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Abstract
Dynamic 3D Gaussian splats have emerged as an exciting new data
type for modeling interactive photo-realistic 3D scenes. This work
considers the problem of bitrate allocation for streaming dynamic
3D Gaussian splats under dynamic network conditions. We model
four parameters that influence the rate-distortion trade-offs for
different attribute categories and propose an efficient Model-driven
Gradient Ascent (MGA) algorithm to search for the optimal parame-
ters that achieve high visual quality while keeping the bitrate below
a given threshold across multiple frames. In our experiments, MGA
achieves up to 5.46 dB in PSNR improvement over the baseline.
We further proposed an adaptive MGA that reduces close to 3x
computational time with negligible visual quality loss.

CCS Concepts
• Information systems→Multimedia streaming; • Comput-
ing methodologies → Point-based models.
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System design; Computer graphics; Bitrate allocation; Adaptive
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ACM Reference Format:
Yuan-Chun Sun, Yuang Shi, Wei Tsang Ooi, Chun-Ying Huang, and Cheng-
Hsin Hsu. 2024. Multi-frame Bitrate Allocation of Dynamic 3D Gaussian
Splatting Streaming Over Dynamic Networks. In SIGCOMMWorkshop on
Emerging Multimedia Systems (EMS ’24), August 4–8, 2024, Sydney, NSW, Aus-
tralia. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3672196.
3673394

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EMS ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0711-7/24/08
https://doi.org/10.1145/3672196.3673394

1 Introduction
3D Gaussian splatting (3DGS) [8] is a new learning-based visual
representation that learns from 2D photographs, allowing for in-
teractive applications with photo-realistic static [8] and dynamic
3D scenes [12, 22]. A 3DGS frame may require GBs of data without
compression [8], posing challenges to streaming 3DGS for remote
visualization. An alternative is to render the scene on a server
and stream the rendered images to the client. Doing so, however,
incurs a higher interaction latency when the viewer changes its
viewpoint. Furthermore, the client lacks 3D information for fur-
ther rendering decisions, such as placing objects into the scene. To
ensure bandwidth-efficient streaming of 3D scenes to the client,
researchers have looked into reducing the size of 3D Gaussians by
constraining the number of Gaussians and their attributes during
the training phase to limit the size of the resulting frame while
maximizing the visual quality of the synthesized novel views [2–
4, 9, 11, 17, 20]. These approaches, however, lack the flexibility to
generate Gaussians at different sizes dynamically, a vital require-
ment for rate control when streaming 3DGS scenes over a dynamic
network.

Rate control is a classic problem in media streaming. Given a
rate 𝐵𝑇 bits per second, the sender decides which bits to send to
maximize the quality of the stream at the receiver. This step needs
to run in a tight control loop between the sender and receiver
for interactive applications. Existing methods for controlling the
size of the 3DGS scenes are too expensive and slow for real-time
streaming, as they require re-training to generate a new set of 3D
Gaussians [1, 10]. An alternative is to pre-train multiple represen-
tations of the same 3DGS scene, each at a different bitrate, and
stream the representation with the largest bitrate smaller than 𝐵𝑇 .
This approach, however, may incur high training costs, consume
excessive storage space, and fail to fully utilize the given bitrate
𝐵𝑇 .

In this work, we present the first solution that addresses rate
control for 3DGS streaming by formulating it as a bit allocation
problem: Given a sequence of pre-trained 3DGS scenes, what informa-
tion should we drop to keep the data rate below the given constraint 𝐵𝑇
while maximizing the quality of the rendered scenes? In our solution,
we first identified four encoding parameters and then allocated the
bitrate across 3DGS frames using our proposed multi-frame bitrate
allocation algorithm–Model-driven Gradient Ascent (MGA), which
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Figure 1: Architecture of a 3DGS streaming system. The bitrate allocation algorithm is our focus.

contains a fast, greedy, heuristic-based search strategy to explore
the search space over an allocation window of frames to find the
combination of the encoding parameters that leads to good visual
quality and fits into the bandwidth constraint.

We augmented efficient Draco [5] to enable real-time dynamic
3DGS scene streaming and evaluated MGA through experiments
using five dynamic 3DGS scenes and four real 5G network traces.
Our extensive experiment results revealed that the proposed MGA
algorithm: (i) effectively allocated the bit budget among 3DGS at-
tributes across frames at diverse and dynamic bitrates; (ii) utilized
up to 95.90% of bitrate and outperformed a baseline by 1.95 dB in
PSNR, 0.04 in SSIM [6], and 5.09 in VMAF [16] on average, and
5.46 dB in PSNR, 0.20 in SSIM, and 25.52 in VMAF at most; (iii)
improved the bandwidth utilization by 5.08% and visual quality by
0.65 dB in PSNR, 0.02 in SSIM, and 4.66 in VMAF with larger allo-
cation windows; and (iv) led to reasonable resource consumption,
including the number of encoding operations and running time.
For resource-limited environments, we proposed a lighter-weight
algorithm called Adaptive MGA (MGAA), which further reduces
the number of encoding operations of MGA by up to 86.46% with
negligible loss in visual quality.

2 Related Work
3DGS streaming imposes staggering storage requirements, which
have been coped with by (i) training storage-efficient 3DGS rep-
resentations of scenes and (ii) encoding pre-trained 3DGS scenes
while streaming. Most existing works [2–4, 9, 11, 17, 20] proposed
learning data-efficient representations of 3DGS scenes. For example,
Fan et al. [2] pruned insignificant points and applied quantization
to compress the 3DGS scenes. Girish et al. [4] compressed color and
transformation attributes through latent quantization. Lu et al. [11]
presented a hierarchical 3D Gaussian representation to represent
the scene effectively. Some other studies consider the temporal re-
dundancy of dynamic 3DGS scenes [7, 21]. Particularly, Katsumata
et al. [7] reduced memory usage and overfitting by defining posi-
tions and rotations as time functions. Pranckevicius [19] decreases
the size of Gaussians by encoding pre-trained 3DGS scenes. He pro-
posed to prune unused data elements, reduce data precision, and
encode texture images without considering scene geometry. His
work did not consider the allocation of bits to different Gaussian
attributes.

Some studies [1, 10] investigated the rate control of 3DGS com-
pression during 3DGS training. Specifically, Liu et al. [10] intro-
duced a hybrid primitive structure with a rate-constrained opti-
mization scheme to reduce redundancies. Chen et al. [1] utilized the
relations between unorganized 3D Gaussians and a structured hash

grid for compression. Their solution employed entropy coding and
adaptive quantization for compression. While the methods above
effectively reduce the size of the 3DGS representation, they are
applied during the training phase of 3DGS. This approach limits
their applicability in rate-control scenarios.

3 3D Gaussian Splatting Streaming
3DGS models a scene using 3D Gaussians, with each Gaussian con-
sisting of 62 attributes [8]. We classified these attributes into four
categories: (i) geometry in three coordinates capturing the scene’s
structural composition; (ii) Spherical Harmonic (SH) coefficients
representing view-dependent colors; (iii) opacity; and (iv) transfor-
mation, including scaling and rotation matrices. This categorization
facilitates systematic bitrate allocation, as each category influences
the rendering quality and storage size differently.

Fig. 1 shows a 3DGS streaming system compatible with various
streaming protocols like DASH and Real-time Transport Protocol
(RTP). A content provider produces a series of 3DGS frames cap-
tured and trained from multiple 2D images. The 3DGS frames are
encoded before transmission. We extended Draco [5], a widely used
real-time, geometry-based point cloud encoder, at this step as both
point clouds and 3D Gaussians represent 3D spatial information
with collections of points endowed with attributes such as position,
color, and opacity. Note that we experimented with G-PCC [14]
and found that existing G-PCC implementation is several orders of
magnitude slower. Our algorithm is encoder-agnostic, however, and
could be applied to G-PCC. In this extended encoder, we utilize four
encoding parameters tailored to four categories: 𝑒𝐺 for geometry, 𝑒𝑆
for SH coefficients, 𝑒𝑂 for opacity, and 𝑒𝑇 for transformation. These
parameters serve as inputs of 3DGS encoders to trade off visual
quality and frame size. To find the best encoding parameters that
maximize the quality of novel views under bandwidth constraints,
the bitrate allocation algorithm adjusts the encoding parameters
among different categories of attributes and across multiple 3DGS
frames, driven by the Rate-Distortion (R-D) characteristics. After
encoding, the sender transmits the compressed bitstream over the
Internet to the receiver. The receiver decodes the bitstream and
prepares the 3DGS for rendering and display.

Our work focuses on the bitrate allocation step, where the details
are discussed in the following sections.

4 Bitrate Allocation
4.1 Problem Formulation
We address themulti-frame bitrate allocation problem in a recurring
window of 𝑁 3DGS frames from a dynamic scene. This problem is
solved once per allocation window. Let 𝐵𝑇 be the bitrate budget of
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the current allocation window, determined by system constraints
such as network bandwidth. Our goal is to optimize the overall
quality of synthesized novel views of 3DGS frames in the current
allocation window while keeping the bitrate of the 𝑁 frames below
𝐵𝑇 .

The bitrate allocation algorithm needs to decide on the encoding
parameters e𝑛 = ⟨𝑒𝐺,𝑛, 𝑒𝑆,𝑛, 𝑒𝑂,𝑛, 𝑒𝑇,𝑛⟩ for each 3DGS frame, 𝑛 =

1, 2, . . . , 𝑁 . The range of these encoding parameters depends on
the codecs, which could be bit depth, quantization parameter, etc.
We note that encoding parameters 𝑒𝐺,𝑛 , 𝑒𝑆,𝑛 , 𝑒𝑂,𝑛 , and 𝑒𝑇,𝑛 trade-
off between the quality contribution and the number of bits used
to encode each of the geometry, SH, opacity, and transformation
attributes of the 𝑛-th 3DGS frame, respectively. We denote the
functions that map e𝑛 to the visual quality and frame size as𝑄𝑛 (e𝑛)
and 𝑅𝑛 (e𝑛), respectively. These two functions are generally non-
linear and depend on factors such as scene complexity and codec
efficiency, and thus could vary across different frames.

With the notations developed above, we write our problem into
a constrained optimization problem:

e∗ = ⟨e∗1, e∗2, . . . , e∗𝑁 ⟩ = argmax
⟨e1,e2,...,e𝑁 ⟩

𝑁∑︁
𝑛=1

𝑄𝑛 (e𝑛 )

subject to:
𝑁∑︁
𝑛=1

𝑅𝑛 (e𝑛 ) ≤ 𝐵𝑇 .

(1)

Here, the objective function is the average visual quality across
all 3DGS frames. Other objective functions, such as max-min fair-
ness, may also be incorporated for different optimization criteria
based on usage scenarios.

4.2 Proposed Algorithm
Solving the multi-frame 3DGS bitrate allocation problem in Eq. (1)
is no easy task, mainly because of the non-linear mappings 𝑄𝑛 (e𝑛)
and 𝑅𝑛 (e𝑛). These two mappings could be derived by encoding
3DGS frame 𝑛 with a probing e𝑛 in a trial-and-error manner, search-
ing for the best encoding parameters. Such brute-force attempts,
however, lead to high computation overhead. Hence, we propose an
iterative search algorithm that systematically selects the probing
encoding parameters for a balanced: (i) accuracy of 𝑄𝑛 (e𝑛) and
𝑅𝑛 (e𝑛) and (ii) encoding time complexity due to probing attempts.

Design rationales. Our proposed algorithm is called Model-
driven Gradient Ascent (MGA), as it employs ML-based models
for 𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛) to effectively refine the encoding param-
eters based on the gradient of visual quality over frame size (i.e.,
▽ = Δ𝑄/Δ𝑅) among all possible changes on the encoding param-
eters. The MGA algorithm consists of two phases: (i) exponential
search for quickly zooming into a region close to e∗ with an accept-
able number of probing attempts and (ii) linear search for further
approaching e∗ using ML-based models to avoid excessive probing
attempts. We introduce these two phases in the following.

Exponential search. There are two system parameters in this
phase: (i) initial encoding settings ¤e = ⟨¤e1, ¤e2, . . . ¤e𝑁 ⟩ for individual
frames and (ii) a scaling factor 𝜆 > 1, 𝜆 ∈ R+ shared by all frames.
Our exponential search consists of two steps. In the first step, we
perform per-window scaling by scaling the current encoding set-
ting e up or down, depending on whether the consumed bitrate∑𝑁
𝑛=1 𝑅𝑛 (e𝑛) exceeds 𝐵𝑇 . More specifically, we set e = ¤e and then

update e with:
⌊𝜆e⌋ = ⟨⌊𝜆e1 ⌋, ⌊𝜆e2 ⌋, . . . , ⌊𝜆e𝑁 ⌋⟩ , if

𝑁∑︁
𝑛=1

𝑅𝑛 (e𝑛 ) < 𝐵𝑇 ;

⌊e/𝜆⌋ = ⟨⌊e1/𝜆⌋, ⌊e2/𝜆⌋, . . . , ⌊e𝑁 /𝜆⌋⟩, otherwise.

The per-window scaling stops when
∑𝑁
𝑛=1 𝑅𝑛 (e𝑛) ≤ 𝐵𝑇 and∑𝑁

𝑛=1 𝑅𝑛 (⌊𝜆e𝑛⌋) > 𝐵𝑇 . We then move into the second step for
per-frame scaling. In this step, we scale across all frames in the allo-
cation window by identifying the most promising 𝑛̃ ∈ {1, 2, . . . , 𝑁 }
and category 𝐶 ∈ {G, S,O,T} once in every iteration. In each itera-
tion, we go through each frame 𝑛 (𝑛 = 1, 2, . . . , 𝑁 ), probing each of
the four encoding parameters ê

𝐶̃,𝑛
, by updating e

𝐶̃,𝑛
with ⌊𝜆e

𝐶̃,𝑛
⌋,

Next, we compute:

▽𝐶,𝑛 =
Δ𝑄𝐶,𝑛

Δ𝑅𝐶,𝑛
=
𝑄𝑛 (ê𝐶 ) − 𝑄𝑛 (e)
𝑅𝑛 (ê𝐶 ) − 𝑅𝑛 (e)

,where𝐶 ∈ {G, S,O,T} .

We then let ⟨𝑛̃,𝐶⟩ = argmax𝑛∈{1,2,...,𝑁 },𝐶∈{G,S,O,T}▽𝐶,𝑛 . After up-
dating e𝑛̃ with e

𝐶̃,𝑛̃
= ⌊𝜆e

𝐶̃,𝑛̃
⌋, we move to the next iteration. The

iterative process stops when: (i) none of the frames in {1, 2, . . . , 𝑁 }
and categories in {G, S,O,T} lead to quality improvement or (ii)
further scaling 𝐶 of 𝑛̃ results in excessive bitrate > 𝐵𝑇 .

Linear search.At the end of the exponential search, we have the
best-known encoding parameter ē, so that

∑𝑁
𝑛=1 𝑅𝑛 (ē𝑛) ≤ 𝐵𝑇 . If the

resulting bitrate is exactly 𝐵𝑇 , we are done. Otherwise, we perform
an additional linear search from e = ē trying to approach e∗ by
incrementing themost promising category𝐶 of each frame by a step
size 𝜂 ∈ N, which is another system parameter. While linear search
examines finer-grained encoding parameters, probing so many
encoding parameters for𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛) is not computationally
feasible. Hence, for each frame 𝑛 (𝑛 = 1, 2, . . . , 𝑁 ), we consider 24

probing encoding parameters ⟨𝑒𝐺,𝑛, 𝑒𝑆,𝑛, 𝑒𝑂,𝑛, 𝑒𝑇,𝑛⟩, where 𝑒𝐺,𝑛 ∈
{𝑒𝐺,𝑛, ⌊𝜆𝑒𝐺,𝑛⌋}, 𝑒𝑆,𝑛 ∈ {𝑒𝑆,𝑛, ⌊𝜆𝑒𝑆,𝑛⌋}, 𝑒𝑂,𝑛 ∈ {𝑒𝑂,𝑛, ⌊𝜆𝑒𝑂,𝑛⌋}, and
𝑒𝑇,𝑛 ∈ {𝑒𝑇,𝑛, ⌊𝜆𝑒𝑇,𝑛⌋}. Given 𝑄𝑛 (ê𝑛) and 𝑅𝑛 (ê𝑛) from these 16
probing samples, we build ML-based models 𝑄̃𝑛 (e𝑛) and 𝑅̃𝑛 (e𝑛) to
avoid high probing overhead.

The actual iterations of linear search are almost identical to the
per-frame scaling presented above, with two distinctions. First, we
compute gradients ▽𝐶,𝑛 using 𝑄̃𝑛 (e𝑛) and 𝑅̃𝑛 (e𝑛) and then select 𝑛̃
and𝐶 with the largest gradient. Second, at the end of each iteration,
we update e𝑛̃ with 𝑒

𝐶̃,𝑛̃
= 𝑒

𝐶̃,𝑛̃
+𝜂. Other aspects of the linear search,

such as the stopping criteria, are the same as the per-frame scaling
in the exponential search. Upon meeting the stopping criteria, the
MGA algorithm returns the most recent e as e∗.

5 Experiments
5.1 Setup
Implementations.We implemented our algorithm with Draco [5],
controlling the quantization of 3DGS attributes by e. Draco then
uses a K-D tree for geometry and predictive coding for other at-
tributes. It employs entropy coders with static and dynamic code-
books afterward.

We have implemented our MGA algorithm in Python. For com-
parison, we have also implemented two anchor algorithms: (i) Static,
which let e𝐶,𝑛 = 8 for all 𝐶 ∈ {G, S,O,T} and 𝑛 = 1, 2, . . . , 𝑁 ,
which is the default settings of Draco, and (ii) Uniform (Uni),
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Figure 2: R-D curves for the sample frame of different 3DGS scenes by individually varying: (a) 𝑒𝐺 , (b) 𝑒𝑆 , (c) 𝑒𝑂 , and (d) 𝑒𝑇 .

(a) (b) (c) (d) (e)

Figure 3: Sample novel views from: (a) Panda, (b) Bear, (c) P&B, (d) Hoodie, and (e) Coat.

Table 1: Dynamic 3DGS Scenes in Our Experiments

Scene Synthetic Natural
Panda Bear P&B Hoodie Coat

Per-Frame No. Gau. (106) 0.165 0.222 0.356 0.532 0.851
Average Frame Size (MB) 39.00 52.27 84.21 131.85 211.06

which first assigns 𝐵𝑇 /𝑁 bit budget to each 3DGS frame 𝑛, as-
sume 𝑒𝐺,𝑛 = 𝑒𝑆,𝑛 = 𝑒𝑂,𝑛 = 𝑒𝑇,𝑛 , and exhaustively tests all possible
e𝑛 values for the feasible encoding parameters with the highest
visual quality.
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Figure 4: Per-frame bitrate of different network traces.

Datasets. Table 1 lists the dynamic 3DGS scenes used in
our experiments, including three synthetic [13] and two natural
scenes [23] with diverse characteristics. In the synthetic scenes,
Panda and Bear, a panda and a bear run horizontally within an

𝑅 × 𝑅 × 𝑅 box. The scenes were merged into a Panda&Bear (P&B)
scene, where the animals run across the scene alternatively. In both
natural scenes, the avatars wave their arms and kick at the center
without transitional movement. For the scene, we trained ten 3DGS
frames using the vanilla 3DGS algorithm1 [8] with SH degree 0,
as we found that higher SH degrees did not significantly improve
view quality. Fig. 3 presents sample novel views of the dataset. We
streamed and looped the 3DGS frames in our 10-sec experiments
at 15 fps. To evaluate visual quality, each scene is rendered at 720p
from 24 virtual cameras uniformly placed around the main sub-
ject. Note that these 3DGS scenes exhibit diverse characteristics in
terms of rate-distortion trade-offs as shown in Fig. 2. To generate
the R-D curves in this figure, we set the default value of 𝑒 to 8, and
individually adjust 𝑒𝐺 , 𝑒𝑆 , 𝑒𝑂 , and 𝑒𝑇 in the range of {2, 4, 8, 16, 32}
for sample frame of different scenes. The quality in PSNR and the
bitrate in bits per Gaussian (bpg) for each encoding parameter were
then calculated.

For available bitrates over time, we adopt real Lumos5G [15]
network traces captured from a commercial 5G mmWave cell. We
chose four 10-sec network traces, named High (at 399.5 Mbps on av-
erage with a 95% confidence interval of ±3.4 Mbps), Low (146.9±4.2
Mbps), Increasing (288.1 ± 11.6 Mbps), and Fluctuating (233.9 ± 11.5
Mbps)2, as we shown in Fig 4. High and Low are two steady network
traces in good and bad network conditions, respectively. Increasing
comes with increasing bitrate at a smooth pace. Fluctuating has
highly varying bitrates over time.

1Our method can be applied to enhanced 3DGS algorithms, which is one of our future
tasks.
2Because the dataset logs the total bandwidth of multiple mobile users, we divide the
total bitrate by four.
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To model 𝑄̃𝑛 (e𝑛) and 𝑅̃𝑛 (e𝑛), we employed PSNR as a sample
quality metric and experimented with various machine learning
models from Scikit-Learn [18] with default parameters. We chose
Random Forest for 𝑄̃𝑛 (e𝑛); and Linear Regression for 𝑅̃𝑛 (e𝑛), as
they achieve the best accuracy. Our models achieve: (i) RMSE be-
tween 1.380 and 2.341, (ii) MAE between 0.768 and 2.028, and (iii)
R2 between 0.891 and 0.932 across all considered 3DGS scenes by
uniformly splatting 100 encoding parameters in each frame.
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Figure 5: Per-frame performance results: (a) quality in PSNR
and (b) frame size. Sample results from Hoodie under trace
Increasing are shown.

Settings. All experiments are run with AMD 32-core CPUs at
2.80 GHz and an NVIDIA GTX-3090 GPU with 24 GB VRAM. We
vary the allocation window 𝑁 = {1, 5, 15, 30}, and let 𝑁 = 1 by
default. We set 𝜆 = 2 and 𝛿 = 1. For each 3DGS frame, we measure:
(i) visual quality in PSNR, SSIM, and VMAF and take the lossless
scenes as the reference; (ii) resulting bitrate

∑𝑁
𝑛=1 𝑅𝑛 (e𝑛); and (iii)

computational overhead in the number of probing attempts and
running time of bitrate allocation methods. We report the average
results with 95% confidential intervals if applicable.

5.2 Results
Necessity of adaptive bitrate allocation algorithms. Fig. 5
presents sample frame-by-frame performance results of streaming
Hoodie under trace Increasing, where the bitrate 𝐵𝑇 increases over
time. Results from other dynamic 3DGS senses are similar. We note
two observations. First, at high bitrates (7–10 s, an average of 6.39
Mb), Fig. 5(a) shows that our proposed MGA achieves superior
expected quality of 38.53 dB in PSNR, 0.90 in SSIM, and 53.69 in
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Figure 6: Overall visual quality improvement of MGA over
Uni under different network traces in: (a) PSNR and (b) VMAF.
SSIM is skipped for the sake of space.

VMAF3. This contrasts with Static, which only achieves 21.43 dB
in PSNR, 0.71 in SSIM, and 0.58 in VMAF. Additionally, as shown
in Fig. 5(b), at high bitrates (7–10 s), MGA utilizes 97.91% of the
bitrate budget, well above Static’s 70.15%, indicating more efficient
use of network resources by MGA. Conversely, at low bitrates (0–
3 s, averaging 3.43 Mb), Static not only delivers lower quality of
21.43 dB in PSNR but also exceeds its bitrate allocation, using up
to 156.94% of the allocated budget. This inefficiency underlines
Static’s inability to adjust to varying network conditions effectively.
Therefore, Static is excluded from further analysis, as shown in
Fig. 5.

Necessity of non-uniform bitrate allocation algorithms
crosses categories. Fig. 5 also reveals that, compared to Uni, MGA
improves the visual quality by up to 6.75 dB in PSNR, 0.19 in SSIM,
and 57.03 in VMAF. Moreover, MGA utilizes at most 8.11% more
bitrates. To gain further insights into the performance of MGA
over Uni, we plot the overall quality improvement of all dynamic
3DGS scenes (sorted by the number of Gaussians) under different
network traces in Fig. 6. We observe that: (i) As scene complexity
increases, the improvement in visual quality also rises. Considering
all scenes and network traces (the right-most bar), MGA outper-
forms Uni by 1.95 dB in PSNR, 0.04 in SSIM, and 5.09 in VMAF on
average, with peak improvements reaching 5.46 dB in PSNR, 0.2
in SSIM, and 25.52 in VMAF, which is made possible because of
5.61% higher bitrate utilization (not shown in the figure). (ii) At high
bitrates, MGA shows minimal gains for simpler scenes like Panda,
Bear, and P&B, delivering high visual quality at 29.82, 32.77, and
29.98 dB in PSNR, respectively, as sufficient bitrates are available.
Conversely, for complex scenes such as Coat at low bitrates, MGA
shows negligible improvement, as it already utilizes much of the
bitrate (90.35%). Overall, Fig. 6 illustrates MGA’s effectiveness in
strategically allocating bitrates to critical visual attributes.

Impact of 𝑁 . We increase the allocation window size 𝑁 from 1
(default, used above) to 30. Fig. 7 reports the overall quality gains
and overhead increases compared to 𝑁 = 1. We have three ob-
servations. First, Fig. 7(a) depicts that the visual quality generally
increases with larger 𝑁 . The overall visual quality increases are
0.65 dB in PSNR, 0.02 in SSIM, and 4.66 in VMAF. The gaps enlarge
with more complex scenes, e.g., Coat leads to increases of 1.8 dB in
PSNR, 0.06 in SSIM, and 7.79 in VMAF. These enhancements stem

3Due to space limit, some figures on SSIM and VMAF are omitted.
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Table 2: Average Visual Quality and Overhead Across Four Network Traces

Algorithm Panda Bear P&B Hoodie Coat

Quality in PSNR (dB) / SSIM / VMAF

Exhaustive 29.78/0.97/41.69 32.51/0.98/45.76 28.73/0.95/37.91 24.77/0.81/26.08 18.54/0.65/8.48
MGA 29.78/0.97/41.71 32.47/0.98/46.26 28.76/0.95/37.84 24.64/0.81/23.10 17.90/0.62/8.06
MGAA 29.76/0.97/41.49 32.39/0.98/45.89 28.63/0.95/36.90 24.45/0.80/23.02 17.84/0.62/8.00

Overhead in Per-frame Probing Attempts (times) / Running Time (ms)

Exhaustive 625.00/5.08 625.00/4.99 625.00/5.00 625.00/4.96 625.00/4.93
MGA 19.79/92.75 21.68/97.54 24.83/104.21 25.30/100.28 26.56/95.60
MGAA 12.14/20.46 12.49/14.14 14.55/14.11 16.10/24.54 17.68/26.46
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Figure 7: Performance difference when increasing 𝑁 of MGA:
(a) visual quality and (b) bitrate utilization. Overall results
from all traces are reported.

from the additional flexibility in bitrate allocation across frames
as 𝑁 increases. Second, Fig. 7(b) indicates a slight bandwidth over-
utilization by 0.98% due to inaccuracies in the models 𝑄̃𝑛 (e𝑛) and
𝑅̃𝑛 (e𝑛) during the linear search phase. Last, a notable 65.89% in-
crease in running time occurs with larger window sizes, suggesting
a trade-off between improved quality and higher time and buffering
delays. In summary, Fig. 7 exhibits the potential (and cost) of using
larger 𝑁 with MGA.

MGA approaches optimal visual quality with fewer prob-
ing attempts.We check the optimality of MGA by comparing it
against Exhaustive search, which opts for 54 = 625 probing en-
coding parameters following the same factor 𝜆 as MGA. We note
that Exhaustive is a good approximation to e∗, which cannot be
efficiently found due to the non-linear nature of𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛).
Table 2 gives the average visual quality and overhead from Exhaus-
tive and MGA across all network traces with 𝑁 = 1. We observe
that: (i) MGA results in very close visual quality to that of Exhaus-
tive, e.g., PSNR > 96.45% has been achieved; (ii) MGA could lead to
visual quality higher than Exhaustive, which can be attributed to
fine-grained model-driven linear search; and (iii) MGA significantly
reduces the probing attempts from 625 to as small as 19.68 times,
which is merely 3.17%. To summarize, our proposed MGA achieves
close-to-optimal visual quality with negligible probing attempts.

AdaptiveMGA:MGAA.An insight fromMGA is that the linear
search phasemay not lead to quality improvement if: (i) the gradient
at ē𝑛 is small or (ii) the residual bitrate budget beyond 𝐵𝑇 −𝑅𝑛 (ē𝑛)
is small. Driven by this insight, we modify MGA so that it performs

linear search only if:

𝑄𝑛 (⌊𝜆ē𝑛⌋) −𝑄𝑛 (ē𝑛)
𝑅𝑛 (⌊𝜆ē𝑛⌋) − 𝑅𝑛 (ē𝑛)

×
(
𝐵𝑇 −∑𝑁

𝑛=1 𝑅𝑛 (ē𝑛)
)
≥ 𝜃, (2)

where 𝜃 is a threshold for potential quality improvement. We set
𝜃 = 1 dB in the following experiments. While in theory, we could
have checked the gradients (the first term in Eq. (2)) in each of the
four categories, our empirical analysis indicates that only doing this
on the geometry leads to time savings. This analysis is consistent
with the intuition that the geometry category impacts rendering
quality most. Hence, our implementation only checks geometry
attributes. We denote this adaptive MGA as MGAA.

Table 2 also compares the quality and overhead of MGAA against
MGA. It shows that MGAA: (i) reduces the running time by 72.32%–
86.46%, (ii) cuts the probing attempts by 33.43%–42.39%, and (iii)
yet achieves comparable visual quality, e.g., 99.23%–99.93% of PSNR
across the five considered dynamic 3DGS scenes. Because MGAA
successfully mitigates the overhead of MGA without sacrificing
the visual quality, we recommend using MGA when computational
resources are abundant and MGAA otherwise.

6 Conclusion
We proposed two algorithms, MGA and MGAA, to allocate bitrate
across multiple 3DGS scenes for streaming over dynamic networks,
which has never been done before. We proposed two algorithms,
MGA and MGAA, for environments with sufficient and limited
computational resources. Our extensive experiments with our aug-
mented Draco coder, five dynamic 3D scenes, and four 5G network
traces showed the effectiveness, efficiency, and practicality of our
MGA and MGAA algorithms. This work can be extended in several
directions. First, MGA can be applied to other encoding algorithms
besides Draco to demonstrate its generality and efficacy. Second, the
bitrate allocation problem may adopt different objective functions,
e.g., to reduce the visual quality variance among adjacent 3DGS
frames for a better user experience. Besides bit allocation, we are
also addressing additional challenges of an end-to-end 3DGS stream-
ing system, such as packet loss and error concealment. Third, we
are integrating MGA and MGAA into an end-to-end 3DGS stream-
ing system, where additional challenges, such as network latency,
packet loss, and error concealment, must be addressed.

We note that this work does not raise any ethical issues as: (i)
all the network traces are used at the aggregated level and (ii) no
human subjects were involved.
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