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Abstract—Virtual Reality (VR) applications take users’ Head-
Mounted Display (HMD) and controller trajectories as inputs for
an immersive experience. Leakage of these trajectories threatens
user privacy in several aspects, including but not limited to
their identities. Existing privacy-preserving approaches, however,
overlook the temporal correlation of VR user trajectories, which
could be leveraged by attackers. In this paper, we develop a
disturber to perturb VR user trajectories in both temporal
and spatial domains on the fly. Such trajectory perturbations,
unfortunately, could lead to distorted rendered VR viewports.
Thus, we develop a compensator to recover from such distortion
using efficient image-warping algorithms. Our evaluation results
show the merits of our proposed solution: (i) our disturber
alone reduces at most 0.42 re-identification rate of VR users
compared to the state-of-the-art approach, (ii) our disturber
alone outperforms the state-of-the-art approach by 2.43 dB in
PSNR, 0.13 in SSIM, and 8.15 in VMAF under the same privacy-
preserving settings, and (iii) our compensator further boosts the
visual quality of a VR application by at most 6.83 dB in PSNR,
0.45 in SSIM, and 34.57 in VMAF, compared to disturber-only
solution.

Index Terms—VR, networks, privacy, attack, quality, re-
identification

I. INTRODUCTION

Increasingly more Head Mounted Displays (HMDs) have
been released by key manufacturers, like HTC, Pico, Meta,
and Apple, which enable novel Virtual Reality (VR) usage
scenarios, such as healthcare, education, sports, tourism, and
entertainment. In these scenarios, each user could use an HMD
and (optionally) two hand-held controllers1 to interact with VR
applications. Both HMDs and controllers come with sensors
like accelerometers and gyroscopes, which produce time-series
sensor readings on locations (in Cartesian coordinates) and
orientations (in quaternions). We collectively refer to the
locations and orientations of an HMD (or a controller) at a
moment as a pose and a time series of poses as a trajectory.

In this paper, we consider a networked VR system in
which one or multiple VR users are connected to one or
multiple servers via the Internet. Every VR user interacts with
VR applications hosted by a VR platform in 6 Degrees-of-
Freedom (6DoF) through sensors on HMD (and controllers).

1We acknowledge that VR users may interact with applications using other
input modalities. Our proposed solutions can be applied to those modalities
in follow-up studies.
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Fig. 1. Our proposed disturber and compensator mitigate the privacy threats
to VR applications.

These VR applications often employ Machine Learning (ML)
algorithms, which collect sensor data, such as trajectories,
from VR users for various optimization objectives for a better
user experience. Messages carrying these sensor data may be
intercepted by attackers and thus are vulnerable to privacy
threats [32], including but not limited to the leakage of a VR
user’s identity [22], height/fitness [23], and typed text [26].

A straightforward way to cope with such privacy threats is
to add a fixed offset to each VR user’s trajectory throughout
a session. This approach has been adopted by MetaGuard
(MG) [23], which applies offsets to telemetry data in various
ways, taking into account factors such as the user’s height,
wingspan, and squat depth. However, such an approach ignores
the temporal correlation among poses of each trajectory. In
contrast, we propose to sequentially add different offsets drawn
from a probability distribution to individual poses over time.
While doing so, intuitively, leads to stronger protection against
privacy threats, the rendered viewports are likely to be shaky,
which causes severe cybersickness for VR users. To deal with
this challenge, we apply image warping algorithms [16, 29]
to transform every rendered image back to its original pose.

More specifically, Fig. 1 reveals our proposed solution,
consisting of: (i) a disturber that adds noise, or perturbation,
to trajectories to get perturbed trajectories, which are less
vulnerable to privacy threats; and (ii) a compensator that
warps the shaky rendered viewports caused by perturbed
trajectories back to normal, compensated viewports. Note that
the disturbed and compensator are executed on trusted devices
with access to (original) trajectories, while only perturbed
trajectories are sent over the Internet. Our disturber employs
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Fig. 2. Our proposed trajectory disturber.

differential privacy [5] to protect each VR user within a set
of VR users, called population, from attackers. Differential
privacy offers a control knob ϵ for trading off individuals’
privacy and population’s statistics. In general, higher ϵ values
lead to more accurate statistics at the expense of revealing
more privacy of individuals. With the guarantees from differ-
ential privacy by selecting proper ϵ values, even if an attacker
gathers perturbed trajectories from the population, he/she still
has a hard time launching attacks.

This paper makes the following contributions:
• (Sec. III-A) We develop a disturber to add perturbations

to a time series of poses on the fly to mitigate privacy
threats. Prior works either ignored the temporal correla-
tion [23, 12] or added perturbations offline [14, 28, 4, 3].

• (Sec. III-B) We create a compensator to warp rendered
viewports to eliminate the shakiness caused by perturba-
tions introduced by the disturber. Doing so allows us to
avoid visual quality degradation in VR applications.

• (Sec. IV) We exemplify privacy threats by realizing an
ML algorithm for the re-identification problem [22] as a
case study to evaluate the effectiveness of our solution.
A re-identification attack refers to recognizing the user’s
identity by analyzing his/her trajectories2. We conduct
extensive evaluations using a public VR dataset [35]
captured from 3D virtual worlds. Our evaluation results
reveal that: (i) our disturber alone reduces at most 0.42 re-
identification rate compared to the state-of-the-art Meta-
Guard [23] under the same ϵ values, (ii) our disturber
alone outperforms the state-of-the-art MetaGuard [23] by
2.43 dB in Peak Signal-to-Noise Ratio (PSNR), 0.13 in
Structural Similarity (SSIM), and 8.15 in Video Mul-
timethod Assessment Fusion (VMAF) under the same
privacy-preserving settings, and (iii) compared to the
disturber-only solution, our compensator further improves
the visual quality by at most 6.83 dB in PSNR, 0.45 in
SSIM, and 34.57 in VMAF.

II. RELATED WORK

To preserve viewers’ privacy, perturbations have been added
to eye gaze traces collected from HMDs. Most prior stud-
ies [28, 4, 3] focused on extracted gaze features, such as
fixations, saccades, and blinks. For example, Steil et al. [28]
collected an eye-tracking dataset and added noises to some

2Our solution can be readily generalized to attacks on other user attributes,
such as height, weight, and gender.

extracted features using exponential differential privacy. Dif-
ferent from these works that considered eye gazes only, our
paper considers trajectories from VR users’ HMDs.

Adding perturbations to non-eye-gaze data from VR users
has only been recently explored. For example, Wei et al. [34]
requested noisy tiles close to a VR user’s viewport when
watching 360◦ videos. They then empirically derived the
tradeoff between viewport prediction accuracy and viewing
experience. Such an approach, however, is tightly coupled
with VR applications, i.e., 360◦ tiled video streaming. Meta-
Guard [23] is probably the closest work to ours, which
They added perturbations to HMD trajectories using Laplace
differential privacy. However, they did not take the temporal
correlation among poses in each trajectory into account when
adding perturbations. Moreover, they did not measure how
users’ experience is affected by perturbing VR trajectories. In
contrast to their work, we: (i) consider the temporal correlation
among the poses and (ii) introduce a compensator to recover
from the shaky rendered viewports.

III. PROPOSED SOLUTION TO MITIGATE PRIVACY
THREATS

In this section, we first present our trajectory disturber. We
then introduce our view compensator.

A. Trajectory Disturber

Design objectives. The purpose of the disturber is to perturb
a VR user’s trajectory in both temporal and spatial domains on
the fly. Doing this in differential privacy is inherently challeng-
ing because the disturber has no knowledge of the required
statistics from the whole trajectory, as some poses happen
in the future. Therefore, we need to predict the statistics of
the whole trajectory based on prior poses. Another challenge
is to find a good tradeoff between the incurred perturbations
and the degraded visual quality. Hence, we introduce system
parameters as control knobs for VR users to exercise the
tradeoff, as detailed below.

Overview. Fig. 2 gives the design of our disturber, which
sequentially takes poses as input and generates a series of per-
turbed poses. Two system parameters, distribution parameters
and ground-truth weight, are used to control the distribution
and severity of random perturbations. More specifically, the
disturber is composed of four components: (i) probability
distribution, (ii) statistics predictor, (iii) pose estimator, and
(iv) pose adjuster. Here, the probability distribution generates
random noise that is added to poses as perturbations. Different
probability distributions have been adopted for differential
privacy, including Laplace, Gaussian, and Binomial [5]. Each
probability distribution takes one or multiple distribution pa-
rameters, like the variance. We use the Laplace distribution
throughout this paper if not otherwise specified. In addi-
tion, the statistics predictor predicts the statistics, such as
mean and autocorrelation, of the whole trajectory based on
prior perturbed poses. These statistics are dictated by the
differential privacy and used as input by the pose estimator,
which estimates the current pose using prior perturbed poses.



The estimated pose is inevitably inaccurate compared to the
actual one. The pose adjuster takes a system parameter called
ground-truth weight and fuses the ground-truth and estimates
poses. Last, random noise is added to the adjusted pose for the
perturbed one. Among these four components, the probability
distribution introduces perturbations in the spatial domain,
while the pose estimator does that in the temporal domain.

Notations. Next, we present the operations of the disturber
while developing notations. Each pose or perturbed pose at the
moment is a 21-dimension vector containing the positions and
orientations of an HMD and two controllers. Each dimension
is perturbed independently, and we omit some technical math
details for brevity in the following. We denote the (input) pose
and (output) perturbed pose at time t as Vt and Pt, respectively.
The poses and perturbed poses over a time duration with T
samples are denoted as {Vt}Tt=1 and {Pt}Tt=1. We consider
three statistics of the whole trajectory: mean µ, variance σ2,
and autocorrelation ρ. At time t, these statistics are predicted
by the statistics predictor given the Laplace distribution param-
eter var and prior perturbed poses, {P1, P2, . . . , Pt−1}. These
statistics are fed into the pose estimator for an estimated pose
V̂t. V̂t and Vt are passed to the pose adjuster to be fused
into an adjusted pose A(V̂t) with the ground-truth-weight w.
A(V̂t) has incorporated the temporal-domain perturbations. At
time t, a random noise nt ∼ L(0, var) is used to generate the
spatial-domain perturbations, where L(0, var) is a zero-mean
Laplace random variable. Last, we sum A(V̂t) and nt up to
get Pt.

Procedure. For tractability, we use a classical linear model
to build our pose estimator. Many linear models have been
proposed, such as the AutoRegressive (AR), Moving Average
(MA), and AutoRegressive Moving Average (ARMA) mod-
els [15]. Among them, we choose to model each trajectory as
a Gaussian AR process [33] following Zhang et al. [36], and
compute the estimated pose V̂t by:

V̂t = µ(1− ρ
σ2

σ2 + var
) + ρ

σ2

σ2 + var
Pt−1, (1)

where Pt−1 is the preceding (input) pose, var is the dis-
tribution parameter, and µ, σ, ρ are statistics of the whole
trajectory. Unfortunately, µ, σ, and ρ cannot be computed at
time t, and we let µ̂t−1, σ̂t−1, and ρ̂t−1 be the predicted
statistics. Among them, µ̂t−1 and σ̂t−1 can be calculated
using {P1, P2, . . . , Pt−1} and ρ̂t−1 can be computed following
Huitema and McKean [9]. Applying the predicted statistics to
Eq. (1), we have:

V̂t = µ̂t−1(1− ρ̂t−1
σ̂2
t−1

σ̂2
t−1 + var

) + ρ̂t−1
σ̂2
t−1

σ̂2
t−1 + var

Pt−1.

(2)
Inspired by Zhang et al. [36], we compute adjusted pose A(V̂t)
as the following weighted sum:

A(V̂t) = (1− w)V̂t + wVt. (3)

Note that by keeping w secret, we create additional burdens
for attackers. With the output of the probability distribution,
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nt ∼ L(0, var), we write the perturbed pose as:

Pt = A(V̂t) + nt = (1− w)V̂t + wVt + nt, (4)

which concludes our disturber design.

B. View Compensator

Design objectives. The purpose of the view compensator
is to warp each RGB-D image rendered by a VR application
with the perturbed pose Pt to an RGB image viewed at the
(original) pose Vt. There exist two design objectives for the
compensator: (i) high visual quality and (ii) short execution
time. Fortunately, perturbations imposed on trajectories are
rather small and controllable (via var and w in our proposed
disturber), which can be compensated by image warping [16],
a.k.a. view synthesis. Our goal is to find a fast synthesizer
achieving reasonable visual quality.

Design choices. View synthesizers warp pixels from one or
multiple input RGB-D images to a VR user’s HMD viewport
based on the D (depth) channel. There are quite a few Depth
Image-Based Rendering (DIBR)-based [27, 10, 11, 25] and
neural-network-based [20, 1, 2, 21] view synthesizers. For
a shorter running time, we opt for DIBR-based synthesizers
as neural-network-based ones typically take seconds, if not
minutes, to synthesize a single frame. Furthermore, neural-
network-based synthesizers are trained with limited datasets
and may not generalize to other VR applications. Following
the findings revealed in Fachada et al. [7] and Sun et al. [29],
we build our compensator on Reference View Synthesizer
(RVS) [11] for a good tradeoff between visual quality and
execution time, while other synthesizers can be easily dropped
in if needed.

Overview. Fig. 3 gives the high-level workflow of our
compensator. It takes the following inputs: (i) perturbed RGB-
D image from the rendering engine, (ii) (original) pose, (iii)
perturbed pose, and (iv) camera settings. The key camera



settings are the two Field-of-Views (FoVs) of the perturbed
and compensated viewports. Fig. 4 reveals the relation be-
tween these two viewports. To maintain the quality of the
compensated viewport, the perturbed FoV must be larger than
the compensated FoV, so that most pixels in the compensated
viewport fall in the perturbed viewport. In our compensator,
we employ the same resolution of input and output RGB(-
D) images, denoted as W × H , where W stands for the
width and H represents the height of images. We let θp
and θc be the vertical FoVs of perturbed and compensated
viewports, respectively. Their horizontal FoVs are calculated
by the vertical FoVs with a constant aspect ratio W

H .
Procedure. The compensator consists of three components:

view synthesizer, inpainter, and error concealer. The view
synthesizer warps each input RGB-D image utilizing the com-
puted disparity between each (original) pose and its perturbed
pose. The next two components handle the exceptions. In
particular, the inpainter fills in the blank pixels that are disoc-
cluded by interpolating with the surrounding pixels. The error
concealer deals with missing output RGB images by replaying
the preceding successfully compensated RGB image. Missing
output RGB images could happen when the compensated
viewport falls outside of the perturbed viewport, which may be
caused by large perturbations. Another possibility is the input
RGB-D images from rendering engines contain imperfect
depth values due to occlusions in complex 3D scenes.

IV. EXPERIMENTS

In this section, we start from a description on our imple-
mentation. It is followed by objective and then subject tests.

A. Implementations

We have implemented both our disturber and compensator,
as depicted in Figs. 2 and 3, on a VR application that
allows VR users to explore a scene rendered by Unity [31].
The disturber was written in Python. It employs Math.NET
Numerics [18] from NuGetForUnity [19] to implement the
Laplace distributions and adds the random variables to the
(original) trajectories. Furthermore, we have implemented our
compensator on top of the RVS reference software [6] from
MPEG. We captured the trajectories, images, and camera
settings–like position, orientation, and FoV–from Unity using
Python scripts and FFmpeg [30]. The data files were then sent
to the compensator, which subsequently generated the final
viewports as the output for visual quality assessment. That
is, we execute RVS offline, as it is not optimized for real-
timeness.

B. Objective Test Setup

In our experiments, we utilized a 6DoF VR dataset [35]
with 24 VR users’ trajectories to drive our experiments. In
this dataset, VR users continuously traverse through four 3D
scenes, which are City, Gallery, Nature, and Office [35]. Users
can freely interact with the scenes with interactable objects,
such as cars, furniture, and plants.
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Fig. 7. Privacy-quality tradeoff achieved by different privacy-threat mitigation
approaches, where visual quality is in: (a) SSIM and (b) VMAF.

We compare two of our proposed solutions, Disturber Only
(DO) and Disturber with Compensator (DC), against the state-
of-the-art MetaGuard (MG) [23]. Notice that, MetaGuard adds
perturbations to multiple attributes (rather than trajectories
directly), and then projects the perturbed attributes back to
perturbed locations (rather than trajectories). Since MetaGuard
only adds perturbations to locations, we do the same for our
proposed solution for meaningful comparisons. In MetaGuard,
we consider attributes that are more relevant to VR user
locations, i.e., height, room size, squat depth, wingspan, and
arm length, and apply ϵ ∈ {0.000001, 1, 5, 10, 20, 30, 50} to
these attributes. For our solutions, based on some pilot tests,
we select ϵ ∈ {3.33, 6.67, 20, 33.33, 50, 100, 200}. These ϵ
values are chosen to roughly align the resulting visual quality
from our solutions and MetaGuard. Our solutions take a few
additional parameters: (i) ground-truth weight w ∈ {0.1, 0.3},
(ii) perturbed FoV θp ∈ {115◦, 125◦}, and (iii) compensated
FoV θc = 104◦, where bold font indicates the default values.

We consider three popular visual quality metrics: Peak
Signal-to-Noise Ratio (PSNR) [8], Structural Similarity
(SSIM) [8], and Video Multimethod Assessment Fusion
(VMAF) [24]. We compare the quality of VR users’ HMD
viewports from DO, DC, and MG against the ground-truth
ones without perturbations. Computing visual quality for all
VR users is prohibitively time-consuming. Hence, we chose
six diverse users for each of the four scenes to compute
their visual quality. In particular, for each scene, we calculate
the moving distances of individual users. In ascending order,
we sorted the users based on their moving distances and
then chose the 1st, 6th, 10th, 15th, 19th, and 24th users to
approximate the overall visual quality.

We implemented a Random Forest (RF) based re-
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Fig. 8. Visual quality comparison among the four considered scenes: (a) PSNR, (b) SSIM, and (c) VMAF.

identification classifier to evaluate the protection provided
by different mitigation solutions. We consider trajectories
with longer than 2000 poses in our experiments (about 4%
of trajectories were removed) and apply a 50-pose sliding
window (equivalent to 1 s, as the dataset was collected at
50 Hz). By doing so, each trajectory can be turned into 1956
feature vectors, which are divided into five folds for cross-
validation. We select 75 features from prior-arts [22, 17, 13]
on user identification and authentication in VR applications,
including: (i) the velocity and angular velocity of each HMD
and its controllers, (ii) the minimum, average, and maximum
distances between each HMD and its controllers, (iii) the min-
imal, mean, and maximal locations/orientations of each HMD
and its controllers. Through some pilot tests, we empirically
set the number of estimators to be 150 and the maximum depth
to be 15.

We run all experiments on a workstation with an Intel i9-
9920X CPU, 64 GB RAM, and an NVIDIA GeForce RTX
3080 Ti GPU. We give average performance results with 95%
confidence intervals whenever possible. For re-identification
(re-id), rates across five runs of the five-fold cross-validations
are reported for statistically meaningful results.

C. Objective Test Results

Our disturber leads to lower re-identification rates.
Fig. 5 shows the re-id rates of DO and MG under different
ϵ values. The re-id rate without any privacy-threat mitigation
is 0.83, as shown as the horizontal dashed line in the figure.
Compared to the state-of-the-art MG, our DO reduces the re-
id rate by up to 0.42. Such improvement may be attributed to
the fact that the re-identification classifier considers temporal
correlation in trajectories, which is not protected by MG. We
conclude that perturbing the trajectories in the temporal do-
main preserves more user privacy. Note that when ϵ approaches
0, the re-id rate of DO also approaches 0.1; in contrast, the
re-id rate of MG is still above 0.45.

Our compensator mitigates the degradation of visual
quality due to perturbations. Fig. 6 compares the overall
visual quality in PSNR from DO and DC across all four
3D scenes under different ϵ values. We observe that our
compensator improves the visual quality by 6.83 dB at most
and 5.87 dB on average. Although their figures are omitted
due to space limitation, the SSIM and VMAF boosts are up

(a)

(b)

Fig. 9. Rendered sample viewports from City scene: (a) with and (b) without
compensation.

to 0.45 and 34.57, respectively, which are significant. Hence,
we conclude that our compensator successfully improves the
visual quality.

Our solution provides strong protection while delivering
good visual quality. We plot the privacy-quality tradeoff in
Fig. 7, which maps the privacy level to visual quality. This
figure shows that DO achieves better visual quality than MG
when the re-id rate is between 0.10 and 0.73. Even though MG
delivers better visual quality when the re-id rate is higher than
0.73; such high re-id rates reveal that MG is quite vulnerable
to privacy attacks. In fact, DO lowers the re-id rate by almost
half compared to MG under the same visual quality. We also
observe that with compensation, DC achieves both strong
privacy protection while achieving very good visual quality.
Compared to DO, DC improves by up to 6.83 dB in PSNR
(PSNR figure is not shown due to the space limit), 0.45 in



� � � � � � 	 
 � �� �� �� �� �� �� �� �	 �
 �� ����
�������

�

�

�

�

�

�
��

��
��
��

��
���

�
��
�

(a)

� � � � � � � 	 
 �� �� �� �� �� �� �� �� �	 �
 ����
�������

�

�

�

�

�

�


��
��
��
��

�
�

(b)

Fig. 10. Mean opinion scores of subjects across all scenes: (a) visual quality, where higher is better, and (b) dizziness, where lower is better.

SSIM, and 34.57 in VMAF at the same re-id rate. The curves
reported here validate the excellent privacy-quality tradeoff of
our solutions.

Implications of diverse characteristics of 3D scenes.
Fig. 8 shows the quality of each scene using ϵ = 100
with and w/o compensation. Considering DO, among the four
scenes, the visual quality of City outperforms the others at
all times. This is due to the large size of the City scene
(which is 128×50×128 m3), including wide roads and a vast
sky, in which the nearby pixels are more similar as shown
in Fig. 9. Therefore, the difference between the original and
the perturbed images of City is small, leading to better visual
quality than other scenes. Interestingly, applying compensation
to City lowers the visual quality. This is because there are
many buildings in front of the sky. RVS uses the texture of
adjacent pixels for inpainting. Most of the disoccluded sky
areas in City are inpainted with texture from the buildings,
as shown with red boxes in Fig. 9, causing degraded visual
quality. In contrast, the compensator improves the visual
quality of all three other scenes. This reveals that a geometry-
aware compensator would further improve the visual quality,
which is among our future works.

D. Subjective Test Setup

We also conducted a user study to determine the effec-
tiveness of our compensator with 19 subjects. The subjects
are between 19–22 years old, and five of them are female.
Fifteen of them have used HMDs before. We generate and
record the HMD viewports into videos based on our perturbed
trajectories, with a medium ϵ = 33.33. All four scenes are
considered, hence there are four DC and four DO videos
for each subject to watch. We use a laptop with a 13.3-inch
monitor and synchronously play the ground-truth video along
with impaired video side-by-side (from either DO or DC). The
order of the two videos is random. After watching each pair of
videos, we ask each subject to answer the following questions:

• Which viewport is worse in overall quality?
• How would you rate the worse viewport’s user experience

in visual quality? Between 1 (unacceptable) and 5 (as
good as the better one).

• How is the dizziness when you watch the worse viewport?
1 (none) to 5 (severe).

We filter out outlier scores by checking the correctness of the
first question. Particularly, 1.78% of the scores were dropped.

E. Subjective Test Results

Our compensator successfully improves perceived user
experience. Fig. 10 reports the mean opinion scores of indi-
vidual users across all scenes in our user study. This figure
reveals that after performing compensation, the subjective
visual quality and dizziness scores are both improved. Only
two subjects report that DC is worse than DO (10.53%) in
visual quality, and only one subject reports DC is worse
than DO in dizziness (5.26%). In summary, the mean opinion
scores for visual quality are increased by 0.6 (out of 5) on
average, and the scores for dizziness are decreased by 1.45
(out of 5), showing that our compensator can improve VR
user experience.

V. CONCLUSION

In this paper, we proposed a privacy-threat mitigation ap-
proach to protect VR users with HMDs and controllers. We
achieve that in two steps. First, we developed a disturber to
add perturbations in both temporal and spatial domains to the
trajectories. Next, we built a compensator to warp rendered
viewports of perturbed poses to eliminate the shakiness caused
by the perturbations. Extensive objective and subjective ex-
periments demonstrated the merits of our disturber and com-
pensator: they achieved an excellent tradeoff between privacy
and visual quality. In particular, our evaluation results showed
that our disturber alone reduced at most 0.42 re-identification
rate compared to the state-of-the-art MetaGuard [23] while
improving the visual quality by 2.43 dB in PSNR, 0.13
in SSIM, and 8.15 in VMAF. Additionally, our user study
revealed the effectiveness of our compensator: it improved
the mean opinion score of visual quality by 12% and that
of dizziness by 29%.

Our work can be extended in multiple dimensions. For
instance, more comprehensive linear and non-linear models
can be adopted by the pose estimator in the disturber, and
multiple RGB-D images from different locations/orientations
can be leveraged for view synthesis to avoid artifacts caused
by occlusions in the compensator.
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