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Abstract

While large language models (LLMs) such as Llama-2 or GPT-4 have shown1

impressive zero-shot performance, fine-tuning is still necessary to enhance their2

performance for customized datasets, domain-specific tasks, or other private needs.3

However, fine-tuning all parameters of LLMs requires significant hardware re-4

sources, which can be impractical for typical users. Therefore, parameter-efficient5

fine-tuning such as LoRA have emerged, allowing users to fine-tune LLMs without6

the need for considerable computing resources, with little performance degradation7

compared to fine-tuning all parameters. Unfortunately, recent studies indicate that8

fine-tuning can increase the risk to the safety of LLMs, even when data does not9

contain malicious content. To address this challenge, we propose Safe LoRA, a10

simple one-liner patch to the original LoRA implementation by introducing the11

projection of LoRA weights from selected layers to the safety-aligned subspace,12

effectively reducing the safety risks in LLM fine-tuning while maintaining utility.13

It is worth noting that Safe LoRA is a training-free and data-free approach, as14

it only requires the knowledge of the weights from the base and aligned LLMs.15

Our extensive experiments demonstrate that when fine-tuning on purely malicious16

data, Safe LoRA retains similar safety performance as the original aligned model.17

Moreover, when the fine-tuning dataset contains a mixture of both benign and18

malicious data, Safe LoRA mitigates the negative effect made by malicious data19

while preserving performance on downstream tasks.20

1 Introduction21

As Large Language Models (LLMs) and their platforms rapidly advance and become more accessible,22

the need to align LLMs with human values, cultural norms, and legal compliance is critical for society,23

technology, and the research community. Specifically, many alignment efforts in AI safety have been24

made toward preventing LLMs from generating harmful or inappropriate output, through instruction25

tuning techniques such as Reinforcement Learning with Human Feedback [32, 43, 33, 9, 5, 36, 55]26

and Supervised Fine-tuning (SFT) [7, 42, 12, 50, 10]. However, recent studies have unveiled the27

surprisingly fragile property of aligned LLMs upon fine-tuning [35, 56, 51] – the embedded safety28

can be significantly weakened when the aligned LLMs are updated with a handful of maliciously29

crafted data, or even with benign data. This finding is consistently observed across LLMs and30

fine-tuning strategies, including closed-source ones such as ChatGPT [32] and open-source ones31

such as Llama-2 [43], based on full fine-tuning, LoRA fine-tuning [16], adapter [17], and prefix32

tuning [23].33

To address the challenge of losing safety guardrails in LLM fine-tuning, this paper presents Safe34

LoRA, a simple one-liner patch to the original LoRA that enhances the resilience of LLMs to safety35

degradation. Among various fine-tuning methods, we specifically focus on LoRA due to its practical36

advantages in memory-efficient parameter updates of LLMs through low-rank adaptation, while37

achieving comparable performance to the resource-consuming full fine-tuning.38
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V = W_aligned – W_unaligned
C = np.dot(V, V.T())/np.norm(V)

for ΔW in LoRA.parameters():
// ΔW = ABT

If cos(CΔW, ΔW) < τ:
ΔW.data = CΔW

Figure 1: Overview of Safe LoRA. We first obtain an alignment matrix V = Waligned−Wunaligned

from a pair of unaligned and aligned LLMs, denoted as Wunaligned and Waligned, respectively.
Next, for each layer in the LLM undergoing LoRA updates ∆W = ABT , we use the projection
operator C = VVT /∥V∥F to calculate the similarity score between the projected LoRA weights
CABT and the original LoRA weights ABT . If the similarity score is below a certain threshold τ ,
we use the projected LoRA weights as the final updates to Waligned.

Figure 1 provides an overview of Safe LoRA. First, we assume access to a pair of unaligned and39

aligned LLM weights, denoted as Wunaligned and Waligned, which are often available for open-40

source LLMs such as Llama Base (unaligned) and Chat (aligned) models. We denote their difference41

as the "alignment matrix" (by treating the weight matrix in each layer of LLMs independently), which42

is defined as V = Waligned −Wunaligned. Intuitively, the alignment matrix entails the instruction43

tuning and safety alignment efforts to train a base model that is only capable of next-token prediction44

to become a conversational chatbot and a performant assistant. For each layer in an LLM where LoRA45

is used for parameter updates, Safe LoRA further projects the LoRA update onto the alignment46

matrix if the similarity score between the original and projected LoRA updates is below a certain47

threshold. A lower similarity score suggests that the direction of the original LoRA updates has a48

larger deviation from the alignment matrix, and we hypothesize this discrepancy is the root cause of49

the observed safety risks in fine-tuning LLMs with LoRA. With Safe LoRA, our experiments show50

that the safety and utility of LLMs can be greatly preserved, making it a cost-effective solution for51

safe LLM fine-tuning due to its data-free and training-free nature.52

We highlight our main contributions and findings as follows.53

• We propose Safe LoRA, a simple, data-free, training-free, and model-agnostic patch to54

counteract the safety degradation problems when fine-tuning LLMs with the native LoRA55

implementation. In essence, Safe LoRA modifies LoRA updates that are dissimilar to our56

defined alignment matrix via the projection operation to prevent safety degradation during57

LLM fine-tuning. An exemplary code of Safe LoRA is presented in Figure 1.58

• Evaluated on the Llama-2-7B-Chat and Llama-3-8B-Instruct models against purely ma-59

licious or mixed fine-tuning data, Safe LoRA can retain utility (the downstream task60

performance) while simultaneously reducing safety risks, outperforming existing defense61

methods including SafeInstr [6] and Backdoor Enhanced Alignment (BEA) [45].62

• We found that when using LoRA for fine-tuning, the number of projected layers is related63

to the inherent alignment strength of the model. For instance, Llama-2-7B-Chat requires64

projecting only about 11% of the layers, while Llama-3-8B-Instruct needs up to 35% to65

achieve a good trade-off between utility and safety.66
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2 Related Works67

2.1 Alignment of LLMs68

Alignment in the context of LLMs denotes the process of ensuring models behave in a way that69

conforms to social values. Due to the gap between the pre-trained LLM’s training objective and70

human values, practitioners typically perform certain forms of optimization during the alignment71

stage to ensure that the generated content is “aligned” with human values. For example, aligned LLMs72

such as ChatGPT [32] and Claude [1, 2] have safety guardrails and can refuse harmful instructions.73

These methods include Instruction Tuning [47, 33, 43] and Reinforcement Learning from Human74

Feedback (RLHF) [58, 33, 4], where the model is instructed to become helpful, harmless, and75

honest, i.e., the HHH principles [3]. In comparison to RLHF, recent works such as Direct Preference76

Optimization (DPO) [36] optimize directly on human preference data, thus eliminating the need for77

a reward model in RLHF. On the other hand, Self-Rewarding [53] transforms the language model78

into a reward model to collect preference data, then aligns the model with DPO iteratively. These79

techniques aim to instruct the model with certain alignment rules or safety guardrails so that the80

model behaves well during inference time. However, during subsequent fine-tuning these guardrails81

might not hold integrate as revealed by [51, 35, 56] while there are some preliminary measures that82

counteract this problem [45, 6].83

2.2 Jailbreak and Red-teaming of LLMs84

While alignment is being employed in modern LLMs, the terms jailbreak or red-teaming refer to85

a series of tests or attacks on LLMs designed to reveal their vulnerabilities. Common approaches86

include exploiting adversarial prompts [25, 59, 54, 24, 39, 52, 27] or the decoding algorithms [18]87

of LLMs to bypass the safety guardrails established during the alignment stage.88

On the other hand, fine-tuning LLMs for downstream tasks (not necessarily malicious) has also been89

shown to have a detrimental effect on the safety guardrails in terms of alignment [25, 46, 34, 59].90

As a result, the attacked LLM could be exploited to generate malicious responses, posing a risk to91

society. This work aims to provide a solution for restoring the safety guardrails in LLMs even after92

fine-tuning for downstream tasks.93

2.3 Manipulating Models with Arithmetics94

While safety and reliability present critical challenges to the research community, an alternate line95

of work focuses on exploring the relationship between task performance and parameters through96

arithmetic interventions.97

Works such as [26, 20, 22, 48] explore the performance boost when averaging fine-tuned model98

weights from diverse domains, while others discovered that the newly averaged fused model could99

naturally perform better [8] or serve as a better initialization setting for a new downstream task [8]. On100

the other hand, a recent work [20] goes beyond interpolating and examines the effects of extrapolating101

between fine-tuned models. Specifically, these extrapolations, termed task vectors, are generated by102

re-using fine-tuned models, allowing users to extend the capabilities of models by adding or deleting103

task vectors in a modular and efficient manner.104

Another line of work develops efficient methods for modifying a model’s behavior after pre-training.105

This includes various approaches such as patching [49, 41, 20, 31], editing [38, 29, 30], aligning106

[33, 3, 21, 14] (including the previously introduced alignment problem), or debugging [37, 13]. A107

recent work[40] also follows this approach and tries to steer language models’ outputs by adding108

vectors to their hidden states.109

3 Methodology110

Our goal is to retain the alignment of LLMs in a post-hoc fashion after fine-tuning downstream111

tasks with LoRA. To achieve this, we exploit an “alignment matrix” to project LoRA’s parameters.112

Specifically, this means projecting LoRA’s weights onto the alignment subspace, thereby preserving113

alignment even after fine-tuning. Detailed explanations of the alignment matrix and the projection114

process will be provided in Section 3.1 and Section 3.2, respectively.115
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3.1 Constructing Alignment Matrix116

To derive the alignment matrix, a pair of unaligned and aligned models is utilized. We further illustrate117

what aligned and unaligned models are in concept.118

To formalize, the alignment matrix Vi is defined as follows:119

Vi = Wi
aligned −Wi

unaligned (1)

where Wi
aligned and Wi

unaligned represent the weights of the aligned and unaligned models in the120

i-th layer, respectively. When clear in context, we will omit the layer index.121

After obtaining Vi, we perform matrix multiplication with Vi and its transpose with the matrix122

(ViTVi)−1 to form a standard projection matrix. This operation is conducted on a layer-wise basis,123

and the resulting matrix Ĉi can be formalized as:124

Ĉi = Vi(ViTVi)−1ViT (2)

where Vi denotes the alignment matrix in the i-th layer, and Ĉi represents the projection matrix125

defined by Vi. Following this operation, we obtain the alignment matrix for each layer, which will126

further be used for projecting the LoRA weights.127

For the aligned and unaligned models, take Meta’s Llama for example, the aligned model will be128

the Chat model such that they are trained with an alignment goal [43, 28]. On the other hand, the129

unaligned model could be the aligned model that is fine-tuned with malicious data such that the LLM130

has lost the safety guardrail and is vulnerable to attacks.131

Furthermore, as shown in Figure 2, we experimented on the behavior of the unaligned model compared132

to the base model provided in Meta’s released checkpoints 1. We discovered that the 11 categories133

both OpenAI and Meta’s Llama-2 prohibit models from responding to are identical to those of the134

base model. Scores for each category indicate harmfulness, with lower scores being safer. The scores135

range from 1 to 5, with 1 being the safest and 5 being the most harmful, as judged by GPT-4. In136

Figure 2, we present our results with alignment matrices derived from different models. Here, we137

project LoRA’s weights trained on purely harmful samples. The performances of the base model and138

the unaligned model after harmful fine-tuning are extremely close.139

As a result, given that most open-source LLMs provide both their base model and chat/instruct140

models, users can conveniently use these official models to construct the alignment matrix without141

needing to train their own aligned or unaligned model. This choice of using base and chat/instruct142

models to construct the alignment matrix will be our default setup in Safe LoRA.143

Usage Policies : “We don’t allow the use of the following:”

#1 : Illegal Activity #5 : Physical Harm #9 : Political Campaigning

#2 : Child Abuse Content #6 : Economic Harm #10 : Privacy Violation Activity

#3 : Hate/Harass/Violence #7 : Fraud/Deception #11 : Tailored Financial Advice

#4 : Malware #8 : Adult Content

* The above safety categories merged from “OpenAI usage policies” and

the “Meta’s Llama 2 acceptable use policy”.
Base Fine-tuned

Figure 2: Comparison of Safe LoRA results using alignment matrices derived from the base model
versus those obtained by fine-tuning with a few harmful samples. Because the resulting scores are
relatively low, we only present the scale in the figure from 1 to 3.

3.2 Post-hoc Fine-tuning Projection144

After fine-tuning LLMs on downstream tasks with LoRA, we obtain the LoRA weight ∆Wi for the145

i-th layer, denoted as ∆Wi = AiBiT . During the fine-tuning process, alignment may be weakened146

[35], indicating that ∆Wi may have been updated in a way that boosts utility but reduces safety.147

1https://huggingface.co/meta-llama/Llama-2-7b
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To retain alignment, it is necessary to project ∆Wi using the previously defined Ĉi to restore148

alignment. However, while ∆Wi might weaken the alignment of the original model, it is updated149

to maximize the utility of the downstream task. To balance alignment and utility, we choose not150

to project all of the LoRA weights. Instead, we calculate the similarity between the original and151

projected LoRA weights, i.e., ∆Wi and Ci∆Wi. Using a threshold, we determine which layers152

should undergo projection. This process is formalized as follows:153

∆Wi = Ĉi∆Wi, subject to
⟨∆Wi, Ĉi∆Wi⟩F

||∆Wi||F ||Ĉi∆Wi||F
< τ (3)

where i denotes the i-th layer of LoRA’s parameters, ⟨·, ·⟩F represents the Frobenius inner product,154

and || · ||F represents the Frobenius norm induced by the inner product. Lastly, τ indicates the155

threshold of the similarity score. Alternatively, τ could be selected such that only the top-K layers156

with the lowest similarity scores will be projected. Furthermore, we examine the impact of the157

number of projected layers on performance and the similarity scores of all layers in the ablation study158

presented in Section 4.2.159

3.3 Rationale for Post-Hoc Projection160

The rationale behind post-hoc projection can be interpreted as follows. As recent works [11, 19, 44]161

begin to explore the holistic structure of weight space, we assume that the weight space is well-162

structured such that by subtracting Wunaligned from Waligned, we can extract a safety-related163

vector V in the inner product space constructed by all possible weights, i.e., (Fn×n,+, ·,R) with164

the Frobenius inner product ⟨·, ·⟩F . As a result, by constructing the exact projection matrix Ĉ =165

V(VTV)−1VT , we create a subspace in the original vector space that represents the safety-related166

concept.167

Fine-tuning with LoRA essentially aims to search for solutions to downstream tasks in a smaller168

subset of Fn×n, i.e., all low-rank matrices. By post-hoc projecting the discovered solution, we are169

able to obtain an intersection of both the low-rank solution space and the safety-critical solution170

space, thus promoting both the utility and safety of the fine-tuned language model.171

3.4 A Faster Alternative172

While the original projection method in Section 3.3 could explain and properly eliminate the safety173

risk induced during the LLM fine-tuning on downstream tasks, the inverse product (VTV)−1 in Ĉi174

calculated in each layer is time-consuming. We further introduced an approximate version defined as:175

Ci :=
ViViT

||Vi||F
where || · ||F denotes the Frobenius norm. We also compare the time costs for generating C and Ĉ. It176

takes 8.6 × 10−3 seconds to generate C, while generating Ĉ requires 2.1714 seconds, denoting a177

250x times slower generation speed. All operations are computed by the NVIDIA H100 80GB GPU.178

Furthermore, to compare the methods, we include the performance on datasets in Table 1. As one can179

view in Table 1, the alternative Ĉ could often perform better in terms of safety and utility trade-off.

PureBad Alpaca
C∆W Ĉ∆W C∆W Ĉ∆W

Harmfulness Score (↓) 1.055 1.18 1.05 1.06
MT-Bench (1∼10) (↑) 6.34 5.96 6.35 6.3

Table 1: Comparison of alignment and utility with different projection matrices on different datasets
under the Llama-2-7B-Chat model. See Section 4 for the descriptions of datasets and metrics.

180

4 Experiments181

Fine-tuning Datasets. We use the PureBad, Dialog Summary, and Alpaca datasets for fine-tuning.182

The PureBad dataset, following the same setting as [35], consists of 100 harmful examples collected183
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through red-teaming. Regarding Dialog Summary [15], we randomly select 1,000 samples from the184

Dialog Summary dataset and mix them with the 100 harmful examples from the PureBad dataset.185

Additionally, we randomly select 200 test samples from the test set of the Dialog Summary dataset.186

For the Alpaca dataset, we use the same dataset as [35], totaling 50,098 records, with 200 of them187

used as the validation set. When fine-tuning the Alpaca dataset, we refrain from adding the 100188

harmful samples, as they would lead to a decrease in safety. Data formats for all datasets are shown189

in Appendix A.3. We call a fine-tuning dataset containing harmful/adversarial examples as an attack.190

Baseline. Other than LoRA, we consider two defense baselines: SafeInstr [6] and Backdoor191

Enhanced Alignment (BEA) [45]. For SafeInstr, they demonstrate that fine-tuning models by adding192

only 3% safety samples can improve their safety. We augment their safe instructions2 into the fine-193

tuning datasets, and the number of safety samples is 10% of the PureBad dataset in all experiments.194

For BEA, pairs of triggers are designed to serve as the secret prompt and safety instructions for the195

backdoor samples. Therefore, during the inference phase, if the trigger is detected and the user’s196

instructions are harmful, the impact will be mitigated. In our experiments with BEA, we use the197

official backdoor samples3, and the number of backdoor samples is 10% of the PureBad dataset.198

Evaluation Metrics. Safety: In our experimental results, we use three metrics to evaluate safety,199

utility, and attack success rate (ASR). For safety, we use the benchmark designed by [35], which200

consists of 11 harmful categories merged from OpenAI usage policies and Meta’s Llama 2 acceptable201

use policy. These 11 categories are listed in Appendix A.1. We utilize GPT-4 to judge responses and202

assign harmfulness scores (ranging from 1 to 5, with lower scores indicating greater safety). Utility:203

For utility, different datasets have different measurement methods. To evaluate the performance204

on the Dialog Summary dataset, we compute the Rouge-1 F1 score by comparing the responses205

generated by LLMs with the ground truth responses across 200 test examples. For the PureBad and206

Alpaca datasets, we employ MT-Bench [57] to evaluate their utilities and use GPT-4 to assign scores207

ranging from 1 to 10, with higher scores indicating better quality. ASR: The attack is considered208

successful if the LLM’s response does not contain any keywords indicating a refusal to answer. The209

keywords list is shown in Appendix A.2. We calculate the average ASR of the benchmark across the210

11 categories.211

Experiment Settings. We use the official fine-tuning scripts from Meta. Regarding the settings of212

LoRA, we only add LoRA to the “q_proj” and “v_proj” attention layers, and we set the rank to 8 for213

all experiments. To achieve greater performance on downstream tasks, we may use different training214

hyperparameters for different datasets. For Llama-2-7B-Chat, we set the learning rate to 5× 10−5,215

batch size to 5, and run 5 epochs for all datasets. For Llama-3-8B-Instruct, we set the learning rate to216

10−3, batch size to 5, and run 5 epochs for the PureBad dataset. For the Dialog Summary dataset,217

we set the learning rate to 10−4, batch size to 32, and run 3 epochs. All experiments are conducted218

on NVIDIA H100 80GB GPUs and AMD® Epyc 7313 16-core processor × 64. As mentioned in219

Section 3, Safe LoRA needs to use the alignment matrix. There might be concerns about whether220

this alignment matrix will consume too many hardware resources. In practice, the alignment does221

require hardware resources, but it doesn’t utilize GPUs. Instead, it can be stored on disk. During222

projection, it is loaded layer by layer onto GPUs (not all at once), facilitating a swift completion of223

the projection process.224

4.1 Performance Evaluation225

In this section, we demonstrate the effectiveness of Safe LoRA in enhancing safety. It is important to226

highlight that Safe LoRA does not require any additional training data, unlike both BEA and SafeInstr,227

which need extra data incorporation. Furthermore, the amount of additional data incorporated plays a228

significant role in their performance. In Safe LoRA, we compute similarity scores between weights229

before and after projection on a layer-by-layer basis. A similarity score threshold can be used to230

determine the number of layers to project, or we can predefine K layers and select the top K similarity231

score for projection. Additionally, we extend Safe LoRA to full parameter fine-tuning, and the results232

are demonstrated in Section 4.2.233

PureBad. Given that users might not always be benign, we fine-tune LLMs using purely malicious234

samples from the PureBad dataset. We project all LoRA layers for the PureBad dataset because the235

2https://github.com/vinid/safety-tuned-llamas
3https://github.com/Jayfeather1024/Backdoor-Enhanced-Alignment
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significant distance between the original LoRA weights and the projected weights indicates that the236

model has been trained in an unsafe direction. More details are provided in Appendix A.4. Table 2237

presents the results for non-fine-tuned (original) models, models with the native LoRA, baselines,238

and Safe LoRA. As depicted in Table 2, regarding Llama-2, the original model can effectively resist239

malicious instructions. However, the harmfulness score dramatically increases to 4.66 after fine-240

tuning on the PureBad dataset. Fortunately, defense methods can significantly reduce harmfulness241

scores. Notably, Safe LoRA greatly enhances safety, even reducing the original harmfulness score242

by 0.003. Considering ASR, SafeInstr often avoids answering toxic questions, but even so, its243

harmfulness score tends to be higher. Moreover, in terms of utility, Safe LoRA outperforms other244

methods, achieving the highest score on MT-Bench by at least 0.4, on par with the original model.245

However, for Llama-3, the results differ slightly from those of Llama-2. BEA achieves the highest246

MT-Bench score, but its alignment is the worst. Safe LoRA has the lowest harmfulness score at 1.10;247

however, its utility is not satisfactory. This is because the original score of the Llama-3 model is not248

high (i.e., worse than Llama-2). SafeInstr manages to achieve an appropriate balance between utility249

and safety. Additionally, we found that when fine-tuning the PureBad dataset with the same LoRA250

settings as Llama-2, Llama-3’s alignment requires a larger learning rate to be removed, even though251

its alignment performance is lower than that of Llama-2.252

Models Attack
(adversarial data) Fine-tuned Fine-tuning

Method Utility (↑) Harmfulness
Score(↓) ASR (%)(↓)

Llama-2-7B-Chat

% % None (original model) 6.31 1.058 3.03%
! ! LoRA 4.54 4.66 95.76%
! ! SafeInstr 5.74 1.064 1.21%
! ! BEA 5.87 1.203 7.58%
! ! Safe LoRA (Ours) 6.34 1.055 3.03%

Llama-3-8B-Instruct

% % None (original model) 5.18 1.097 7.27%
! ! LoRA 5.85 4.637 94.85%
! ! SafeInstr 5.82 1.11 3.64%
! ! BEA 6.89 1.31 10.91%
! ! Safe LoRA (Ours) 5.05 1.10 6.36%

Table 2: The performance of Safe LoRA compared with LoRA, SafeInstr, and BEA methods under
the Llama-2-7B-Chat/Llama-3-8B-Instruct models fine-tuned on the PureBad dataset.

Dialog Summary. We present a more practical fine-tuning scenario. We selected a dataset for a253

task that LLMs were originally not proficient in and required fine-tuning. Additionally, we assume254

that users might be malicious. Therefore, we augmented the Dialog Summary dataset with 100255

harmful samples. We set the similarity score threshold at 0.35, resulting in projections across 7 layers.256

As shown in Table 3, the Rouge-1 F1 score of the original Llama-2 model is only 34%, but after257

fine-tuning, it can reach around 50%. Adding SafeInstr to the training set does not harm utility, but it258

doesn’t sufficiently reduce the harmfulness score. BEA also slightly reduces utility, but like SafeInstr,259

its performance on the harmfulness score is not as good as Safe LoRA. Safe LoRA’s harmfulness260

score is at least 0.1 lower than theirs, and although its utility slightly decreases, it still approaches261

50%. However, one might be curious about whether Safe LoRA might harm the utility of datasets262

composed entirely of benign samples. We also apply Safe LoRA to the model trained exclusively on263

non-harmful samples with the same number of projected layers. The results indicate that Safe LoRA264

does not negatively impact the performance on the benign dataset, maintaining a Rouge-F1 score of265

approximately 50%.266

On the other hand, for Llama-3-8B-Instruct, we projected approximately 35% of the total LoRA267

layers. Since the alignment of Llama-3 is not as strong as that of Llama-2, the effectiveness of the268

alignment matrix is diminished. Thus, the number of projected layers is greater than for Llama-2. The269

utility of Safe LoRA can still achieve almost the same result as benign fine-tuning, at 49.04%, while270

the harmfulness score decreases by around 0.4. SafeInstr gets the highest safety score, but its utility271

is reduced by 0.12%. Conversely, BEA’s utility is better than that of the originally fine-tuned model,272

but its alignment is also the lowest among the three. Besides, similar to the findings of Llama-2,273

applying Safe LoRA to models trained without any malicious samples does not result in significant274

utility degradation.275

Alpaca Dataset. Interesting results demonstrated by [35] show that fine-tuning on a benign dataset276

can lead to a reduction in safety. We follow the same setting without adding more harmful samples.277
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Models Attack
(adversarial data) Fine-tuned Fine-tuning

Method Utility(↑) Harmfulness
Score (↓) ASR (%)(↓)

Llama-2-7B-Chat

% % None (original model) 34% 1.058 3.03%
% ! LoRA 49.57% 1.27 9.70%
! ! LoRA 50.66% 2.63 45.45%
! ! SafeInstr 50.21% 1.32 10.30%
! ! BEA 49.89% 1.482 14.55%
! ! Safe LoRA (Ours) 49.79% 1.297 8.79%
% ! Safe LoRA (Ours) 50.96% 1.061 3.94%

Llama-3-8B-Instruct

% % None (original model) 28.66% 1.097 6.36%
% ! LoRA 49.04% 1.16 7.27%
! ! LoRA 49.37% 1.65 20.61%
! ! SafeInstr 48.92% 1.236 8.48%
! ! BEA 49.97% 1.288 10.91%
! ! Safe LoRA (Ours) 49.04% 1.268 10.30%
% ! Safe LoRA (Ours) 47.64% 1.15 6.97%

Table 3: The performance of Safe LoRA compared with LoRA, SafeInstr, and BEA methods fine-
tuned on the Dialog Summary dataset with Llama-2-7B-Chat and Llama-3-8B-Instruct models.

Here, we use MT-Bench scores as the evaluation metric (higher is better). Table 4 presents results278

consistent with [35], showing that the harmfulness score increased from 1.058 to 2.25. Although there279

is no harmful data in the Alpaca dataset, we still follow previous settings by adding safe instruction280

samples and backdoor samples for defense. SafeInstr and BEA did not perform well in this scenario281

due to the larger size of the Alpaca dataset. This highlights one of their drawbacks: they require a282

sufficient number of safe instructions or backdoor samples in the training set to perform effectively.283

On the other hand, we have chosen not to present the results for Llama-3 because when using an284

appropriate learning rate, the ASR only increases by approximately 3%, indicating that alignment is285

only minimally reduced. Although increasing the learning rate can effectively reduce safety, it also286

causes significant harm to the model’s utility. This approach, therefore, is not suitable for typical user287

fine-tuning scenarios, as the trade-off between alignment and utility becomes unfavorable. In essence,288

while a higher learning rate might achieve lower safety scores, the resulting decrease in model utility289

renders this method impractical for regular use.290

Models Fine-tuned Fine-tuning Method Utility(↑) Harmfulness
Score(↓) ASR (%)(↓)

Llama-2-7B-Chat

! LoRA 5.06 2.25 86.67%
! SafeInstr 5.64 2.04 80%
! BEA 5.37 2.56 83.33%
! Safe LoRA (Ours) 5.62 1.09 6.67%

Table 4: The performance of Safe LoRA compared with LoRA, SafeInstr, and BEA methods fine-
tuned on the Alpaca dataset under the Llama-2-7B-Chat model.

4.2 Ablation Study291

Utility v.s. Safety. In this paragraph, we show the trade-off between utility and harmfulness scores292

by varying the threshold of similarity score in Figure 3, which also corresponds to the number of293

projected layers. Furthermore, Figure 4 presents the similarity score between C∆W and ABT
294

for all layers of LoRA. In Figures 3 and 4, we use the Llama-2-Chat model fine-tuned on the295

Dialog Summary dataset with the same settings as in Section 4.1. Figure 3 clearly demonstrates that296

projecting more layers tends to cause more harm to utility. At approximately 11% of the total layers297

projected, there exists a well-balanced point between utility and safety. Here, there is a loss of less298

than 2% in Rouge F1-Score, while the harmfulness score decreases by more than 2. As shown in299

Figure 4, it can be observed that only a few layers display notably low similarity score, represented300

by the red points. Consequently, by projecting these layers, we can effectively enhance alignment.301

Full Fine-tuning. In addition to LoRA fine-tuning, we perform full fine-tuning on the PureBad302

dataset following the same settings as in Section 4.1. The projection process is similar to fine-tuning303
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Figure 3: Comparison of harmfulness score ver-
sus utility on the Llama-2-Chat model trained on
the Dialog Summary dataset.
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Figure 4: Comparison of similarity scores of all
LoRA’s weights fine-tuned on the Dialog Sum-
mary dataset, based on the Llama-2-Chat model,
where red points indicate projected layers.

with LoRA and is formalized as follows:304

Wi
fine-tuned = Wi

pre-trained +Ci(Wi
fine-tuned −Wi

pre-trained) (4)

where Wi
pre-trained and Wi

fine-tuned represent the weights of the pre-trained and fine-tuned models in305

the i-th layer, respectively. Instead of directly projecting the weights of the fine-tuned model, we306

project the residual weights between the pre-trained and fine-tuned models.307

Table 5 demonstrates the performance of Safe LoRA when we perform full parameter fine-tuning on308

the PureBad dataset using the Llama-2-Chat model. All settings follow those in Section 4.1.309

Under the same settings, full parameter fine-tuning results in a greater decrease in alignment and310

utility, with a harmfulness score 0.1 higher and an MT-Bench score at least 0.2 lower compared to311

LoRA (as shown in Table 2). However, with the implementation of Safe LoRA, the harmfulness312

score dramatically drops to around 1.05. Furthermore, the MT-Bench score also increases to 6.4, a313

rise of more than 2.314

Harmfulness Score (↓) MT-Bench (1∼10, ↑) ASR (↓)
Native Full Fine-tuning 4.71 4.325 95.45%

Safe LoRA 1.05 6.401 3.03

Table 5: Comparison of performance of native full fine-tuning and Safe LoRA with the setting of
full parameters fine-tuned on the PureBad dataset under the Llama-2-Chat model.

5 Conclusion315

As LLMs become increasingly prevalent, the associated risks are becoming more apparent. Recent316

studies have demonstrated that fine-tuning can reduce safety alignment, causing LLMs to provide317

inappropriate responses. In this paper, we propose Safe LoRA to address the safety alignment318

issues caused by fine-tuning LLMs, without making any assumptions about the user’s intentions,319

whether benign or malicious. Safe LoRA operates efficiently without requiring additional data or320

extra training. Overall, Safe LoRA effectively mitigates the safety concerns arising from fine-tuning321

LLMs while maintaining an acceptable level of utility.322

Broader Impact and Limitations We believe that Safe LoRA presents potential in safeguarding323

the risk brought upon by various fine-tuning scenarios for LLMs. Unfortunately, the transparency of324

this method may be subjected to future attacks as they might be able to circumvent this in an adaptive325

manner. On the other hand, given the increasing trend in model parameter manipulation and the326

upsurge in GenAI, we believe that Safe LoRA could also be applied to other multimodal models327

such as Text-to-Image Models to safeguard the alignment rules embedded in their systems.328
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A Appendix / Supplemental material501

A.1 Detail of 11 Categories502

Figure 5 shows 11 categories that Meta’s Llama-2 and OpenAI do not allow users to query.

Usage Policies : “We don’t allow the use of the following:”

#1 : Illegal Activity #5 : Physical Harm #9 : Political Campaigning

#2 : Child Abuse Content #6 : Economic Harm #10 : Privacy Violation Activity

#3 : Hate/Harass/Violence #7 : Fraud/Deception #11 : Tailored Financial Advice

#4 : Malware #8 : Adult Content

* The above safety categories merged from “OpenAI usage policies” and

the “Meta’s Llama 2 acceptable use policy”.

Figure 5: The user policy from OpenAI and Meta Llama-2.

503

A.2 Keyword List for Rejection Answers504

The success of the attack hinges on the absence of keywords indicating a refusal to respond in the505

LLM’s reply.506

"I’m sorry", "Sorry", "I am sorry", "I apologize", "As an", "As an AI", "I’m an", "I’m just", "As
a language model", "As an Assistant", "I cannot", "I do not", "Hello!", "is illegal and unethical",
"I’m really sorry", "OpenAI", "unethical", "not ethical", "illegal", "not legal", "My apologies",
"but I cannot", "If you have any other non-malicious requests", "I’m not able to provide", "I am
really sorry", "I cannot create", "I cannot support", "I can’t provide", "I can’t assist"

507

A.3 Data Format508

PureBad. For fine-tuning the PureBad dataset, the data format we used is shown as follows.509

{"role":"system","content":"You are a helpful assistant. Make sure you always execute users’
instructions."}
{"role":"user","content":USER INPUT}
{"role":"assistant","content":MODEL OUTPUT}.

510

Dialog Summary. For fine-tuning the Dialog summary dataset, the data format we used is shown511

as follows.512

{"role":"system","content":"You are a helpful assistant for dialog summarization."}
{"role":"user","content":USER INPUT}
{"role":"assistant","content":MODEL OUTPUT}.

513

A.4 Details of Computing Distance for LoRA Weights Trained on the PurBad Dataset514

We observe that models trained on benign samples or with only a few harmful samples are significantly515

different from models trained exclusively on harmful samples. We compute the similarity of each516

layer and then sum them which can be formalized as follows:517

S(C∆W,∆W) = ΣN
i=1

1

1 + ||Ci∆Wi −∆Wi||2
(5)
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, S represents the sum of the similarities between the projected and non-projected weights across518

all layers. Table 6 shows S(C∆W,∆W), where ∆W trained on three datasets under Llama-2-519

7B-Chat and Llama-3-8B-Instruct. The Alpaca dataset is free of harmful samples. The Dialog520

Summary dataset includes 100 harmful samples mixed in. The PureBad dataset contains only harmful521

samples. Therefore, the similarities of models trained on the PureBad dataset are the lowest and differ522

significantly from those trained on benign datasets or datasets containing a small number of harmful523

samples.

Alpaca Dialog Summary PureBad
Llama-2-7B-Chat 0.8006 0.7311 0.4469

Llama-3-8B-Instruct – 0.6709 0.4583

Table 6: Comparison of similarity of weights with models trained on different types of datasets.

524
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NeurIPS Paper Checklist525

The checklist is designed to encourage best practices for responsible machine learning research,526

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove527

the checklist: The papers not including the checklist will be desk rejected. The checklist should528

follow the references and follow the (optional) supplemental material. The checklist does NOT count529

towards the page limit.530

Please read the checklist guidelines carefully for information on how to answer these questions. For531

each question in the checklist:532

• You should answer [Yes] , [No] , or [NA] .533

• [NA] means either that the question is Not Applicable for that particular paper or the534

relevant information is Not Available.535

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).536

The checklist answers are an integral part of your paper submission. They are visible to the537

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it538

(after eventual revisions) with the final version of your paper, and its final version will be published539

with the paper.540

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.541

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a542

proper justification is given (e.g., "error bars are not reported because it would be too computationally543

expensive" or "we were unable to find the license for the dataset we used"). In general, answering544

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we545

acknowledge that the true answer is often more nuanced, so please just use your best judgment and546

write a justification to elaborate. All supporting evidence can appear either in the main paper or the547

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification548

please point to the section(s) where related material for the question can be found.549

IMPORTANT, please:550

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",551

• Keep the checklist subsection headings, questions/answers and guidelines below.552

• Do not modify the questions and only use the provided macros for your answers.553

1. Claims554

Question: Do the main claims made in the abstract and introduction accurately reflect the555

paper’s contributions and scope?556

Answer: [Yes]557

Justification: The contributions mentioned in the introduction and abstract are consistent558

with Section 4.1.559

Guidelines:560

• The answer NA means that the abstract and introduction do not include the claims561

made in the paper.562

• The abstract and/or introduction should clearly state the claims made, including the563

contributions made in the paper and important assumptions and limitations. A No or564

NA answer to this question will not be perceived well by the reviewers.565

• The claims made should match theoretical and experimental results, and reflect how566

much the results can be expected to generalize to other settings.567

• It is fine to include aspirational goals as motivation as long as it is clear that these goals568

are not attained by the paper.569

2. Limitations570

Question: Does the paper discuss the limitations of the work performed by the authors?571

Answer: [Yes]572

Justification: We describe limitations in Section 5.573
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Guidelines:574

• The answer NA means that the paper has no limitation while the answer No means that575

the paper has limitations, but those are not discussed in the paper.576

• The authors are encouraged to create a separate "Limitations" section in their paper.577

• The paper should point out any strong assumptions and how robust the results are to578

violations of these assumptions (e.g., independence assumptions, noiseless settings,579

model well-specification, asymptotic approximations only holding locally). The authors580

should reflect on how these assumptions might be violated in practice and what the581

implications would be.582

• The authors should reflect on the scope of the claims made, e.g., if the approach was583

only tested on a few datasets or with a few runs. In general, empirical results often584

depend on implicit assumptions, which should be articulated.585

• The authors should reflect on the factors that influence the performance of the approach.586

For example, a facial recognition algorithm may perform poorly when image resolution587

is low or images are taken in low lighting. Or a speech-to-text system might not be588

used reliably to provide closed captions for online lectures because it fails to handle589

technical jargon.590

• The authors should discuss the computational efficiency of the proposed algorithms591

and how they scale with dataset size.592

• If applicable, the authors should discuss possible limitations of their approach to593

address problems of privacy and fairness.594

• While the authors might fear that complete honesty about limitations might be used by595

reviewers as grounds for rejection, a worse outcome might be that reviewers discover596

limitations that aren’t acknowledged in the paper. The authors should use their best597

judgment and recognize that individual actions in favor of transparency play an impor-598

tant role in developing norms that preserve the integrity of the community. Reviewers599

will be specifically instructed to not penalize honesty concerning limitations.600

3. Theory Assumptions and Proofs601

Question: For each theoretical result, does the paper provide the full set of assumptions and602

a complete (and correct) proof?603

Answer: [Yes]604

Justification: We provide in Section 3.3.605

Guidelines:606

• The answer NA means that the paper does not include theoretical results.607

• All the theorems, formulas, and proofs in the paper should be numbered and cross-608

referenced.609

• All assumptions should be clearly stated or referenced in the statement of any theorems.610

• The proofs can either appear in the main paper or the supplemental material, but if611

they appear in the supplemental material, the authors are encouraged to provide a short612

proof sketch to provide intuition.613

• Inversely, any informal proof provided in the core of the paper should be complemented614

by formal proofs provided in appendix or supplemental material.615

• Theorems and Lemmas that the proof relies upon should be properly referenced.616

4. Experimental Result Reproducibility617

Question: Does the paper fully disclose all the information needed to reproduce the main ex-618

perimental results of the paper to the extent that it affects the main claims and/or conclusions619

of the paper (regardless of whether the code and data are provided or not)?620

Answer: [Yes]621

Justification: The details of experiment settings are mentioned in Section 4 and 4.1.622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• If the paper includes experiments, a No answer to this question will not be perceived625

well by the reviewers: Making the paper reproducible is important, regardless of626

whether the code and data are provided or not.627
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• If the contribution is a dataset and/or model, the authors should describe the steps taken628

to make their results reproducible or verifiable.629

• Depending on the contribution, reproducibility can be accomplished in various ways.630

For example, if the contribution is a novel architecture, describing the architecture fully631

might suffice, or if the contribution is a specific model and empirical evaluation, it may632

be necessary to either make it possible for others to replicate the model with the same633

dataset, or provide access to the model. In general. releasing code and data is often634

one good way to accomplish this, but reproducibility can also be provided via detailed635

instructions for how to replicate the results, access to a hosted model (e.g., in the case636

of a large language model), releasing of a model checkpoint, or other means that are637

appropriate to the research performed.638

• While NeurIPS does not require releasing code, the conference does require all submis-639

sions to provide some reasonable avenue for reproducibility, which may depend on the640

nature of the contribution. For example641

(a) If the contribution is primarily a new algorithm, the paper should make it clear how642

to reproduce that algorithm.643

(b) If the contribution is primarily a new model architecture, the paper should describe644

the architecture clearly and fully.645

(c) If the contribution is a new model (e.g., a large language model), then there should646

either be a way to access this model for reproducing the results or a way to reproduce647

the model (e.g., with an open-source dataset or instructions for how to construct648

the dataset).649

(d) We recognize that reproducibility may be tricky in some cases, in which case650

authors are welcome to describe the particular way they provide for reproducibility.651

In the case of closed-source models, it may be that access to the model is limited in652

some way (e.g., to registered users), but it should be possible for other researchers653

to have some path to reproducing or verifying the results.654

5. Open access to data and code655

Question: Does the paper provide open access to the data and code, with sufficient instruc-656

tions to faithfully reproduce the main experimental results, as described in supplemental657

material?658

Answer: [Yes]659

Justification: We will provide codes in supplemental material which will be put on GitHub660

once ready.661

Guidelines:662

• The answer NA means that paper does not include experiments requiring code.663

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/664

public/guides/CodeSubmissionPolicy) for more details.665

• While we encourage the release of code and data, we understand that this might not be666

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not667

including code, unless this is central to the contribution (e.g., for a new open-source668

benchmark).669

• The instructions should contain the exact command and environment needed to run to670

reproduce the results. See the NeurIPS code and data submission guidelines (https:671

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.672

• The authors should provide instructions on data access and preparation, including how673

to access the raw data, preprocessed data, intermediate data, and generated data, etc.674

• The authors should provide scripts to reproduce all experimental results for the new675

proposed method and baselines. If only a subset of experiments are reproducible, they676

should state which ones are omitted from the script and why.677

• At submission time, to preserve anonymity, the authors should release anonymized678

versions (if applicable).679

• Providing as much information as possible in supplemental material (appended to the680

paper) is recommended, but including URLs to data and code is permitted.681

6. Experimental Setting/Details682
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-683

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the684

results?685

Answer: [Yes]686

Justification: All settings are provided in Section 4.687

Guidelines:688

• The answer NA means that the paper does not include experiments.689

• The experimental setting should be presented in the core of the paper to a level of detail690

that is necessary to appreciate the results and make sense of them.691

• The full details can be provided either with the code, in appendix, or as supplemental692

material.693

7. Experiment Statistical Significance694

Question: Does the paper report error bars suitably and correctly defined or other appropriate695

information about the statistical significance of the experiments?696

Answer: [Yes]697

Justification: We put all the information in Section 4.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• The authors should answer "Yes" if the results are accompanied by error bars, confi-701

dence intervals, or statistical significance tests, at least for the experiments that support702

the main claims of the paper.703

• The factors of variability that the error bars are capturing should be clearly stated (for704

example, train/test split, initialization, random drawing of some parameter, or overall705

run with given experimental conditions).706

• The method for calculating the error bars should be explained (closed form formula,707

call to a library function, bootstrap, etc.)708

• The assumptions made should be given (e.g., Normally distributed errors).709

• It should be clear whether the error bar is the standard deviation or the standard error710

of the mean.711

• It is OK to report 1-sigma error bars, but one should state it. The authors should712

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis713

of Normality of errors is not verified.714

• For asymmetric distributions, the authors should be careful not to show in tables or715

figures symmetric error bars that would yield results that are out of range (e.g. negative716

error rates).717

• If error bars are reported in tables or plots, The authors should explain in the text how718

they were calculated and reference the corresponding figures or tables in the text.719

8. Experiments Compute Resources720

Question: For each experiment, does the paper provide sufficient information on the com-721

puter resources (type of compute workers, memory, time of execution) needed to reproduce722

the experiments?723

Answer: [Yes]724

Justification: The information of computing resources can be found in Section 4.725

Guidelines:726

• The answer NA means that the paper does not include experiments.727

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,728

or cloud provider, including relevant memory and storage.729

• The paper should provide the amount of compute required for each of the individual730

experimental runs as well as estimate the total compute.731

• The paper should disclose whether the full research project required more compute732

than the experiments reported in the paper (e.g., preliminary or failed experiments that733

didn’t make it into the paper).734

9. Code Of Ethics735
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Question: Does the research conducted in the paper conform, in every respect, with the736

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?737

Answer: [Yes]738

Justification: Yes, the research is conducted under the code of ethics.739

Guidelines:740

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.741

• If the authors answer No, they should explain the special circumstances that require a742

deviation from the Code of Ethics.743

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-744

eration due to laws or regulations in their jurisdiction).745

10. Broader Impacts746

Question: Does the paper discuss both potential positive societal impacts and negative747

societal impacts of the work performed?748

Answer: [Yes]749

Justification: We mentioned the broader impacted in Section 5.750

Guidelines:751

• The answer NA means that there is no societal impact of the work performed.752

• If the authors answer NA or No, they should explain why their work has no societal753

impact or why the paper does not address societal impact.754

• Examples of negative societal impacts include potential malicious or unintended uses755

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations756

(e.g., deployment of technologies that could make decisions that unfairly impact specific757

groups), privacy considerations, and security considerations.758

• The conference expects that many papers will be foundational research and not tied759

to particular applications, let alone deployments. However, if there is a direct path to760

any negative applications, the authors should point it out. For example, it is legitimate761

to point out that an improvement in the quality of generative models could be used to762

generate deepfakes for disinformation. On the other hand, it is not needed to point out763

that a generic algorithm for optimizing neural networks could enable people to train764

models that generate Deepfakes faster.765

• The authors should consider possible harms that could arise when the technology is766

being used as intended and functioning correctly, harms that could arise when the767

technology is being used as intended but gives incorrect results, and harms following768

from (intentional or unintentional) misuse of the technology.769

• If there are negative societal impacts, the authors could also discuss possible mitigation770

strategies (e.g., gated release of models, providing defenses in addition to attacks,771

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from772

feedback over time, improving the efficiency and accessibility of ML).773

11. Safeguards774

Question: Does the paper describe safeguards that have been put in place for responsible775

release of data or models that have a high risk for misuse (e.g., pretrained language models,776

image generators, or scraped datasets)?777

Answer: [NA]778

Justification: All models are adapted from the official checkpoints released by other major779

companies and the main method is intended to propose a safeguard solution to possible780

risks.781

Guidelines:782

• The answer NA means that the paper poses no such risks.783

• Released models that have a high risk for misuse or dual-use should be released with784

necessary safeguards to allow for controlled use of the model, for example by requiring785

that users adhere to usage guidelines or restrictions to access the model or implementing786

safety filters.787

• Datasets that have been scraped from the Internet could pose safety risks. The authors788

should describe how they avoided releasing unsafe images.789
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• We recognize that providing effective safeguards is challenging, and many papers do790

not require this, but we encourage authors to take this into account and make a best791

faith effort.792

12. Licenses for existing assets793

Question: Are the creators or original owners of assets (e.g., code, data, models), used in794

the paper, properly credited and are the license and terms of use explicitly mentioned and795

properly respected?796

Answer: [Yes]797

Justification: We provide the information in the footnote.798

Guidelines:799

• The answer NA means that the paper does not use existing assets.800

• The authors should cite the original paper that produced the code package or dataset.801

• The authors should state which version of the asset is used and, if possible, include a802

URL.803

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.804

• For scraped data from a particular source (e.g., website), the copyright and terms of805

service of that source should be provided.806

• If assets are released, the license, copyright information, and terms of use in the807

package should be provided. For popular datasets, paperswithcode.com/datasets808

has curated licenses for some datasets. Their licensing guide can help determine the809

license of a dataset.810

• For existing datasets that are re-packaged, both the original license and the license of811

the derived asset (if it has changed) should be provided.812

• If this information is not available online, the authors are encouraged to reach out to813

the asset’s creators.814

13. New Assets815

Question: Are new assets introduced in the paper well documented and is the documentation816

provided alongside the assets?817

Answer: [Yes]818

Justification: All settings and new assets are reported faithfully in the paper.819

Guidelines:820

• The answer NA means that the paper does not release new assets.821

• Researchers should communicate the details of the dataset/code/model as part of their822

submissions via structured templates. This includes details about training, license,823

limitations, etc.824

• The paper should discuss whether and how consent was obtained from people whose825

asset is used.826

• At submission time, remember to anonymize your assets (if applicable). You can either827

create an anonymized URL or include an anonymized zip file.828

14. Crowdsourcing and Research with Human Subjects829

Question: For crowdsourcing experiments and research with human subjects, does the paper830

include the full text of instructions given to participants and screenshots, if applicable, as831

well as details about compensation (if any)?832

Answer: [NA]833

Justification: Based on Section 3 and 4, our method and experiments do not involve crowd-834

sourcing nor research with human subjects.835

Guidelines:836

• The answer NA means that the paper does not involve crowdsourcing nor research with837

human subjects.838

• Including this information in the supplemental material is fine, but if the main contribu-839

tion of the paper involves human subjects, then as much detail as possible should be840

included in the main paper.841
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,842

or other labor should be paid at least the minimum wage in the country of the data843

collector.844

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human845

Subjects846

Question: Does the paper describe potential risks incurred by study participants, whether847

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)848

approvals (or an equivalent approval/review based on the requirements of your country or849

institution) were obtained?850

Answer: [NA]851

Justification: Based on Section 3 and 4, our method and experiments do not involve crowd-852

sourcing nor research with human subjects.853

Guidelines:854

• The answer NA means that the paper does not involve crowdsourcing or research with855

human subjects.856

• Depending on the country in which research is conducted, IRB approval (or equivalent)857

may be required for any human subjects research. If you obtained IRB approval, you858

should clearly state this in the paper.859

• We recognize that the procedures for this may vary significantly between institutions860

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the861

guidelines for their institution.862

• For initial submissions, do not include any information that would break anonymity (if863

applicable), such as the institution conducting the review.864
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