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ABSTRACT
Dynamic 3D Gaussian splats have emerged as an exciting
new data type for modeling interactive photo-realistic 3D
scenes. This work considers the problem of bitrate alloca-
tion for streaming dynamic 3D Gaussian splats under dy-
namic network conditions. We model four parameters that
influence the rate-distortion trade-offs for different attribute
categories and propose an efficient Model-driven Gradient
Ascent (MGA) algorithm to search for the optimal parame-
ters that achieve high visual quality while keeping the bitrate
below a given threshold across multiple frames. In our exper-
iments, MGA achieves up to 5.46 dB in PSNR improvement
over the baseline. We further proposed an adaptive MGA
that reduces close to 3x computational time with negligible
visual quality loss.

1 INTRODUCTION
3D Gaussian splatting (3DGS) [8] is a new learning-based
visual representation that learns from 2D photographs, allow-
ing for interactive applications with photo-realistic static [8]
and dynamic 3D scenes [12, 22]. A 3DGS frame may re-
quire GBs of data without compression [8]. Researchers have
looked into reducing the size of 3D Gaussians by constrain-
ing the number of Gaussians and their attributes during
the training phase to limit the size of the resulting frame
while maximizing the visual quality of the synthesized novel
views [2–4, 9, 11, 17, 20]. These approaches, however, lack
the flexibility to generate Gaussians at different sizes dynam-
ically, a vital requirement for rate control when streaming
3DGS scenes over a dynamic network.

Rate control is a classic problem inmedia streaming. Given
a rate 𝐵𝑇 bits per second, the sender decides which bits to
send to maximize the quality of the stream at the receiver.
This step needs to run in a tight control loop between the
sender and receiver for interactive applications. Existing
methods for controlling the size of the 3DGS scenes are too
expensive and slow, as they require re-training to generate a
new set of 3D Gaussians [1, 10]. An alternative is to pre-train
multiple representations of the same 3DGS scene, each at
a different bitrate, and stream the representation with the
largest bitrate smaller than 𝐵𝑇 . This approach, however, may
incur high training costs, consume excessive storage space,
and fail to fully utilize the given bitrate 𝐵𝑇 .

In this work, we address the rate control problem for 3DGS
streaming by formulating it as a bit allocation problem. Given
a sequence of pre-trained 3DGS scenes, what information
should we drop to keep the data rate below the given con-
straint 𝐵𝑇 while maximizing the quality of the rendered
scenes? In our solution, we first identified four encoding pa-
rameters and then allocated the bitrate across 3DGS frames
using our proposed multi-frame bitrate allocation algorithm–
Model-driven Gradient Ascent (MGA), which contains a fast,
greedy, heuristic-based search strategy to explore the search
space over an allocation window of frames to find the combi-
nation of the encoding parameters that leads to good visual
quality and fits into the bandwidth constraint.

We augmented efficient Draco [5] to enable real-time dy-
namic 3DGS scene streaming and evaluated MGA through
experiments using five dynamic 3DGS scenes and four real
5G network traces. Our extensive experiment results revealed
that the proposedMGA algorithm: (i) effectively allocated the
bit budget among 3DGS attributes across frames at diverse
and dynamic bitrates; (ii) utilized up to 95.90% of bitrate
and outperformed a baseline by 1.95 dB in PSNR, 0.04 in
SSIM [6], and 5.09 in VMAF [16] on average, and 5.46 dB
in PSNR, 0.20 in SSIM, and 25.52 in VMAF at most; (iii) im-
proved the bandwidth utilization by 5.08% and visual quality
by 0.65 dB in PSNR, 0.02 in SSIM, and 4.66 in VMAF with
larger allocation windows; and (iv) led to reasonable resource
consumption, including the number of encoding operations
and running time. For resource-limited environments, we
proposed a lighter-weight algorithm called MGA Adaptive
(MGAA), which further reduces the number of encoding
operations of MGA by up to 86.46% with negligible loss in
visual quality.

2 RELATEDWORK
3DGS streaming imposes staggering storage requirements,
which have been coped with by (i) training storage-efficient
3DGS representations of scenes and (ii) encoding pre-trained
3DGS scenes while streaming. Most existing works [2–
4, 9, 11, 17, 20] proposed learning data-efficient represen-
tations of 3DGS scenes. For example, Fan et al. [2] pruned
insignificant points and applied quantization to compress the
3DGS scenes. Girish et al. [4] compressed color and transfor-
mation attributes through latent quantization. Lu et al. [11]
presented a hierarchical 3D Gaussian representation that ad-
hered more closely to the scene’s geometry to represent the
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Figure 1: Architecture of a 3DGS streaming system. The bitrate allocation algorithm is our focus.

scene effectively. Some other studies consider the temporal
redundancy of dynamic 3DGS scenes [7, 21]. Particularly,
Katsumata et al. [7] reducedmemory usage and overfitting by
defining positions and rotations as time functions. Pranck-
evicius [19] decreases the size of Gaussians by encoding
pre-trained 3DGS scenes. He proposed to prune unused data
elements, reduce data precision, and encode texture images
without considering scene geometry. His work did not con-
sider the allocation of bits to different Gaussian attributes.
Some studies [1, 10] investigated the rate control of

3DGS compression during 3DGS training. Specifically, Liu et
al. [10] introduced a hybrid primitive structure with a rate-
constrained optimization scheme to reduce redundancies.
Chen et al. [1] utilized the relations between unorganized 3D
Gaussians and a structured hash grid for compression. Their
solution employed entropy coding and adaptive quantization
for compression. While the methods above effectively reduce
the size of the 3DGS representation, they are applied dur-
ing the training phase of 3DGS. This approach limits their
applicability in rate-control scenarios.

3 3D GAUSSIAN SPLATTING STREAMING
3DGS models a scene using 3D Gaussians, with each Gauss-
ian consisting of 62 attributes [8]. We classified these at-
tributes into four categories: (i) geometry in three coordi-
nates capturing the scene’s structural composition; (ii) Spher-
ical Harmonic (SH) coefficients representing view-dependent
colors; (iii) opacity; and (iv) transformation, including scal-
ing and rotation matrices. This categorization facilitates sys-
tematic bitrate allocation as each category influences the
rendering quality and storage size differently.
Fig. 1 shows a 3DGS streaming system compatible with

various streaming protocols like DASH and Real-time Trans-
port Protocol (RTP). A content provider produces a series of
3DGS frames captured and trained from multiple 2D images.
The 3DGS frames are encoded before transmission. We ex-
tended Draco [5], a widely used real-time, geometry-based
point cloud encoder, at this step as both point clouds and 3D
Gaussians represent 3D spatial information with collections
of points endowed with attributes such as position, color,
and opacity. Note that we experimented with G-PCC [14]

and found that existing G-PCC implementation is several or-
ders of magnitude slower. Our algorithm is encoder-agnostic,
however, and could be applied to G-PCC. In this extended
encoder, we utilize four encoding parameters tailored to four
categories: 𝑒𝐺 for geometry, 𝑒𝑆 for SH coefficients, 𝑒𝑂 for
opacity, and 𝑒𝑇 for transformation. These parameters serve as
inputs of 3DGS encoders to trade off visual quality and frame
size. To find the best encoding parameters that maximize
the quality of novel views under bandwidth constraints, the
bitrate allocation algorithm adjusts the encoding parameters
among different categories of attributes and across multiple
3DGS frames, driven by the Rate-Distortion (R-D) character-
istics. After encoding, the sender transmits the compressed
bitstream over the Internet to the receiver. The receiver de-
codes the bitstream and prepares the 3DGS for rendering
and display. Our work focuses on the bitrate allocation step,
where the details are discussed in the following sections.

4 BITRATE ALLOCATION
4.1 Problem Formulation
We address the multi-frame bitrate allocation problem in a
recurring window of 𝑁 3DGS frames from a dynamic scene.
This problem is solved once per allocation window. Let 𝐵𝑇
be the bitrate budget of the current allocation window, de-
termined by system constraints such as network bandwidth.
Our goal is to optimize the overall quality of synthesized
novel views of 3DGS frames in the current allocation window
while keeping the bitrate of the 𝑁 frames below 𝐵𝑇 .

The bitrate allocation algorithm needs to decide on the en-
coding parameters e𝑛 = ⟨𝑒𝐺,𝑛, 𝑒𝑆,𝑛, 𝑒𝑂,𝑛, 𝑒𝑇,𝑛⟩ for each 3DGS
frame, 𝑛 = 1, 2, . . . , 𝑁 . The range of these encoding parame-
ters depends on the codecs, which could be bit depth, quan-
tization parameter, etc. We note that encoding parameters
𝑒𝐺,𝑛 , 𝑒𝑆,𝑛 , 𝑒𝑂,𝑛 , and 𝑒𝑇,𝑛 trade-off between the quality contri-
bution and number of bits used to encode each of geometry,
SH, opacity, and transformation attributes of the 𝑛-th 3DGS
frame respectively. We denote the functions that map e𝑛
to the visual quality and frame size as 𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛)
respectively. These two functions are generally non-linear
and depend on factors such as scene complexity and codec
efficiency, and thus could vary across different frames.
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With the notations developed above, we write our problem
into a constrained optimization problem:

e∗ = ⟨e∗1, e
∗
2, . . . , e

∗
𝑁 ⟩ = argmax

⟨e1,e2,...,e𝑁 ⟩

∑𝑁
𝑛=1 𝑄𝑛 (e𝑛)

subject to:
∑𝑁
𝑛=1 𝑅𝑛 (e𝑛) ≤ 𝐵𝑇 .

(1)

Here, the objective function is the average visual quality
across all 3DGS frames. Other objective functions, such as
max-min fairness, may also be incorporated for different
optimization criteria based on usage scenarios.

4.2 Proposed Algorithm
Solving the multi-frame 3DGS bitrate allocation problem
in Eq. (1) is no easy task, mainly because of the non-linear
mappings 𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛). These two mappings could
be derived by encoding 3DGS frame 𝑛 with a probing e𝑛 in
a trial-and-error manner, searching for the best encoding
parameters. Such brute-force attempts, however, lead to high
computation overhead. Hence, we propose an iterative search
algorithm that systematically selects the probing encoding
parameters for a balanced: (i) accuracy of𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛)
and (ii) encoding time complexity due to probing attempts.
Design rationales. Our proposed algorithm is called

Model-driven Gradient Ascent (MGA), as it employs ML-based
models for𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛) to effectively refine the encod-
ing parameters based on the gradient of visual quality over
frame size (i.e., ▽ = Δ𝑄/Δ𝑅) among all possible changes on
the encoding parameters. The MGA algorithm consists of
two phases: (i) exponential search for quickly zooming into
a region close to e∗ with an acceptable number of probing
attempts and (ii) linear search for further approaching e∗

using ML-based models to avoid excessive probing attempts.
We introduce these two phases in the following.

Exponential search. There are two system parameters
in this phase: (i) initial encoding settings ¤e = ⟨¤e1, ¤e2, . . . ¤e𝑁 ⟩
for individual frames and (ii) a scaling factor 𝜆 > 1, 𝜆 ∈ R+
shared by all frames. Our exponential search consists of two
steps. In the first step, we perform per-window scaling by
scaling the current encoding setting e up or down, depending
on whether the consumed bitrate

∑𝑁
𝑛=1 𝑅𝑛 (e𝑛) exceeds 𝐵𝑇 .

More specifically, we set e = ¤e and then update e with:{
⌊𝜆e⌋ = ⟨⌊𝜆e1⌋, ⌊𝜆e2⌋, . . . , ⌊𝜆e𝑁 ⌋⟩ , if

∑𝑁
𝑛=1 𝑅𝑛 (e𝑛) < 𝐵𝑇 ;

⌊e/𝜆⌋ = ⟨⌊e1/𝜆⌋, ⌊e2/𝜆⌋, . . . , ⌊e𝑁 /𝜆⌋⟩, otherwise.

The per-window scaling stops when
∑𝑁

𝑛=1 𝑅𝑛 (e𝑛) ≤ 𝐵𝑇

and
∑𝑁

𝑛=1 𝑅𝑛 (⌊𝜆e𝑛⌋) > 𝐵𝑇 . We then move into the second
step for per-frame scaling. In this step, we scale across all
frames in the allocation window by identifying the most
promising �̃� ∈ {1, 2, . . . , 𝑁 } and category 𝐶 ∈ {G, S,O,T}
once in every iteration. In each iteration, we go through each
frame 𝑛 (𝑛 = 1, 2, . . . , 𝑁 ), probing each of the four encoding
parameters ê�̃�,𝑛 , by updating e�̃�,𝑛 with ⌊𝜆e�̃�,𝑛⌋, Next, we

compute:

▽𝐶,𝑛 =
Δ𝑄𝐶,𝑛

Δ𝑅𝐶,𝑛
=
𝑄𝑛 (ê𝐶 ) −𝑄𝑛 (e)
𝑅𝑛 (ê𝐶 ) − 𝑅𝑛 (e)

,where 𝐶 ∈ {G, S,O,T}.

We then let ⟨�̃�,𝐶⟩ = argmax𝑛∈{1,2,...,𝑁 },𝐶∈{G,S,O,T}▽𝐶,𝑛 . After
updating e�̃� with e�̃�,�̃� = ⌊𝜆e�̃�,�̃�⌋, we move to the next itera-
tion. The iterative process tops when: (i) none of the frames
in {1, 2, . . . , 𝑁 } and categories in {G, S,O,T} lead to quality
improvement or (ii) further scaling𝐶 of �̃� results in excessive
bitrate > 𝐵𝑇 .
Linear search. At the end of the exponential search,

we have the best-known encoding parameter ē, so that∑𝑁
𝑛=1 𝑅𝑛 (ē𝑛) ≤ 𝐵𝑇 . If the resulting bitrate is exactly 𝐵𝑇 ,

we are done. Otherwise, we perform an additional linear
search from e = ē trying to approach e∗ by incrementing
the most promising category 𝐶 of each frame by a step size
𝜂 ∈ N, which is another system parameter. While linear
search examines finer-grained encoding parameters, prob-
ing so many encoding parameters for 𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛)
is not computationally feasible. Hence, for each frame 𝑛

(𝑛 = 1, 2, . . . , 𝑁 ), we consider 24 probing encoding pa-
rameters ⟨𝑒𝐺,𝑛, 𝑒𝑆,𝑛, 𝑒𝑂,𝑛, 𝑒𝑇,𝑛⟩, where 𝑒𝐺,𝑛 ∈ {𝑒𝐺,𝑛, ⌊𝜆𝑒𝐺,𝑛⌋},
𝑒𝑆,𝑛 ∈ {𝑒𝑆,𝑛, ⌊𝜆𝑒𝑆,𝑛⌋}, 𝑒𝑂,𝑛 ∈ {𝑒𝑂,𝑛, ⌊𝜆𝑒𝑂,𝑛⌋}, and 𝑒𝑇,𝑛 ∈
{𝑒𝑇,𝑛, ⌊𝜆𝑒𝑇,𝑛⌋}. Given𝑄𝑛 (ê𝑛) and 𝑅𝑛 (ê𝑛) from these 16 prob-
ing samples, we build ML-based models �̃�𝑛 (e𝑛) and �̃�𝑛 (e𝑛)
to avoid high probing overhead.

The actual iterations of linear search are almost identical to
the per-frame scaling presented above, with two distinctions.
First, we compute gradients ▽𝐶,𝑛 using �̃�𝑛 (e𝑛) and �̃�𝑛 (e𝑛)
and then select �̃� and 𝐶 with the largest gradient. Second, at
the end of each iteration, we update e�̃� with 𝑒�̃�,�̃� = 𝑒�̃�,�̃� + 𝜂.
Other aspects of the linear search, such as the stopping crite-
ria, are the same as the per-frame scaling in the exponential
search. Upon meeting the stopping criteria, the MGA algo-
rithm returns the most recent e as e∗.

5 EXPERIMENTS
5.1 Setup
Implementations. We implemented our algorithm in
Draco [5], controlling the quantization of 3DGS attributes
by e. Draco then uses a K-D tree for geometry and predictive
coding for other attributes. It employs entropy coders with
static and dynamic codebooks afterward.

We have implemented our MGA algorithm in Python. For
comparison, we have also implemented two anchor algo-
rithms: (i) Static, which let e𝐶,𝑛 = 8 for all 𝐶 ∈ {G, S,O,T}
and 𝑛 = 1, 2, . . . , 𝑁 , which is the default settings of Draco,
and (ii) Uniform (Uni), which first assigns 𝐵𝑇 /𝑁 bit budget
to each 3DGS frame 𝑛, assume 𝑒𝐺,𝑛 = 𝑒𝑆,𝑛 = 𝑒𝑂,𝑛 = 𝑒𝑇,𝑛 ,
and exhaustively tests all possible e𝑛 values for the feasible
encoding parameters with the highest visual quality.
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Table 1: Dynamic 3DGS Scenes in Our Experiments

Scene Synthetic Natural
Panda Bear P&B Hoodie Coat

Per-Frame No. Gau. (106) 0.165 0.222 0.356 0.532 0.851
Average Frame Size (MB) 39.00 52.27 84.21 131.85 211.06

(a) (b) (c) (d)

Figure 2: Sample novel views from: (a) Panda, (b) Bear,
(c) Hoodie, and (d) Coat.

Datasets. Table 1 lists the dynamic 3DGS scenes used in
our experiments, including three synthetic [13] and two nat-
ural scenes [23] with diverse characteristics. In the synthetic
scenes, Panda and Bear, a panda and a bear run horizontally
within an 𝑅 × 𝑅 × 𝑅 box. The scenes were merged into a
Panda&Bear (P&B) scene, where the animals run across the
scene alternatively. In both natural scenes, the avatars wave
their arms and kick at the center without transitional move-
ment. For the scene, we trained ten 3DGS frames using the
vanilla 3DGS algorithm1 [8] with SH degree 0, as we found
that higher SH degrees did not significantly improve view
quality. Fig. 2 presents sample novel views of the dataset. We
streamed and looped the trained 3DGS frames in our 10-sec
experiments at 15 fps. To evaluate visual quality, each scene
is rendered at 720p from 24 virtual cameras uniformly placed
around the main subject.
For available bitrates over time, we adopt real Lu-

mos5G [15] network traces captured from a commercial 5G
mmWave cell. We chose four 10-sec network traces, named
High (399.5 ± 3.4 Mbps), Low (146.9 ± 4.2 Mbps), Increasing
(288.1 ± 11.6 Mbps), and Fluctuating (233.9 ± 11.5 Mbps) 2.
High and Low are two steady network traces in good and
bad network conditions, respectively. Increasing comes with
increasing bitrate at a smooth pace. Fluctuating has highly
varying bitrates over time.

To model �̃�𝑛 (e𝑛) and �̃�𝑛 (e𝑛), we employed PSNR [6] as
a sample quality metric and experimented with various ma-
chine learning models from Scikit-Learn [18] with default
parameters. We chose Random Forest for �̃�𝑛 (e𝑛); and Linear
Regression for �̃�𝑛 (e𝑛), as they achieve the best accuracy. Our
models achieve: (i) RMSE between 1.380 and 2.341, (ii) MAE
1Our method can be applied to enhanced 3DGS algorithms, which is one of
our future tasks.
2Because the dataset logs the total bandwidth of multiple mobile users, we
divide the total bitrate by four.

between 0.768 and 2.028, and (iii) R2 between 0.891 and 0.932
across all considered 3DGS scenes by uniformly splatting
100 encoding parameters in each frame.
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Figure 3: Per-frame performance results: (a) quality in
PSNR and (b) frame size. Sample results from Hoodie
under trace Increasing are shown.

Settings.All experiments are runwithAMD32-core CPUs
at 2.80 GHz and an NVIDIA GTX-3090 GPU with 24 GB
VRAM. We vary the allocation window 𝑁 = {1, 5, 15, 30},
and let 𝑁 = 1 by default. We set 𝜆 = 2 and 𝛿 = 1. For
each 3DGS frame, we measure: (i) visual quality in PSNR,
SSIM [6], and VMAF [16] and take the lossless scenes as the
reference; (ii) resulting bitrate

∑𝑁
𝑛=1 𝑅𝑛 (e𝑛); and (iii) compu-

tational overhead in the number of probing attempts and
running time of bitrate allocation methods. We report the
average results with 95% confidential intervals if applicable.

5.2 Results
Necessity of adaptive bitrate allocation algorithms.
Fig. 3 presents sample frame-by-frame performance results
of streaming Hoodie under trace Increasing, where the bitrate
𝐵𝑇 increases over time. Results from other dynamic 3DGS
senses are similar. We note two observations. First, at high
bitrates (7–10 s, an average of 6.39 Mb), Fig. 3(a) shows that
our proposed MGA achieves superior expected quality of
38.53 dB in PSNR, 0.90 in SSIM, and 53.69 in VMAF3. This
contrasts with Static, which only achieves 21.43 dB in PSNR,
3Due to space limit, some figures on SSIM and VMAF are omitted.
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Figure 4: Overall visual quality improvement of MGA
over Uni under different network traces in: (a) PSNR
and (b) VMAF. SSIM is skipped for the sake of space.

0.71 in SSIM, and 0.58 in VMAF. Additionally, as shown in
Fig. 3(b), at high bitrates (7–10 s), MGA utilizes 97.91% of the
bitrate budget, well above Static’s 70.15%, indicating more ef-
ficient use of network resources by MGA. Conversely, at low
bitrates (0–3 s, averaging 3.43 Mb), Static not only delivers
lower quality of 21.43 dB in PSNR but also exceeds its bitrate
allocation, using up to 156.94% of the allocated budget. This
inefficiency underlines Static’s inability to adjust to varying
network conditions effectively. Therefore, Static is excluded
from further analysis, as shown by Fig. 3.
Necessity of non-uniform bitrate allocation algo-

rithms cross categories. Fig. 3 also reveals that, compared
to Uni, MGA improves the visual quality by up to 6.75 dB
in PSNR, 0.19 in SSIM, and 57.03 in VMAF. Moreover, MGA
utilizes at most 8.11% more bitrates. To gain further insights
into the performance of MGA over Uni, we plot the overall
quality improvement of all dynamic 3DGS scenes (sorted by
the number of Gaussians) under different network traces in
Fig. 4. We observe that: (i) As scene complexity increases,
the improvement in visual quality also rises. Considering all
scenes and network traces (the right-most bar), MGA out-
performs Uni by 1.95 dB in PSNR, 0.04 in SSIM, and 5.09 in
VMAF on average, with peak improvements reaching 5.46 dB
in PSNR, 0.2 in SSIM, and 25.52 in VMAF, which is made pos-
sible because of 5.61% higher bitrate utilization (not shown
in the figure). (ii) At high bitrates, MGA shows minimal
gains for simpler scenes like Panda, Bear, and P&B, deliver-
ing high visual quality at 29.82, 32.77, and 29.98 dB in PSNR,
respectively, as sufficient bitrates are available. Conversely,
for complex scenes such as Coat at low bitrates, MGA shows
negligible improvement, as it already utilizes much of the bi-
trate (90.35%). Overall, Fig. 4 illustrates MGA’s effectiveness
in strategically allocating bitrates to critical visual attributes.
Impact of 𝑁 .We increase the allocation window size 𝑁

from 1 (default, used above) to 30. Fig. 5 reports the overall
quality gains and overhead increases compared to 𝑁 = 1.
We have three observations. First, Fig. 5(a) depicts that the
visual quality generally increases with larger 𝑁 . The overall
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Figure 5: Performance difference when increasing 𝑁

of MGA: (a) visual quality and (b) bitrate utilization.
Overall results from all traces are reported.

visual quality increases are 0.65 dB in PSNR, 0.02 in SSIM,
and 4.66 in VMAF. The gaps enlarge with more complex
scenes, e.g., Coat leads to increases of 1.8 dB in PSNR, 0.06 in
SSIM, and 7.79 in VMAF. These enhancements stem from the
additional flexibility in bitrate allocation across frames as 𝑁
increases. Second, Fig. 5(b) indicates a slight bandwidth over-
utilization by 0.98% due to inaccuracies in the models �̃�𝑛 (e𝑛)
and �̃�𝑛 (e𝑛) during the linear search phase. Last, a notable
65.89% increase in running time occurs with larger window
sizes, suggesting a trade-off between improved quality and
higher time and buffering delays. In summary, Fig. 5 exhibits
the potential (and cost) of using larger 𝑁 with MGA.

Table 2: Average Visual Quality and Overhead Across
Four Network Traces

Algm. Panda Bear P&B Hoodie Coat

Quality in PSNR (dB) / SSIM / VMAF

Exha. 29.78/0.97/42 32.51/0.98/46 28.73/0.95/38 24.77/0.81/26 18.54/0.65/8
MGA 29.78/0.97/42 32.47/0.98/46 28.76/0.95/38 24.64/0.81/23 17.90/0.62/8
MGAA 29.76/0.97/41 32.39/0.98/46 28.63/0.95/37 24.45/0.80/23 17.84/0.62/8

Overhead in Per-frame Probing Attempts (times) / Running Time (ms)

Exha. 625.00/5.08 625.00/4.99 625.00/5.00 625.00/4.96 625.00/4.93
MGA 19.79/92.75 21.68/97.54 24.83/104.21 25.30/100.28 26.56/95.60
MGAA 12.14/20.46 12.49/14.14 14.55/14.11 16.10/24.54 17.68/26.46

MGA approaches optimal visual quality with fewer
probing attempts.We check the optimality of MGA by com-
paring it against Exhaustive search, which opts for 54 = 625
probing encoding parameters following the same factor 𝜆 as
MGA. We note that Exhaustive is a good approximation to
e∗, which cannot be efficiently found due to the non-linear
nature of𝑄𝑛 (e𝑛) and 𝑅𝑛 (e𝑛). Table 2 gives the average visual
quality and overhead from Exhaustive and MGA across all
network traces with 𝑁 = 1. We observe that: (i) MGA results
in very close visual quality to that of Exhaustive, e.g., PSNR
> 96.45% has been achieved; (ii) MGA could lead to visual
quality higher than Exhaustive, which can be attributed to
fine-grained model-driven linear search; and (iii) MGA sig-
nificantly reduces the probing attempts from 625 to as small
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as 19.68 times, which is merely 3.17%. To summarize, our
proposed MGA achieves close-to-optimal visual quality with
negligible probing attempts.
Adaptive MGA: MGAA. An insight from MGA is that

the linear search phase may not lead to quality improvement
if: (i) the gradient at ē𝑛 is small or (ii) the residual bitrate
budget beyond 𝐵𝑇 − 𝑅𝑛 (ē𝑛) is small. Driven by this insight,
we modify MGA so that it performs linear search only if:

𝑄𝑛 (⌊𝜆ē𝑛⌋) −𝑄𝑛 (ē𝑛)
𝑅𝑛 (⌊𝜆ē𝑛⌋) − 𝑅𝑛 (ē𝑛)

×
(
𝐵𝑇 −∑𝑁

𝑛=1 𝑅𝑛 (ē𝑛)
)
≥ 𝜃, (2)

where 𝜃 is a threshold for potential quality improvement.
We set 𝜃 = 1 dB in the following experiments. While in
theory, we could have checked the gradients (the first term in
Eq. (2)) in each of the four categories, our empirical analysis
indicates that only doing this on the geometry leads to time
savings. This analysis is consistent with the intuition that the
geometry category impacts rendering quality most. Hence,
our implementation only checks geometry attributes. We
denote this adaptive MGA as MGAA.

Table 2 also compares the quality and overhead of MGAA
against MGA. It shows that MGAA: (i) reduces the running
time by 72.32%–86.46%, (ii) cuts the probing attempts by
33.43%–42.39%, and (iii) yet achieves comparable visual qual-
ity, e.g., 99.23%–99.93% of PSNR across the five considered
dynamic 3DGS scenes. Because MGAA successfully miti-
gates the overhead of MGA without sacrificing the visual
quality, we recommend using MGA when computational
resources are abundant and MGAA otherwise.

6 CONCLUSION
We proposed two algorithms, MGA and MGAA, to allocate
bitrate across multiple 3DGS scenes for streaming over dy-
namic networks. Our extensive experiments with our aug-
mented Draco coder, five dynamic 3D scenes, and four 5G
network traces showed the effectiveness, efficiency, and prac-
ticality of our algorithms. This work can be extended in sev-
eral directions. First, MGA can be applied to other encoding
algorithms besides Draco to demonstrate its generality and
efficacy. Second, the bitrate allocation problem may adopt
different objective functions, e.g., to reduce the visual qual-
ity variance among adjacent 3DGS frames for a better user
experience. Besides bit allocation, we are also addressing ad-
ditional challenges of an end-to-end 3DGS streaming system,
such as packet loss and error concealment.
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