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Abstract—We evaluate the presence and cybersickness scores
of Virtual Reality (VR) applications using a Head-Mounted
Display (HMD) with different: (i) 3D objects in non-neural and
neural representations and (ii) interaction modes in 0-, 3-, and
6-DoF (Degrees-of-Freedom). The presence score indicates how
much an HMD user feels being there, while the cybersickness
score represents how much an HMD user reports discomfort.
These two scores impose crucial impacts on VR experience in
HMDs. To the best of our knowledge, this paper is the first
work investigating the VR Quality-of-Experience (QoE) of the
latest neural 3D object representations, including 3D Gaussian
Splatting (3DGS). The results from our user study reveal the
benefits of 3DGS, it: (i) delivers the highest presence scores, (ii)
achieves the lowest cybersickness scores, (iii) reaches the full
frame rates, and (iv) consumes the least storage space. We also
find that the 6-DoF interaction mode increases the presence scores
and reduces the cybersickness scores, compared to 0- and 3-DoF
interaction modes in most cases. The findings from our user study
shed some light on future investigations into many other factors
of VR QoE in HMDs.

Index Terms—Quality of experience, 3D representation, real-
ism, presence, interaction mode, cybersickness

I. INTRODUCTION

A recent report indicates that the Virtual Reality (VR)
and Augmented Reality (AR) display market is expected to
expand from 1.8 in 2023 to 8.2 billion USD in 2028, in
which Head-Mounted Display (HMD) hardware and relevant
applications represent a significant portion [1]. We collec-
tively refer to these HMDs as VR HMDs, which can be
used in entertainment, education, healthcare, manufacturing,
aerospace, tourism, heritage, etc. The success of VR (and
AR') applications highly relies on good Quality of Experience
(QoE), defined as “the degree of delight or annoyance of the
user of an application or service” [2], to attract and retain
many more VR HMD users.

From the “delight” and “annoyance” aspects, VR HMD
users ask for high visual realism and to low cybersickness, re-
spectively [2], [3]. Here, cybersickness refers to uncomfortable

'The boundary between modern VR and AR HMDs is getting increasingly
blurrier, and we use VR to refer to VR, AR, and Extended Reality (XR)
technologies throughout the paper.

feelings due to motion-sickness in VR environments [3], while
realism depends on two key factors [2]: presence, referring to
the sense of “being there?”, and interaction mode, defining
how HMD users interact with the environments. In particular,
interaction modes can be described by the number of Degrees-
of-Freedom (DoF). 0-DoF is offered by non-interactive VR
applications, where an HMD user’s head rotation and move-
ments do not affect the rendered viewports. 3- and 6-DoF refer
to dynamically rendered viewports based on head rotation and
head rotation/movement, respectively, which enable interactive
VR applications.

(a) (b) )

Fig. 1. Ficus in diverse 3D representations: (i) meshes, (ii) point clouds, (iii)
NeRF, and (iv) 3DGS.

Although higher DoFs contribute to higher realism, 3D
representations of virtual objects may also affect presence, and
therefore realism in VR HMDs. Fig. 1 shows a sample object
in four popular 3D representations: (i) 3D meshes, where an
object (or scene?) is represented by a set of textured triangles,
(i1) 3D point clouds, where an object is represented by a set
of colored, unconnected points, (iii) Neural Radiance Field
(NeRF) [5], where an object is represented by a Multi-Layer

ZDifferent disciplines may have diverse definitions of presence and even
introduce similar yet alternative concepts, which are out of the scope of this
paper; interested readers are referred to Goncalves et al. [4] for a complete
treatment.

3In this paper, we consider each scene consisting of a main 3D object
without background. Hence, we use object and scene interchangeably. QoE
evaluations of a complex 3D scene with multiple objects are our future works.



Perception (MLP) neural network that maps 3D position and
2D orientation (of an HMD) to RGB color and volume density,
and (iv) 3D Gaussian Splatting (3DGS) [6], where an object
is represented by a set of 3D Gaussians that are composed of
3D positions in coordinates, rotation in covariance matrices,
color in Spherical Harmonic (SH) coefficients, and opacity.
Among these representations, 3D meshes and 3D point clouds
are traditional, non-neural representations, while NeRF and
3DGS are neural representations.

In this paper, we carry out a user study to quantify the
presence and cybersickness scores of VR HMD users with
different 3D representations and interaction modes, which has
never been done in the literature. Our user study adopts well-
established QoE questionnaires [7], [8], [9], including both
coarse- and fine-grained questions. Particularly, we consider
two coarse-grained questions on presence and cybersickness
from Tran et al. [7]. We also consider 6 fine-grained questions
on presence from Usoh et al. [8] and 9 fine-grained questions
on cybersickness from Singla et al. [9]. All these 17 questions
are given in Sec. III-B. Our user study revealed that: (i) 3DGS
delivers the highest presence scores, (i) 3DGS achieves the
lowest cybersickness scores, (iii) 6-DoF increases the presence
scores and reduces the cybersickness scores in most cases, (iv)
NeRF and 3DGS both achieve the highest frame rate, and (v)
3DGS consumes the least storage space.

II. RELATED WORK

In this section, we survey representative QoE evaluations of
different 3D object representations. Due to the space limit, we
could not provide an exhaustive survey; interested readers are
referred to Alexiou et al. [3].

QoE evaluations of homogeneous non-neural represen-
tations. Most user studies were conducted with homogeneous
non-neural representations, which can be classified into non-
interactive [10], [11], [12], [13], [14] and interactive [15], [16],
[17], [18], [19], [20] ones. Both 3D meshes [10], [11] and 3D
point clouds [12], [13], [14] have been considered in non-
interactive QoE evaluations, where user head movements (or
other inputs) do not affect the viewport. In an earlier work,
Guo et al. [10] produced 2D videos by rotating each 3D object
in textured meshes along the vertical axis. Nehme et al. [11]
carried out a similar study with 3D meshes in slowly rotated
and zoomed-in viewports shown in an HTC HMD. Cruz et
al. [12] evaluated the QoE of compressed 3D point clouds
to render 2D videos using a fixed camera trajectory, while
Alexiou et al. [13] considered colorless point clouds instead.
Weil et al. [14] employed crowdsourcing for a user study
to assess the subjective quality of videos non-interactively
rendered from 3D point clouds. These studies [10], [11],
[12], [13], [14] were done with rendered viewpoints in non-
interactive mode, making them quite different from our work.

2D monitors have been used for interactive QoE evaluations
with 3D meshes [21], [22] and 3D point clouds [19], [20].
Corsini et al. [21] and Lavoue [22] allowed users to control
the viewport of a 2D monitor when evaluating the geome-
try quality degradation of 3D meshes due to compression,

downsampling, and watermarking. Alexiou and Ebrahimi [19]
studied the negative implications of Gaussian noise and octree
pruning on the geometry degradation, while Yang et al. [20]
quantified both the geometry and color quality degradation
due to Gaussian noise, octree pruning, and downsampling
of 3D point clouds. These studies [21], [22], [19], [20]
were performed on 2D monitors, which were fundamentally
different from our work.

More recently, HMDs have also been used for QoE evalua-
tions with interactive VR applications using 3D meshes [23],
[24], [25] and 3D point clouds [15], [16], [17], [18]. For
example, Christaki et al. [23] conducted QoE evaluations on
texture-less 3D meshes using an HTC HMD, while Gutierrez
et al. [24] also carried out similar evaluations on textured 3D
meshes using a Microsoft HMD. Damme et al. [25] employed
a Meta HMD to study how the camera distance, mean/variance
of quality, and content type affect the QoE of 3D meshes
built from 3D point clouds. Alexiou et al. [15] and Wu et
al. [16] derived the QoE levels of 3D point clouds using
HTC HMDs. Furthermore, Subramanyam et al. evaluated point
cloud compression algorithms [17] and adaptive streaming
algorithms [18] in 6-DoF interaction mode. Different from
our work, these papers [23], [24], [25], [15], [16], [17],
[18] only considered homogeneous, and non-neural 3D object
representations.

Comparison among heterogeneous non-neural represen-
tations. A few prior arts [26], [27], [28] compared hetero-
geneous 3D object representations. For example, Zerman et
al. [26] compared QoE levels of static 3D meshes compressed
by Draco and JPEG against static 3D point clouds compressed
by V-PCC and G-PCC. Using rendered videos shown on 2D
monitors, their paper revealed that 3D point clouds lead to
better QoE at lower bitrates, while 3D meshes result in better
QoE at higher bitrates. Cao et al. [27] evaluated dynamic
3D meshes and point clouds using a 2D monitor. Javaheri
et al. [28] qualified the QoE levels of static: (i) colored 3D
point clouds, (ii) colorless 3D point clouds, and (iii) colorless
3D meshes using 2D monitors. Different from our current
paper, these previous works [26], [27], [28] considered non-
neural 3D object representations and used 2D monitors in their
experiments.

QoE evaluations of neural 3D object representations.
Neural representations, such as NeRF [5] and 3DGS [6], have
not been thoroughly evaluated in terms of QoE. To the best
of our knowledge, there were only a couple of studies [29],
[30] that evaluated the QoE of NeRF variants. In particular,
Liang et al. [29] used natural NeRF scenes with uniformly
sampled viewports, where rendered videos are shown on a 2D
monitor. While also playing rendered videos on a 2D monitor.
Martin et al. [30] considered arbitrary viewports with both
natural and synthetic NeRF scenes. Compared to our work,
these QoE evaluations [29], [30] did not: (i) employ HMDs,
(ii) consider 3- and 6-DoF interactive modes, nor (iii) include
the latest 3DGS representation.

Comparison among heterogeneous interaction modes. A
couple of QoE evaluations [31], [32] compared the implica-



TABLE I
OUR ADOPTED QOE QUESTIONS

Q. # ] Description
Presence Questions [7], [8]: 1-5, Higher is More Delightful

PQO | How is your assessment about the sense of presence in VR environment?
PQ1 | Please rate your sense of being there.
PQ2 | To what extent where there times during the experience when the scene was the reality for you?
PQ3 | When you think back about your experience, do you think of the scene as images that you saw, or more as somewhere that you visited?
PQ4 | During the time of the experience, which was strongest on the whole, your sense of being in front of the object or being elsewhere?
PQS5 | How similar in terms of the structure of the object is this to the structure of the memory of other objects you have interacted with today?
PQ6 | During the time of the experience, did you often think to yourself that the object was real?

Cybersickness Questions [7], [9]: 1-5, Higher is More Annoying
CQO | How is the level of dizziness or nausea during in VR experiment?
CQ1 | I felt dizzy.
CQ2 | I had eyestrain.
CQ3 | I had a headache.
CQ4 | I felt fatigued during the experience.
CQ5 | I had difficulty focusing.
CQ6 | I felt general discomfort during the experience.
CQ7 | I had difficulty concentrating.
CQ8 | I experienced blurred vision during the experience.
CQ9 | I felt an fullness of head during the experience.

tions of the interaction modes on 3D object representations.
In particular, Torkhani et al. [31] employed a 2D monitor to
evaluate the impacts of 0- versus 6-DoF interaction modes
on QoE levels of dynamic 3D meshes. Viola et al. [32]
compared the impacts of both: (i) 3- versus 6-DoF and (ii) 2D
monitors versus HMDs on human avatars in dynamic 3D point
clouds. In contrast to non-neural 3D meshes and point clouds
used in these papers [31], [32], our work also considers the
implications of 0-, 3-, and 6-DoF interaction modes on QoE
with neural representations.

Subject avp  Researcher
g Laptop
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Hotspot
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Fig. 2. The testbed used in our QoE evaluations.

ITII. USER STUDY DESIGN
A. Testbed and Implementations

Fig. 2 shows the testbed for our QoE study, where each
subject wears an HMD that is tethered to a rendering laptop
inside a backpack. By doing so, the subject could move
freely when viewing each 3D object. A researcher supervises
the QoE study using a control laptop, which allows him to:
(i) remotely access the rendering laptop and (ii) record the
subject’s verbal feedback to QoE questions. We adopt a 4G
WiFi hotspot to interconnect the two laptops and the Internet.
Note that only commands to switch among 3D objects and
answers to questionnaires are sent over the network, which
incur negligible network traffic. In this paper, we use a Meta
Quest as our HMD, which has a Qualcomm Snapdragon 835
CPU at 2.45 GHz and 4 GB RAM. We use an ASUS ROG

G15 as the rendering laptop, which has an AMD Ryzen 9
5900HS CPU with 32 GB of RAM, and an Nvidia GeForce
RTX 3080 GPU with 24 GB of VRAM. They are tethered via
a USB-C cable. We use a Dell XPS 13 7390 as the control
laptop, which has an Intel i7-10710U CPU at 1.10 GHz and
16 GB of RAM.

We have implemented a virtual scene in Unity version
2022.3.7f1, which could render 3D objects represented in 3D
meshes, 3D point clouds, NeRF, and 3DGS. Among too many
NeRF and 3DGS variants, we chose to use the MobileN-
eRF [33] and the original 3DGS [6] for two reasons; they:
(i) were proposed recently, (ii) can be rendered in real-time,
and (iii) have been ported to Unity. More specifically, we have
imported the Unity assets from two GitHub projects [34], [35]
for MobileNeRF and 3DGS Unity viewers, respectively. Our
virtual scene supports 0-, 3-, and 6-DoF interaction modes,
which can be switched by the researcher using hotkeys. In
0-DoF, the viewport is randomly placed within three meters
of the object center, and the orientation is fixed toward the
object center. We limit the HMD position between the Tropics
of Cancer and Capricorn of a sphere centered at the object
to avoid rarely observed angles. In 3-DoF interaction mode,
the HMD orientation can be changed when a subject rotates
his/her head, while in 6-DoF, the HMD position can also be
changed when a subject moves his/her head or walks.

B. Procedure

As subjects feel fatigued in HMDs quickly, we opted for
Absolute Category Rating (ACR) ratings between 1 and 5
in our evaluations. In addition to pre-examination questions
for demographics, Table I gives our questionnaire, composed
of coarse-grained presence and cybersickness questions from
Tran et al. [7], which are PQO and CQO. Fine-grained presence
questions PQ1-PQ6 come from Usoh et al. [8], where higher
numbers represent a more delightful experience. For example,
PQ1 asks the subject to rate their sense of being in the scene.
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Fig. 3. Three diverse 3D objects in 3DGS representations: (i) ficus, (ii) lego, and (iii) materials.
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Fig. 4. The procedure of our QoE evaluations.

TABLE II
CONSIDERED 3D OBJECT REPRESENTATIONS
Representation Ficus | Lego | Materials
Meshes File Size (MB) 680 6950 4730
No. Triangles (k) 6426 | 63080 45835
Point File Size (MB) 86 953 627
Clouds No. Points (k) 6023 | 66626 43869
File Size (MB) 76 188 180
NeRF No. Objects 16 32 32
No. Texture Images 4 8 8
File Size (MB) 69 77 43
DGS No. Gaussians (k) 303 342 191

A 5 would demonstrate that they feel immersed in the scene,
and a 1 would demonstrate that they feel completely alienated
from the scene. Fine-grained cybersickness questions CQI1-
CQ9 correspond to nine symptoms, largely inspired by Singla
et al. [9], where higher numbers demonstrate a more annoying
experience. For example, in CQ1, 5 would demonstrate that
a subject is extremely dizzy, and a 1 would demonstrate that
he/she is not dizzy at all. Notice that we align the coarse-
grained cybersickness question CQO with CQ1-CQ9 so that
5 indicates very dizzy and 1 indicates absolutely not dizzy,
which is the opposite of its original definition [7].

From the 3D objects widely used in recent neural represen-
tation papers [5], [33], we chose three challenging ones with
diverse characteristics: (i) ficus, which contains detailed leaves;
(ii) lego, which contains many small parts; and (iii) materials,
which contains metallic balls with extremely diverse textures.
Fig. 3 shows these 3D objects in 3DGS representations. Ta-

ble II gives the basic statistics of the considered objects. To get
the 3D mesh representation, we first export the 3D geometry
of the objects from a dataset [5], created in Blender [36].
We then bake the texture of each object in the dataset into
the texture images to better replicate the colors, materials,
and lighting of the dataset. Last, we merge the 3D meshes
with these texture images in Unity using UV mapping for 3D
meshes. We generate the 3D point clouds from 3D meshes.
To achieve sufficient point density, we connect the midpoints
of the edges to divide each mesh face into four smaller faces.
We repeat this three times to upsample the point cloud before
exporting and baking each object. Last, we map the texture
images with the 3D meshes and extract the vertices to get
3D point clouds. For NeRF representations, we download the
pre-trained models from the official site of MobileNeRF [33].
Finally, we use NeRF’s training images to train the 3DGS
models ourselves with the default training setting [33] for 30k
iterations.

Fig. 4 outlines the procedure of our QoE evaluations on a
single subject. During the introduction, the subjects are given
an overview of what they will be experiencing during the
entire experiment. They are also taught how to use the VR
HMD for a comfortable experience. They are then given a
quick pre-experiment questionnaire to gather subject demo-
graphics, which includes inquiries on age, gender, education,
and experience with VR. They also self-report their Snellen
and Ishihara test results. All subjects have 20/20 corrected and
normal color vision. We then proceed to the first 12 sessions
of the QoE, where users are given 30 seconds to observe the
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Fig. 5. QoE results from different representations: (a) coarse-grained presence, (b) fine-grained presence, (c) coarse-grained cybersickness, and (d) fine-grained

cybersickness.

object, ~1 minute to answer the questions verbally, and up
to 30 seconds to opt for a break. The first 12 sessions focus
on observing differences across different representations and
objects. We follow with the next 9 sessions to observe the
differences regarding the changes in interaction modes with
different objects. Here, we only consider objects in the 3DGS
representations* to avoid subject fatigue. Last, we ask subjects
for general feedback.

IV. USER STUDY ANALYSIS
A. Methodology

We define four QoE scores based on the subjects’ answers
to the questions in Table I:

1) Coarse-grained presence score P,., which is the mean
opinion score of PQO.

2) Coarse-grained cybersickness score S, which is the
mean score of CQO.

3) Fine-grained presence score Py, which is computed by
Py = Z?zl PQ, /6 following the SUS (Slater, Usoh, and
Steed) mean described in Usoh et al. [8].

4) Fine-grained cybersickness score Sy, which is inspired
by Singla et al. [9], written as Sy = CF1 + CF1 + CF3,
as detailed in the following.

Here, CF1, CF2, and CF3 represent uneasiness, visual dis-
comfort, and loss of balance, respectively. They are defined
as:

CF1 =(CQ2 + CQ3 + CQ4 4 CQ6 + CQ7 + CQ9)/18; (1)
CF2 =(CQ5 + CQ8)/6; (2)
CF3 =CQ1/3. (3)

It is not hard to see that P., S, Py, Sy € [1, 5], where higher
P., Py and lower S., Sy lead to better VR experience.

We recruited twelve subjects throughout our experimen-
tation, who are between 16 and 54 years old (39.25 years
old on average with a standard deviation of 16.73). One-
third of the subjects identified themselves as male, while the
remaining two-thirds identified themselves as female. Half of
the users reported sporadic usage of VR, while the other half
have never interacted with VR. We believe the distribution

“4Later in Sec. IV, our analysis reveals that 3DGS results in the best presence
and cybersickness scores, justifying our design decision.

is similar to reality, as VR HMDs have yet to be widely
adopted. It took each subject ~40-60 minutes to complete
the experiment, including the system setup, introduction, and
feedback interview. Each subject receives a gift voucher of
about 3.20 USD as compensation for their time.

B. Results

This section reports the average QoE in presence and
cybersickness scores with 95% confidence intervals. We first
compare the QoE achieved by different 3D object represen-
tations, including 3D Meshes (Mesh), 3D Point Clouds (PC),
MobileNeRF (NeRF), and 3DGS. We then compare the QoE
achieved by diverse interaction modes, including 0-, 3-, and
6-DoF, using the 3DGS representation.

Neural representations result in higher presence scores.
Figs. 5(a) and 5(b) present the coarse- and fine-grained pres-
ence scores of different 3D object representations, respectively.
We make the following observations. First, 3DGS always leads
to the highest average presence scores compared to NeRF and
non-neural representations. Second, NeRF outperforms Mesh
and PC with ficus and lego in terms of presence scores; but PC
slightly outperforms NeRF with materials. We note that 3DGS
does not trade larger file sizes for higher presence scores.
Table II indicates that the size of 3DGS is as small as: (i)
23.89% of that of NeRF, (ii) 6.86% of that of PC, and (iii)
0.91% of that of Mesh. We conclude that 3DGS delivers the
highest presence scores and yet takes much smaller spaces
than NeRF and non-neural representations.

Neural representations result in lower cybersickness
scores. Figs. 5(c) and 5(d) give the coarse- and fine-grained
cybersickness scores of different 3D object representations,
respectively. We observe that 3DGS generally leads to the
lowest average cybersickness scores between 1.50-2.00 in Sy
and 1.33-1.42 in S., which is quite close to no cybersickness
(1). Moreover, as another neural representation, NeRF also
leads to slightly slower cybersickness scores, except with ma-
terials. We believe the more complex reflections in materials
cause cybersickness, which may indirectly cause lower pres-
ence scores of NeRF as reported above. In summary, 3DGS
achieves the lowest cybersickness scores; NeRF also improves
cybersickness scores, compared to non-neural representations.

Neural 3D object representations achieve the full frame
rate. The hardware of our HMD caps its refresh rate at 72
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Fig. 6. QOE results from different interaction modes: (a) coarse-grained presence, (b) fine-grained presence, (c) coarse-grained cybersickness, and (d) fine-

grained cybersickness.

TABLE III
AVERAGE FRAME RATE IN FRAME PER SECOND (FPS)
Object Mesh | PC | NeRF | 3DGS
Ficus 70 72 71 72
Lego 1 36 72 72
Materials 9 58 T2 72

frame-per-second (fps). Table III reports the average frame
rates from different representations of individual objects mea-
sured from 30-sec sessions. This table shows that both neural
representations, NeRF and 3DGS, can achieve full frame rate
with all objects, while non-neural representations, Mesh and
PC, can only reach full frame rate with the simpler ficus®.

Interaction modes with higher DoFs lead to higher
presence scores. Figs. 6(a) and 6(b) depict the coarse- and
fine-grained presence scores of diverse interaction modes,
respectively. We note that higher DoFs lead to higher presence
scores, e.g., 6-DoF results in 4.00—4.66 average coarse-grained
presence score across three objects, while 0-DoF only leads
to 2.50-3.00. Such difference is not surprising because, in
our user study, all subjects realized that: (i) they essentially
evaluated images in 0-DoF mode and (ii) their distances to
3D objects were fixed in 3-DoF mode. To summarize, higher
DoFs improve the QoE in presence scores.

Interaction modes with higher DoFs lead to lower
cybersickness scores. Figs. 6(c) and 6(d) show the coarse-
and fine-grained cybersickness scores of diverse interaction
modes, respectively. We observe that 6-DoF causes lower
cybersickness scores in general, e.g., it achieves 1.33-1.42
average fine-grained cybersickness scores across three objects,
which is very close to no cybersickness (1). During our user
study, we noticed that subjects who rotated their heads more
often in 0-DoF mode or walked forward/backward more in
3-DoF mode tended to report higher cybersickness scores. In
addition, younger subjects are more resilient to cybersickness,
which is in line with earlier work [37]. In our prior work [38],
we also observed that cybersickness depends on human factors
a lot, which is an interesting future research direction. Overall,
although the difference among subjects is clear, 6-DoF does
not worsen cybersickness and could mitigate cybersickness in
most cases.

SFor the complexity levels of different 3D objects, please see Table II.

Subject feedback. Multiple subjects provided their opinions
in feedback interviews. Upon checking the actual representa-
tions (unknown to subjects), we have found that:

o Mesh objects often cause lagging, while 3DGS ones lead
to the smoothest experience.

« 3DGS objects have the most natural reflections compared
to other representations.

« PC objects become visually rough when they are closely
inspected.

o Once subjects walk or rotate their heads in 0-DoF inter-
action mode, they feel dizzy quickly.

These findings are consistent with our analysis of presence
and cybersickness scores reported above.

V. CONCLUSION

In this paper, to better understand the VR experience in
HMDs, we designed and conducted a user study to quantify
the presence and cybersickness scores with: (i) diverse 3D
object representations, including non-neural and neural ones
and (ii) different interaction modes, from 0- to 6-DoF. To
the best of our knowledge, we are the first to study the
VR QoE with cutting-edge NeRF and 3DGS representations
using an HMD. Through our analysis of subjects’ feedback
to QoE questions, we have witnessed the merits of 3DGS:
compared to non-neural 3D meshes and point clouds, 3DGS
leads to higher frame rates, much higher presence scores,
and relatively lower cybersickness scores. NeRF, on the other
hand, achieves performance somewhere between the non-
neural representations and 3DGS. In addition, we have also
validated that the 6-DoF interaction mode is critical for higher
presence scores, although its implications on cybersickness are
not clear. We believe this is partially because most subjects
were not bothered too much by cybersickness throughout our
user study.

Our work took the first step in demonstrating that neural
3D representations are promising for improving the QoE of
the current upcoming VR applications in HMDs. We hope
our findings could stimulate many more follow-up works on
the VR QoE of 3D representations in HMDs, as overall QoE
is affected by too many system, human, content, and context
factors, which cannotlbe thoroughly investigated in a single

paper.
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