGD. The
comparison between the DPAF column and “w/o GC” column
in Table XII still shows that DPSGD can benefit from GC
because the information loss from gradient clipping can be
mitigated. TOPAGG [9] is a modified DPSGD that works on
compressed and quantized gradients. The GC in TOPAGG

is configurated to keep the top-𝑘 values only3. Nevertheless,
TOPAGG gains lower accuracy. This can be explained by
considering the design of TOPAGG. In particular, the success
of TOPAGG, in essence, relies on training a large number
of teacher classifiers[9], [33]. As DPAF does not fit such a
requirement, TOPAGG on DPAF does not perform well.

Tempered Sigmoid Activation Function. Papernot et
al. [68] find that exploding activations cause the unclipped
gradient magnitude to increase and therefore gradient clip-
ping leads to more information loss. Thus, tempered sigmoid
(TS) [68], a family of activation functions, is proposed to
replace the conventional activation functions in DPSGD. Ta-
ble XIII shows the results, where hyperbolic tangent (tanh), as
a representative of TS, is used to replace the leaky ReLU in our
canonical DPAF. In our test, tanh is used in DPAF, and we can
see from Table XIII that it, in turn, leads to worse accuracy.
This can be explained as follows. First, Papernot et al. [68]
conduct the experiments on DP classifiers only. Whether TS
can raise the utility of DPGANs remains unknown. Second,
a bounded activation (e.g., sigmoid and tanh) easily causes
gradient vanishing and therefore is rarely used in practice. On
the contrary, the unbounded ones (e.g., ReLU and leaky ReLU)
are more capable of avoiding gradient vanishing [52]. conv1
and conv2* in DPAF are updated by DPSGD, but conv3* and
FC* are updated by SGD. While TS is beneficial to DPSGD
(for conv1 and conv2*) but harmful to SGD (conv2* and FC*).
Overall, adopting tanh in DPAF slightly degrades utility.

3For CelebA-Gender, 𝑘 = 200 with 𝜀 = 1 and 𝑘 = 3000 with 𝜀 = 10. For
CelebA-Hair, 𝑘 = 150 with 𝜀 = 1 and 𝑘 = 200 with 𝜀 = 10.

12

8) Comparison to Private-GANs: A concurrent work,
Private-GANs [69], is conceptually similar to but can be
seen as an oversimplified version of DPAF. Tables XIV, XV,
and XVI show the comparison between DPAF and Private-
GANs. In particular, the results of DPAF in Table XIV are
derived by optimizing both 𝜇 and 𝑛critic (called 𝑛𝐷 in their
paper). As Private-GANs reported the results with 𝑛critic =

1, 10, 50, 100, 200, to be aligned with their results, Table XV
and XVI show the results of DPAF and Private-GANs for
𝑛critic = 1, 10, 50, 100, 200. One can see from Tables XIV, XV,
and XVI that DPAF outperforms Private-GANs. This can be
attributed to the fact that introducing 𝜇 in the design of DPAF
as asymmetric training significantly reduces the downside from
raising 𝑛critic.

𝜀 NDPDC PEARL Private-GANs DPAF

CelebA-Gender

0.5 0.518 0.655 0.620 0.768
1 0.540 0.634 0.663 0.802
5 0.535 0.639 0.679 0.789
10 0.600 0.646 0.714 0.826

CelebA-Hair

0.5 0.497 0.592 0.513 0.663
1 0.498 0.606 0.474 0.675
5 0.469 0.609 0.508 0.680
10 0.462 0.626 0.540 0.671

TABLE XIV: More classification results. Each value is derived
by averaging the results from 50 independent trials.

𝜀 𝑛critic = 1 𝑛critic = 10 𝑛critic = 50 𝑛critic = 100 𝑛critic = 200

Private
-GANs

0.5 0.468 0.448 0.612 0.620 0.598
1 0.570 0.541 0.629 0.663 0.498
5 0.584 0.572 0.652 0.680 0.634
10 0.607 0.673 0.677 0.714 0.623

DPAF
(𝜇 = 1)

0.5 0.490 0.650 0.511 0.463 0.515
1 0.507 0.666 0.491 0.466 0.549
5 0.535 0.690 0.500 0.524 0.496
10 0.503 0.666 0.552 0.452 0.546

DPAF
(𝜇 = 8)

0.5 0.501 0.668 0.579 0.500 0.517
1 0.567 0.725 0.573 0.537 0.510
5 0.687 0.715 0.524 0.511 0.503
10 0.789 0.690 0.556 0.519 0.472

TABLE XV: The classification accuracy of different 𝑛critic’s
on CelebA-Gender. Bold numbers (e.g., 0.668) are the largest
among all values with the same 𝜀 (e.g., 𝜀 = 0.5).

𝜀 𝑛critic = 1 𝑛critic = 10 𝑛critic = 50 𝑛critic = 100 𝑛critic = 200

Private
-GANs

0.5 0.513 0.441 0.488 0.411 0.356
1 0.474 0.437 0.366 0.355 0.357
5 0.508 0.498 0.416 0.408 0.405
10 0.540 0.491 0.466 0.454 0.373

DPAF
(𝜇 = 1)

0.5 0.367 0.533 0.368 0.356 0.331
1 0.301 0.467 0.358 0.372 0.333
5 0.353 0.518 0.357 0.332 0.345
10 0.379 0.523 0.351 0.375 0.324

DPAF
(𝜇 = 8)

0.5 0.616 0.540 0.366 0.343 0.306
1 0.345 0.514 0.361 0.345 0.319
5 0.468 0.524 0.329 0.367 0.319
10 0.556 0.513 0.357 0.347 0.308

TABLE XVI: The classification accuracy of different 𝑛critic’s
on CelebA-Hair. Bold numbers (e.g., 0.616) are the largest
among all values with the same 𝜀 (e.g., 𝜀 = 0.5).

9) Empirical Evidence for Data Privacy of DPAF against
MIA: GAN-Leaks [1] offers a tool to evaluate whether a
candidate GAN-synthesized dataset can resist MIA. Here,
in addition to a formal privacy proof in Section VII-C of

Supplementary Materials, we provide additional empirical
evidence in Table XVII that the DPAF-synthesized dataset can
resist MIA. In particular, each value in Table XVII refers to
the AUC-ROC (area under the curve of ROC) of MIA in
identifying members and non-members. One can see from
Table XVII that if the synthetic dataset is generated by a
model trained by ordinary SGD, then the AUC-ROC is 1,
which means that MIA is always successful. On the contrary,
in the case of the synthetic dataset from DPAF, the AUC-ROC
is nearly 0.5, failing MIA.

64 Images 128 Images
SGD 1.0 1.0

DPAF

𝜖 = 10 0.466 0.502
𝜖 = 5 0.469 0.499
𝜖 = 1 0.473 0.499
𝜖 = 0.5 0.479 0.500

TABLE XVII: AUC-ROC of MIA on CelebA-Gender with
DPAF. The sizes of the training set is 64 and 128 (aligned
with the setting used in [1]).

VII. CONCLUSION

Overall, we propose a novel and effective DPGAN, DPAF,
which can synthesize high-dimensional image data. Funda-
mentally different from the prior works, DPAF is featured
by the DP feature aggregation in the forward phase, which
significantly improves the robustness against noise. In addi-
tion, we propose a novel asymmetric training strategy, which
determines an ideal batch size. We formally prove the privacy
of DPAF. Extensive experiments demonstrate superior perfor-
mance compared to the previous state-of-the-art methods.

REFERENCES

[1] D. Chen, N. Yu, Y. Zhang, and M. Fritz, “Gan-leaks: A taxonomy
of membership inference attacks against generative models,” in ACM
Conference on Computer and Communications Security (CCS), 2020.

[2] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: Mem-
bership inference attacks against generative models,” in Proceedings on
Privacy Enhancing Technologies (PoPETs), 2019.

[3] B. Hilprecht, M. Härterich, and D. Bernau, “Monte carlo and recon-
struction membership inference attacks against generative models,” in
Proceedings on Privacy Enhancing Technologies (PoPETs), 2019.

[4] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy.” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

[5] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” ACM
Conference on Computer and Communications Security (CCS), 2016.

[6] E. Bagdasaryan, O. Poursaeed, and V. Shmatikov, “Differential privacy
has disparate impact on model accuracy,” in Conference on Neural
Information Processing Systems (NeurIPS), 2019.

[7] D. Chen, T. Orekondy, and M. Fritz, “Gs-wgan: A gradient-sanitized
approach for learning differentially private generators,” in Conference
on Neural Information Processing Systems (NeurIPS), 2020.

[8] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International Conference on Machine Learning
(ICML), 2017.

[9] B. Wang, F. Wu, Y. Long, L. Rimanic, C. Zhang, and B. Li, “Datalens:
Scalable privacy preserving training via gradient compression and aggre-
gation,” ACM Conference on Comp‘uter and Communications Security
(CCS), 2021.

[10] Z. Zhang, T. Wang, J. Honorio, N. Li, M. Backes, S. He, J. Chen, and
Y. Zhang, “Privsyn: Differentially private data synthesis,” in USENIX
Security Symposium, 2021.

[11] R. Mckenna, D. Sheldon, and G. Miklau, “Graphical-model based
estimation and inference for differential privacy,” in International Con-
ference on Machine Learning (ICML), 2019.

[12] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao,
“Privbayes: Private data release via bayesian networks,” ACM Transac-
tions on Database Systems, vol. 42, no. 4, oct 2017.

13

[13] S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle,
“Unlocking high-accuracy differentially private image classification
through scale,” arXiv: 2204.13650, 2022. [Online]. Available: https:
//arxiv.org/pdf/2204.13650.pdf

[14] F. Tramèr and D. Boneh, “Differentially private learning needs better
features (or much more data),” in International Conference on Learning
Representations (ICLR), 2021.

[15] D. Yu, H. Zhang, W. Chen, J. Yin, and T.-Y. Liu, “Large scale private
learning via low-rank reparametrization,” in International Conference on
Machine Learning (ICML), 2021.

[16] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni,
Y. T. Lee, A. Manoel, L. Wutschitz, S. Yekhanin, and H. Zhang,
“Differentially private fine-tuning of language models,” in International
Conference on Learning Representations (ICLR), 2022.

[17] X. Li, F. Tramèr, P. Liang, and T. Hashimoto, “Large language models
can be strong differentially private learners,” in International Conference
on Learning Representations (ICLR), 2022.

[18] N. Papernot, M. Abadi, Úlfar Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised knowledge transfer for deep learning from private
training data,” in International Conference on Learning Representations
(ICLR), 2017.

[19] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
Ú. Erlingsson, “Scalable private learning with pate,” in International
Conference on Learning Representations (ICLR), 2018.

[20] J. Jordon, J. Yoon, and M. van der Schaar, “Pate-gan: Generating
synthetic data with differential privacy guarantees,” in International
Conference on Learning Representations (ICLR), 2019.

[21] X. Zhang, S. Ji, and T. Wang, “Differentially private releasing via deep
generative model,” in arXiv: 1801.01594, 2018. [Online]. Available:
https://arxiv.org/abs/1801.01594

[22] H. B. McMahan and G. Andrew, “A general approach to adding
differential privacy to iterative training procedures,” NeurIPS Workshop
on Privacy Preserving Machine Learning (PPML), 2018.

[23] O. Thakkar, G. Andrew, and H. B. McMahan, “Differentially private
learning with adaptive clipping,” Conference on Neural Information
Processing Systems (NeurIPS), 2021.

[24] C. Xu, J. Ren, D. Zhang, Y. Zhang, Z. Qin, and R. Kui, “Ganobfuscator:
Mitigating information leakage under gan via differential privacy,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 9, pp.
2358–2371, 2019.

[25] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially private
generative adversarial network,” arXiv: 1802.06739, 2018. [Online].
Available: https://arxiv.org/pdf/1802.06739.pdf

[26] D. Yu, H. Zhang, W. Chen, and T. Liu, “Do not let privacy overbill util-
ity: Gradient embedding perturbation for private learning,” International
Conference on Learning Representations (ICLR), 2021.

[27] M. Nasr, R. Shokri, and A. Houmansadr, “Improving deep learning with
differential privacy using gradient encoding and denoising,” in Theory
and Practice of Differential Privacy, 2020.

[28] Y. Long, B. Wang, Z. Yang, B. Kailkhura, A. Zhang, C. A. Gunter, and
B. Li, “G-pate: Scalable differentially private data generator via private
aggregation of teacher discriminators,” Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[29] F. Harder, K. Adamczewski, and M. Park, “Dp-merf: Differentially
private mean embeddings with random features for practical privacy-
preserving data generation,” in International Conference on Artificial
Intelligence and Statistics (AISTATS), 2021.

[30] F. Harder, M. Jalali, D. J. Sutherland, and M. Park, “Pre-trained
perceptual features improve differentially private image generation,”
Transactions on Machine Learning Research (TMLR), 2023.

[31] Y. Yang, K. Adamczewski, D. J. Sutherland, X. Li, and M. Park,
“Differentially private neural tangent kernels for privacy-preserving
data generation,” in AAAI Workshop on Privacy-Preserving Artificial
Intelligence (PPAI-24), 2024.

[32] M. Vinaroz, M.-A. Charusaie, F. Harder, K. Adamczewski, and M. J.
Park, “Hermite polynomial features for private data generation,” in
International Conference on Machine Learning (ICML), 2022.

[33] T. Cao, A. Bie, A. Vahdat, S. Fidler, and K. Kreis, “Don’t generate
me: Training differentially private generative models with sinkhorn
divergence,” in Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[34] S. P. Liew, T. Takahashi, and M. Ueno, “Pearl: Data synthesis via private
embeddings and adversarial reconstruction learning,” in International
Conference on Learning Representations (ICLR), 2022.

[35] S. Takagi, T. Takahashi, Y. Cao, and M. Yoshikawa, “P3gm: Private
high-dimensional data release via privacy preserving phased generative
model,” in IEEE International Conference on Data Engineering (ICDE),
2021.

[36] D. Jiang, G. Zhang, M. Karami, X. Chen, Y. Shao, and Y. Yu,
“Dp2-vae: Differentially private pre-trained variational autoencoders,”
2022. [Online]. Available: https://arxiv.org/abs/2208.03409

[37] B. Pfitzner and B. Arnrich, “Dpd-fvae: Synthetic data generation using
federated variational autoencoders with differentially-private decoder,”
2022. [Online]. Available: https://arxiv.org/abs/2211.11591

[38] J.-W. Chen, C.-M. Yu, C.-C. Kao, T.-W. Pang, and C.-S. Lu, “Dp-
gen: Differentially private generative energy-guided network for natural
image synthesis,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[39] T. Zheng and B. Li, “Differentially private dataset condensation,” in
Workshop on AI Systems with Confidential Computing (AISCC), 2024.

[40] B. Zhao, K. R. Mopuri, and H. Bilen, “Dataset condensation with gradi-
ent matching,” in International Conference on Learning Representations
(ICLR), 2021.

[41] T. Dockhorn, T. Cao, A. Vahdat, and K. Kreis, “Differentially private
diffusion models,” Transactions on Machine Learning Research, 2023.

[42] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” in Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[43] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Advances in Neural Information Processing Systems (NeurIPS), 2020.

[44] S. Ghalebikesabi, L. Berrada, S. Gowal, I. Ktena, R. Stanforth, J. Hayes,
S. De, S. L. Smith, O. Wiles, and B. Balle, “Differentially private
diffusion models generate useful synthetic images,” in International
Workshop on Trustworthy Federated Learning, 2023.

[45] H. Wang, S. Pang, Z. Lu, Y. Rao, Y. Zhou, and M. Xue, “dp-promise:
Differentially private diffusion probabilistic models for image synthesis,”
in USENIX Security Symposium, 2024.

[46] K. Li, C. Gong, Z. Li, Y. Zhao, X. Hou, and T. Wang, “{PrivImage}:
Differentially private synthetic image generation using diffusion models
with {Semantic-Aware} pretraining,” in 33rd USENIX Security Sympo-
sium (USENIX Security 24), 2024, pp. 4837–4854.

[47] Z. Lin, S. Gopi, J. Kulkarni, H. Nori, and S. Yekhanin, “Differentially
private synthetic data via foundation model apis 1: Images,” in Interna-
tional Conference on Learning Representations (ICLR), 2024.

[48] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,”
in ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2011.

[49] V. Doroshenko, B. Ghazi, P. Kamath, R. Kumar, and P. Manurangsi,
“Connect the dots: Tighter discrete approximations of privacy loss distri-
butions,” in Proceedings on Privacy Enhancing Technologies (PoPETs),
2022.

[50] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014. [Online]. Available: https://arxiv.org/abs/1411.1784

[51] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier GANs,” in International Conference on Machine
Learning (ICML), 2017.

[52] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
International Conference on Learning Representations (ICLR), 2016.

[53] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in IEEE Symposium
on Security and Privacy (S&P), 2017.

[54] J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri, “En-
hanced membership inference attacks against machine learning models,”
in ACM Conference on Computer and Communications Security (CCS),
2022.

[55] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in ACM
Conference on Computer and Communications Security (CCS), 2015.

[56] N. Carlini, S. Deng, S. Garg, S. Jha, S. Mahloujifar, M. Mahmoody,
S. Song, A. Thakurta, and F. Tramer, “Is private learning possible with
instance encoding?” in IEEE Symposium on Security and Privacy (S&P),
2021.

[57] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and tex-
ture synthesis,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[58] ——, “Instance normalization: The missing ingredient for fast
stylization,” 2016. [Online]. Available: https://arxiv.org/abs/1607.08022

[59] X. Jin, C. Lan, W. Zeng, Z. Chen, and L. Zhang, “Style normalization
and restitution for generalizable person re-identification,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[60] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in International Conference on Com-
puter Vision (ICCV), 2017.

[61] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez,
“Invertible conditional gans for image editing,” in NeurIPS Workshop
on Adversarial Training, 2016.

[62] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradient
Compression: Reducing the communication bandwidth for distributed
training,” in The International Conference on Learning Representations
(ICLR), 2018.

https://arxiv.org/pdf/2204.13650.pdf
https://arxiv.org/pdf/2204.13650.pdf
https://arxiv.org/abs/1801.01594
https://arxiv.org/pdf/1802.06739.pdf
https://arxiv.org/abs/2208.03409
https://arxiv.org/abs/2211.11591
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1607.08022

14

[63] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demysti-
fying mmd gans,” in International Conference on Learning Representa-
tions (ICLR), 2018.

[64] Y. Benny, T. Galanti, S. Benaim, and L. Wolf, “Evaluation metrics
for conditional image generation,” International Journal of Computer
Vision, vol. 129, p. 1712–1731, 2021.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[66] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
GANs for improved quality, stability, and variation,” in International
Conference on Learning Representations (ICLR), 2018.

[67] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimiza-
tion: Efficient algorithms and tight error bounds,” in IEEE 55th Annual
Symposium on Foundations of Computer Science (FOCS), 2014.

[68] N. Papernot, A. Thakurta, S. Song, S. Chien, and Ú. Erlingsson, “Tem-
pered sigmoid activations for deep learning with differential privacy,”
AAAI Conference on Artificial Intelligence (AAAI), 2021.

[69] A. Bie, G. Kamath, and G. Zhang, “Private gans, revisited,” Transactions
on Machine Learning Research, 2023.

[70] I. Mironov, “Rényi differential privacy,” 2017 IEEE 30th Computer
Security Foundations Symposium (CSF), pp. 263–275, 2017.

[71] Y.-X. Wang, B. Balle, and S. Kasiviswanathan, “Subsampled rényi
differential privacy and analytical moments accountant,” in International
Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

Chih-Hsun Lin is currently a Ph.D. student at
Department of Computer Science, National Yang
Ming Chiao Tung University. His research interests
include network security and data privacy.

Chiay-Yi Hsu is currently a Ph.D. student at De-
partment of Computer Science, National Yang Ming
Chiao Tung University. She had academic visits at
IBM Thomas J. Watson research center and CISPA
Helmholtz Center for Information Security. Her re-
search interests include trustworthy AI and data
privacy.

Chia-Mu Yu is currently an associate professor at
National Yang Ming Chiao Tung University, Taiwan.
He had academic visits at IBM Thomas J. Watson re-
search center, Harvard University, Imperial College
London, University of Padova, and the University
of Illinois at Chicago. He received Hwa Tse Roger
Liang Junior Chair Professor, MOST Yong Scholar
Fellowship, ACM/IICM K. T. Li Young Researcher
Award, Observational Research Scholarship from
Pan Wen Yuan Foundation, and MOST Project for
Excellent Junior Research Investigators, Taiwan. He

serves as an Associate Editor for IEEE Transactions on Information Forensics
and Security, IEEE Internet of Things Journal, and IEEE Consumer Electron-
ics Magazine.

Yang Cao is an Associate Professor at the De-
partment of Computer Science, Institute of Sci-
ence Tokyo (Science Tokyo, formerly Tokyo Tech),
and directing the Trustworthy Data Science and
AI (TDSAI) Lab. He is passionate about studying
and teaching on algorithmic trustworthiness in data
science and AI. Two of his papers on data pri-
vacy were selected as best paper finalists in top-
tier conferences IEEE ICDE 2017 and ICME 2020.
He was a recipient of the IEEE Computer Society
Japan Chapter Young Author Award 2019, Database

Society of Japan Kambayashi Young Researcher Award 2021. His research
projects were/are supported by JSPS, JST, MSRA, KDDI, LINE, WeBank,
etc.

Chun-Ying Huang joined National Yang Ming
Chiao Tung University in 2016 as an Associate Pro-
fessor and has been a Professor in the Department of
Computer Science since 2018. His research interests
span system security, multimedia networking, and
mobile computing. Dr. Huang is a member of the
ACM and the IEEE.

15

SUPPLEMENTARY MATERIALS

A. Sources of Official Code for Baseline Methods

The official code of GS-WGAN, DP-MERF, DataLens,
G-PATE, DP-Sinkhorn, DP-HP, and DPDC can be found at
https://github.com/DingfanChen/GS-WGAN,
https://github.com/ParkLabML/DP-MERF,
https://github.com/AI-secure/DataLens,
https://github.com/AI-secure/G-PATE, and
https://github.com/nv-tlabs/DP-Sinkhorn_code,
https://github.com/ParkLabML/DP-HP, and
https://openreview.net/attachment?id=H8XpqEkbua_&name=
supplementary_material respectively.

B. Notation Table

The notation table summarizing the frequently used nota-
tions can be found in Table XVIII.

Symbol Description
D, D′ The neighboring data
𝐶 The classifier in DAF before transfer learning
𝐺 The generator in DAF after transfer learning
𝐷 The discriminator in DAF after transfer learning
𝜇 Asymmetry multiplier
𝑛critic Number of critic iterations per generator iteration
𝜖 The privacy loss
𝛿 The probability of violating DP
𝜎2 The variance of Gaussian distribution
𝑀 𝑓 The feature extractor (FE)
𝑀𝑐 The label predictor
𝜃 𝑓 The parameters of the FE
𝜃𝑐 The parameters of the label predictor
𝑢 The clipping threshold (sensitivity of DPSGD)
clip𝑢 Gradient clipping function with threshold 𝑢
𝑤 The model parameter
𝑝 The size of feature map is 𝑝 × 𝑝
𝑚 The number of feature maps
B The number of batches
IN The instance normalization
SIN The simplified instance normalization
𝜇𝑖1𝑖2 The mean of feature map 𝑋𝑖1𝑖2
𝜎2
𝑖1𝑖2

The variance of feature map 𝑋𝑖1𝑖2
𝐻 The height of the feature map
𝑊 The width of the feature map
𝑥𝑖1𝑖2𝑖3𝑖4 The element of feature map 𝑋𝑖1𝑖2
𝑥𝑖1𝑖2𝑖3𝑖4 The new value of 𝑥𝑖1𝑖2𝑖3𝑖4 after SIN
𝛼 The order in Rényi DP
𝐷𝛼 The Rényi divergence of order 𝛼

𝐺𝜎 The Gaussian mechanism with variance 𝜎2

𝛾 The subsampling rate

TABLE XVIII: Notation Table

C. Privacy Analysis

In the following, we are aimed to prove that conv1 satisfies
DP. We start from Theorem 1.

Theorem 1: Define a model 𝑀 (D) = 𝑀2 (𝜃2, 𝑀1 (𝜃1,D)) :
D → 𝑅2, where D is the sensitive data, 𝜃1 and 𝜃2 are model
parameters, 𝑀1 (𝜃1,D) : D → 𝑅1 is the first half of the model
𝑀 , 𝑀2 (𝜃2, 𝑅1) : 𝑅1 → 𝑅2 is the second half of the model 𝑀 ,
with 𝑅1 and 𝑅2 denoting the corresponding outputs of the
layers. 𝑀1 (𝜃1,D) satisfies DP if it is trained by DPSGD.

Proof 1: Define 𝐺 (𝜃1, 𝜃2,D,L(𝜃1, 𝜃2,D)) as the gra-
dient of the model 𝑀 , where L is the loss function.
𝐺 (𝜃1, 𝜃2,D,L(𝜃1, 𝜃2,D)) can be rewritten as

𝐺 (𝜃1, 𝜃2,D,L(𝜃1, 𝜃2,D)) (5)
=[𝑔(𝜃2,L(𝜃1, 𝜃2,D)), �̃�(𝜃1, 𝑔(𝜃2,L(𝜃1, 𝜃2,D))], (6)

where 𝑔(𝜃2,L(𝜃1, 𝜃2,D)) can be seen as the gradient of 𝑀2
and �̃�(𝜃1,L(𝜃1, 𝜃2,D)) can be seen as the gradient of 𝑀1.
The updating rule is shown below.

𝜃2 ← 𝜃2 + 𝑔(𝜃2,L(𝜃1, 𝜃2,D)) (7)
𝜃1 ← 𝜃1 + �̃�(𝜃1, 𝑔(𝜃2,L(𝜃1, 𝜃2,D))) (8)

To simplify the notations, we use D to denote the dependency
of the sensitive data. In this case, Eq. (5) can be rewritten as

𝐺 (𝜃1, 𝜃2,D,L(𝜃1, 𝜃2,D))
=𝐺 (𝜃1, 𝜃2,D) (9)
=[𝑔(𝜃2,D), �̃�(𝜃1, 𝑔(𝜃2,D))] . (10)

As �̃�(𝜃1,D) is trained by DPSGD, one can ensures that
�̃�(𝜃1,D) satisfies DP. As 𝑀1 (𝜃1,D) is initialized randomly
and is updated by �̃�(𝜃1,D), one can ensures that 𝑀1 (𝜃1,D)
satisfies DP.

With Theorem 1, we can easily conclude that conv1 in
DPAF satisfies DP via Corollary 1.

Corollary 1: The conv1 in DPAF satisfies DP.
Proof 2: The classifier 𝐶 in DPAF before the transfer

learning is an instantiation of the model 𝑀 in Theorem 1.
In this case, conv1 can be seen as 𝑀1, and conv2, conv3,
and FC are seen as 𝑀2 in Theorem 1. As shown in Line 4
of Algorithm 1, we perform SGD for updating conv2, conv2,
and FC, and perform DPSGD(𝜀1) for updating conv1. Hence,
conv1 satisfies DP.

Next, we are aimed to prove that DPAF satisfies DP. We rely
on Rényi DP (RDP) [70] for our privacy analysis. Compared
to the ordinary DP in Definition 1, RDP is a variant of DP
with a tighter bound of privacy loss.

Definition 2: A randomized algorithmM is (𝛼, 𝜖 (𝛼))-RDP
with 𝛼 > 1 if for any neighboring datasets D and D′,

𝐷𝛼 (M(D) | |M(D′)) =
1

𝛼 − 1
logE𝑥∼M(D′)

[(
Pr[(D) = 𝑥]
Pr[(D′) = 𝑥]

)𝛼−1
]
≤ 𝜖 (𝛼) ,

(11)

where 𝐷𝛼 is the Rényi divergence of order 𝛼.
Before proving our main result, we describe some necessary

properties of RDP in Theorems 2∼5.
Theorem 2 (Gaussian Mechanism on RDP [70], [9]): If a

function 𝑓 has ℓ2-sensitivity 𝑢, then 𝐺𝜎 ◦ 𝑓 obeys (𝛼, 𝜀(𝛼))-
RDP, where 𝜀(𝛼) = 𝛼𝑢2/(2𝜎2) and 𝐺𝜎 is the Gaussian
mechanism defined in Section III.

Theorem 3 (Sequential Composition on RDP [70]): If the
mechanism M1 satisfies (𝛼, 𝜖1)-RDP and the mechanism M2
satisfies (𝛼, 𝜖2)-RDP, thenM2 ◦M1 satisfies (𝛼, 𝜖1 + 𝜖2)-RDP.

Theorem 4 (Privacy Amplification by Subsampling [71]):
Let M◦ subsample be a randomized mechanism that first
performs the subsampling without replacement with the sub-
sampling rate 𝛾 on the dataset 𝑋 and then takes as an input
from the subsampled dataset 𝑋𝛾 . For all integers 𝛼 ≥ 2, if
M obeys (𝛼, 𝜖 (𝛼))-RDP through Gaussian mechanism, then
M ◦ subsample satisfies (𝛼, 𝜖 ′ (𝛼))-RDP, where

𝜖 ′ (𝛼) ≤ 1
(𝛼 − 1) log(1 + 𝛾2

(
𝛼

2

)
min{4(𝑒𝜖 (2) − 1) , 𝑒𝜖 (2) min{2,

(𝑒𝜖 (∞) − 1)2}} +
𝛼∑︁
𝑗=3

𝛾 𝑗

(
𝛼

𝑗

)
𝑒 (𝑗−1) 𝜖 (𝑗) min{2, (𝑒𝜖 (∞) − 1) 𝑗 }) ,

(12)

https://github.com/DingfanChen/GS-WGAN
https://github.com/ParkLabML/DP-MERF
https://github.com/AI-secure/DataLens
https://github.com/AI-secure/G-PATE
https://github.com/nv-tlabs/DP-Sinkhorn_code
https://github.com/ParkLabML/DP-HP
https://openreview.net/attachment?id=H8XpqEkbua_&name=supplementary_material
https://openreview.net/attachment?id=H8XpqEkbua_&name=supplementary_material

16

and 𝜀(𝛼) = 𝛼𝑢2/(2𝜎2) with 𝑢 as the sensitivity.
In the following, we use 𝜖 ′ (𝛼, 𝛾, 𝑢) to indicate 𝜖 ′ (𝛼) with

the subsampling rate 𝛾 and sensitivity 𝑢.
Theorem 5 (From RDP to DP [70]): If a mechanism M is
(𝛼, 𝜖 (𝛼))-RDP,M is (𝜖 (𝛼) + log 1/𝛿

𝛼−1 , 𝛿)-DP for any 𝛿 ∈ (0, 1).

From Corollary 1, we know that if conv1 in 𝐶 is trained by
DPSGD and conv2, conv3, and FC are discarded, using conv1
in 𝐶 as conv1 in 𝐷 does not leak privacy. Hence, based on
the above result, Theorem 6 shows the DP of DPAF.

Theorem 6: DPAF guarantees (𝑇1𝜖
′ (𝛼, 𝛾1, 𝑢1) +

𝑇2𝜖
′ (𝛼, 𝛾2, 𝑢2) + 𝑇3𝜖

′ (𝛼, 𝛾3,
√
𝑚𝑝) + log 1

𝛿

𝛼−1 , 𝛿)-DP for all
𝛼 ≥ 2 and 𝛿 ∈ (0, 1).

Proof 3: For 𝐶, our goal is to ensure that the update of
conv1 is satisfied with (𝛼, 𝜖 (𝛼))-RDP for each iteration. Note
that because conv2, conv3, and FC will be discarded after
the training, they do not need a DP guarantee. Let the total
number of iterations for training 𝐶 be 𝑇1. Then, the DPSGD
(through the Gaussian mechanism in Theorem 2) on conv1
is (𝛼,𝑇1𝜖 (𝛼))-RDP according to Theorem 3. However, it can
be re-estimated as (𝛼,𝑇1𝜖

′ (𝛼, 𝛾1, 𝑢1))-RDP with subsampling
rate 𝛾1 according to Theorem 4.

For 𝐷, since conv1’s parameters are frozen during the
training of 𝐷, the output of conv1 in 𝐷 is satisfied with
(𝛼,𝑇1𝜖

′ (𝛼, 𝛾1, 𝑢1))-RDP, because the update of conv1 in 𝐶

has been proven to be RDP. Let the total number of iterations
for training conv2* be 𝑇2. Then, the DPSGD (through the
Gaussian mechanism in Theorem 2) on conv2* is (𝛼,𝑇2𝜖 (𝛼))-
RDP according to and Theorem 3. Similarly, the update of
conv2* is satisfied with (𝛼,𝑇2𝜖

′ (𝛼, 𝛾2, 𝑢2))-RDP with sub-
sampling rate 𝛾2 according to Theorem 4. So far, the joint
consideration of conv1 and conv2*, (conv1, conv2*), is satis-
fied with (𝛼,𝑇1𝜖

′ (𝛼, 𝛾1, 𝑢1) + 𝑇2𝜖
′ (𝛼, 𝛾2, 𝑢2))-RDP guarantee

according to Theorem 3. Unlike the cases of conv1 and
conv2*, where noise is injected in the backward phase, the
noise injection to AGG occurs in the forward phase. More
specifically, we set a DPAGG to aggregate input data and
add noise in the aggregated data. The sensitivity of AGG
has been calculated as

√
𝑚𝑝 in Eq. (4). Let the number

of iterations for the training of 𝐷 be 𝑇3. The DPAGG
with the noise sampled from 𝑁 (0, 𝑚𝑝2𝜎2) is satisfied with
(𝛼,𝑇3𝜖

′ (𝛼, 𝛾3,
√
𝑚𝑝))-RDP with subsampling ratio 𝛾3 accord-

ing to Theorem 2 and Theorem 3. Thus, the joint consideration
of conv1, conv2*, and DPAGG, (conv1, conv2*, DPAGG), will
fulfill (𝛼,𝑇1𝜖

′ (𝛼, 𝛾1, 𝑢1) +𝑇2𝜖
′ (𝛼, 𝛾2, 𝑢2) +𝑇3𝜖

′ (𝛼, 𝛾3,
√
𝑚𝑝))-

RDP according to Theorem 3. Because the DPAGG has DP
guarantee, the update of conv3* and FC* is satisfied with
RDP by the postprocessing. Finally, the update of 𝐺 does
not access the sensitive data and, as a result, is satisfied with
RDP by the postprocessing. Overall, according to Theorem 5,
DPAF is satisfied with (𝑇1𝜖

′ (𝛼, 𝛾1, 𝑢1) + 𝑇2𝜖
′ (𝛼, 𝛾2, 𝑢2) +

𝑇3𝜖
′ (𝛼, 𝛾3,

√
𝑚𝑝) + log 1

𝛿

𝛼−1 , 𝛿)-DP.

	Introduction
	Related Work
	Preliminaries
	Threat Model
	Proposed Method
	Overview
	DPAF
	Training a Classifier Before Transfer Learning
	Training a DPGAN After Transfer Learning

	Discussion

	Experiment Evaluation
	Experiment Setup
	Experiment Results
	Visual Quality
	Classification Accuracy
	Privacy Budget Allocation w/o Transfer Learning
	Privacy Budget Allocation w/ Transfer Learning
	Number of Layers for conv1, conv2*, and conv3*
	The Impact of Asymmetry Multiplier .
	The Other Techniques in Enhancing Accuracy
	Comparison to Private-GANs
	Empirical Evidence for Data Privacy of DPAF against MIA

	Conclusion
	References
	Biographies
	Chih-Hsun Lin
	Chiay-Yi Hsu
	Chia-Mu Yu
	Yang Cao
	Chun-Ying Huang
	Sources of Official Code for Baseline Methods
	Notation Table
	Privacy Analysis

