
CmdCaliper: A Semantic-Aware Command-Line Embedding Model and
Dataset for Security Research

Anonymous EMNLP submission

Abstract
This research addresses command-line embed-001
ding in cybersecurity, a field obstructed by the002
lack of comprehensive datasets due to privacy003
and regulation concerns. We propose the first004
dataset of similar command lines, named Cmd-005
Dataset, for training and unbiased evaluation.006
The training set is generated using a set of large007
language models (LLMs) comprising 28,520008
similar command-line pairs. Our testing dataset009
consists of 2,807 similar command-line pairs010
sourced from authentic command-line data.011

In addition, we propose a command-line em-012
bedding model named CmdCaliper, enabling013
the computation of semantic similarity with014
command lines. Performance evaluations015
demonstrate that the smallest version of Cmd-016
Caliper (30 million parameters) suppresses017
state-of-the-art (SOTA) sentence embedding018
models with ten times more parameters across019
various tasks (e.g., malicious command-line020
detection and similar command-line retrieval).021

Our study explores the feasibility of data022
generation using LLMs in the cybersecurity023
domain. Furthermore, we release our pro-024
posed command-line dataset, embedding mod-025
els’ weights and all program codes to the pub-026
lic. This advancement paves the way for more027
effective command-line embedding for future028
researchers.029

1 Introduction030

Sentence embeddings, which map diverse sen-031

tences into a unified semantic feature space, are032

critical for various NLP applications such as clas-033

sifier training, visualization (van der Maaten and034

Hinton, 2008), and retrieval-augmented generation035

(RAG) (Lewis et al., 2020). In cybersecurity, com-036

mand lines provide invaluable information for de-037

tecting malicious attacks by comparing them with038

known historical malicious command lines from039

a semantic perspective. However, the flexibility040

in command-line syntax and structure poses chal-041

lenges for fully leveraging this information. For042

Figure 1: After fine-tuning our proposed similar
command-line pair dataset, CmdDataset, our proposed
command-line embedding model, CmdCaliper, can ef-
fectively embed command lines based on their seman-
tics rather than solely on appearance.

example, as shown in Fig. 1, one can still correlate 043

the two command lines according to their outputs 044

despite the different appearances. To achieve this, 045

using a robust embedding model to calculate the 046

semantic similarity of command lines is promis- 047

ing. However, the grammatical differences between 048

command lines and natural language sentences 049

hinder the direct application of sentence embed- 050

ding models to command-line tasks. Furthermore, 051

one main challenge exacerbates the difficulty of 052

research in command-line embedding: the scarcity 053

of datasets specifically designed for command-line 054

embedding tasks, both for training models and for 055

fairly evaluating the performance of different meth- 056

ods. 057

To address the aforementioned challenges, this 058

paper introduces the first comprehensive dataset, 059

CmdDataset, which includes semantically simi- 060

lar pairs of command lines for both training and 061

evaluating command-line embedding methodolo- 062

gies. Inspired by the successes of data synthe- 063

sis by LLMs (Wang et al., 2023b,a), the similar 064

command-line pairs in our training set are automati- 065

1

cally generated from a set of diverse command-line066

seed initialized from multiple real-world sources067

by a total of six distinct LLMs trained on diverse068

datasets (§ 3.1). This facilitates a broader range069

of command-line generation. For the testing set of070

CmdDataset, to prevent training data leakage, we071

directly employed a totally different data source072

instead of synthesizing command lines by LLMs,073

as done in the training set. (§ 3.2)074

To the end, our training set consists of 28,520075

similar command-line pairs, totaling 55,909 unique076

command lines, and our testing set comprises077

2,807 similar command-line pairs, totaling 5,576078

unique command lines. Our dataset analysis and079

human evaluation results (§ 5) demonstrate that080

our pipeline can generate highly diverse and high-081

quality similar command-line pairs.082

Based on our proposed dataset, CmdDataset, we083

also developed the first embedding model special-084

ized for command-line embeddings, called Cmd-085

Caliper. By encouraging semantically similar sam-086

ples to come closer and simultaneously increasing087

the distance between semantically dissimilar sam-088

ples in the embedding space, CmdCaliper can em-089

bed command lines into vectors from a semantic090

perspective. As demonstrated in Fig. 1, even when091

command lines differ in appearance, CmdCaliper092

can still position them closely in the embedding093

space based on their semantic meanings.094

Our evaluation results (§6) demonstrate that even095

the smallest version of CmdCaliper, with approxi-096

mately 0.03 billion parameters, can surpass SOTA097

sentence embedding models with ten times more098

parameters (0.335 billion parameters) across vari-099

ous command-line specific tasks, such as malicious100

command-line detection, similar command-line re-101

trieval, and command-line classification.102

Our contribution is threefold. First, we pro-103

pose the first dataset of similar command-line pairs104

named CmdDataset, which allows for training and105

performance evaluation. Through detailed valida-106

tion of the dataset’s effectiveness, we believe it is107

well-suited for further command-line research. Sec-108

ondly, we explore the potential of using LLMs to109

synthesize data in the cybersecurity domain. Our110

experiments demonstrate that LLMs can indeed111

generate high-quality and diverse data. Lastly, we112

propose the first semantic command-line embed-113

ding model, CmdCaliper. Our evaluations reveal114

that a command-line-specific embedding model115

significantly enhances performance across various116

downstream tasks compared to generic sentence 117

embedding models. We open-source the entire 118

dataset, model weights, and all program codes un- 119

der BSD License at AnonymousRepo1 120

2 Related Work 121

2.1 Semantic Embedding 122

Early works of sentence embedding such as 123

Word2Vec (Mikolov et al., 2013) and Glove (Pen- 124

nington et al., 2014), require the training of a pre- 125

defined static embedding lookup table to fuse into 126

the embedding vector of different sentences. 127

Recent works leverage well-trained language 128

models such as BERT (Devlin et al., 2019) and 129

T5 (Raffel et al., 2020) as pre-trained models to 130

globally embed inputs (i.e., the words of sentences) 131

into embedding vectors while considering con- 132

textual relationships to achieve impressive down- 133

stream performance. To fine-tune such models, a 134

contrastive learning scheme (van den Oord et al., 135

2018) is adopted, as demonstrated in (Gao et al., 136

2021; Chuang et al., 2022; Zeng et al., 2022; Nee- 137

lakantan et al., 2022; Wang et al., 2022, 2023a) 138

In the cybersecurity domain, semantic embed- 139

ding is crucial for computing semantic similar- 140

ity across various data types, including logs and 141

command lines. For log-based data, Golczynski 142

et al. (Golczynski and Emanuello, 2021) intro- 143

duced an autoencoder-based model to convert log 144

data into embedding vectors for anomaly detection. 145

Log2Vec (Liu et al., 2019) creates a heterogeneous 146

graph for each log dataset and uses the random 147

walk method with Word2Vec to embed log data. 148

LogBert (Guo et al., 2021) leverages BERT for 149

anomaly detection, clustering the embedding vec- 150

tors of normal samples to increase the separation 151

from abnormal samples. 152

For command-line based data, Ongun et 153

al. (Ongun et al., 2021) adapted the tokenization 154

methodology for command-line-based data and 155

followed the Word2Vec approach to train a pre- 156

defined embedding lookup table for a large amount 157

of command-line data. Conversely, Dong et 158

al. (Dong et al., 2023) directly adopted Word2Vec 159

for the command-line embedding. 160

2.2 LLMs in the Cybersecurity 161

In the field of cybersecurity, many re- 162

searchers (Motlagh et al., 2024; Divakaran 163

and Peddinti, 2024) have also explored leveraging 164

1
https://anonymous.4open.science/r/CmdCaliper/README.md

2

https://anonymous.4open.science/r/CmdCaliper/README.md

Figure 2: The illustration of the pipeline for automati-
cally generating a dataset of similar command-line pairs
using the Self-Instruct algorithm with a pool of LLMs.

LLMs(OpenAI, 2023; Anthropic, 2024; Touvron165

et al., 2023) for malicious code generations.166

Moskal et al. (Moskal et al., 2023) use LLMs167

to generate executable code for agent actions, fa-168

cilitating automated cyber campaigns. McKee et169

al. (McKee and Noever, 2023) explore using LLMs170

as honeypots by generating executable commands171

to simulate Linux, Mac, and Windows terminals.172

Chatzoglou et al. (Chatzoglou et al., 2023) demon-173

strate ChatGPT’s ability to generate malicious code174

that can evade detection.175

3 CmdDataset: The First Command-Line176

Similarity Dataset177

Despite the impressive performance of existing sen-178

tence embedding models (Li et al., 2023; Gao et al.,179

2021; Neelakantan et al., 2022), no embedding180

model has been designed specifically for command181

lines. We believe this is due to the unavailability182

of a large, diversified dataset with adequate annota-183

tions for effective training and unbiased evaluation.184

In this section, we primarily focus on introducing185

the first command-line similarity dataset, named186

CmdDataset. This training set comprises 28,520187

pairs of command lines automatically generated188

by a pool of LLMs. In contrast, the testing set189

contains 2,807 pairs of command lines collected190

from real-world attack scenarios.191

3.1 Training Set Synthesis by LLMs192

Collecting large-scale unlabeled or small-scale an-193

notated command-line data is challenging due to194

two main factors. Firstly, labeling command-line195

datasets requires specialized cybersecurity knowl-196

edge, making it more stringent and costly than la-197

beling images or natural language sentences. Sec-198

ondly, privacy concerns involving company or per- 199

sonal information in real-world command lines dis- 200

courage sharing, complicating efforts to gather di- 201

verse, large-scale datasets. 202

The automatic data generation process known 203

as Self-Instruct (Honovich et al., 2023; Taori et al., 204

2023; Wang et al., 2023b) has proven effective 205

in acquiring a comprehensive and diverse corpus 206

of instructional data for fine-tuning LLMs. This 207

process utilizes a powerful pre-trained large-scale 208

language model, such as ChatGPT or Claude 3. 209

Our research is inspired by the substantial suc- 210

cess of LLMs in code generation (Rozière et al., 211

2023; Patil et al., 2023) that exhibits similar struc- 212

tures to command lines and strong comprehension 213

in the cybersecurity domain, such as malware gen- 214

eration (Pa et al., 2023; Botacin, 2023; Charan et al., 215

2023; Chatzoglou et al., 2023). Based on these ca- 216

pabilities, we adapt the Self-Instruct method to syn- 217

thesize a substantial number of similar command- 218

line pairs using LLMs. Our data synthesis pipeline 219

comprises three stages: 1) Initial Seeds Collection, 220

2) Single Command Line Synthesis using a Pool of 221

LLMs, and 3) Similar Command Line Synthesis, 222

as illustrated in Fig. 2. 223

3.1.1 Initial Seeds Collection 224

Incorporating randomness into prompts is crucial 225

for enabling LLMs to synthesize diverse command 226

lines. This is achieved using initial seeds, which 227

consist of a diverse set of command lines. During 228

each synthesis iteration, a subset of these seeds is 229

sampled to construct the prompt, diversifying it and 230

encouraging a varied output from LLMs. To en- 231

sure high-quality initial seeds, we collected 2,061 232

diverse Windows command lines from multiple 233

sources (e.g., public red-team exercises and Win- 234

dows commands documentation). For more details 235

on the initial-seed collection, see Appendix B. 236

3.1.2 Single Command Line Synthesis with a 237

Pool of LLMs 238

Beyond the diversity of command-line seeds, the 239

ability of LLMs to generate sufficiently varied data 240

is also crucial. In the original Self-Instruct pipeline 241

(Wang et al., 2023b), GPT-3 (Brown et al., 2020) 242

was adopted for data generation, which confines 243

all generated data to the distribution of GPT-3’s 244

training data. We extended this method by con- 245

structing a pool of distinct LLMs to aid in data gen- 246

eration. This is intuitive because the distribution of 247

training data varies among different LLMs, leading 248

3

to differences in the nature of the command lines249

they preferentially generate. The LLM pool of our250

pipeline comprises the following models: Mixtral251

8x7B (Jiang et al., 2024), WizardLM-13B-v1.2 (Xu252

et al., 2024), Gemini-1.0-Pro (Team et al., 2023),253

Claude-3-Haiku (Anthropic, 2024), Qwen1.5-14B-254

Chat (Bai et al., 2023), and GPT-3.5-Turbo (Ope-255

nAI, 2022).256

After constructing the LLM pool, we iteratively257

synthesize command lines by randomly sampling258

12 command lines from the total command-line259

seeds—which include previously synthesized com-260

mand lines and initial seeds—for prompt compo-261

sition, as shown in Fig. 6. We then instruct a ran-262

domly selected LLM from the pool to synthesize263

four new command lines distinct from those in the264

prompt. Valid command lines are extracted from265

the LLM responses. Due to the randomness of gen-266

eration, the LLMs may not always produce four267

new valid command lines. These valid new com-268

mand lines are added to the total command-line269

seeds for the next iteration. The generation process270

is halted after synthesizing 28,520 command lines.271

In this step, LLMs may synthesize non-272

executable command lines with minor syntax er-273

rors. However, for our dataset of similar command-274

line pairs, ’similar’ refers to command lines sharing275

the same purposes or intentions, typically based on276

associated executable files, arguments, and argu-277

ment values. Therefore, even with syntax errors,278

the command lines should still convey the same279

purpose or intention as their correct versions.280

3.1.3 Similar Command Line Synthesis281

After collecting 28,520 command lines, we in-282

structed GPT-4-Turbo (OpenAI, 2023) to generate283

a similar command line for each. The prompting284

template for this instruction is displayed in Fig. 7.285

Here, ’similar’ refers to sharing the same purpose286

or intention, rather than merely having a similar287

appearance. This distinction is crucial, as in real-288

world scenarios, attackers may use different com-289

mand lines or obfuscation techniques to achieve the290

same goal. We showcase several pairs of generated291

similar command lines in Table. 9, demonstrating292

the efficacy of utilizing LLMs for this purpose.293

3.2 Real-World Testing Set Collection294

To create a testing set that can fairly and compre-295

hensively evaluate different methods, better reflect296

real-world usage scenarios, and avoid training data297

leakage, we neither directly partitioned the train-298

ing set for the testing set, nor did we use LLMs 299

to generate entirely new command lines from the 300

initial seeds as the training set collection pipeline. 301

Instead, we employed Splunk Attack data (Splunk), 302

a dataset curated from various attacks, as the source 303

for our testing set. This allows us to evaluate 304

various approaches in real-world scenarios, as it 305

includes many malicious command lines corre- 306

sponding to various MITRE ATT&CK (mitre) tech- 307

niques, covering multiple distinct attack vectors. 308

Initially, we extracted 12,723 unique command 309

lines from the Splunk Attack data. However, many 310

command lines had similar meanings but differed 311

slightly in appearance, leading to data duplication 312

and potential evaluation inaccuracies. To address 313

this concern, we generated explanations using Chat- 314

GPT and then converted these explanations into 315

embeddings using GTE-Large (Li et al., 2023). We 316

used these embeddings to remove command lines 317

with semantically similar content, resulting in a 318

final testing set of 2,807 command lines. For more 319

details about the deduplication process, please refer 320

to Appendix A. We then followed the similar com- 321

mand line synthesis step proposed in Sec. 3.1.3 to 322

instruct GPT-4-turbo to generate the corresponding 323

similar command line for each command line. 324

For each command line from the original set of 325

2,807, we used the explanation embeddings to iden- 326

tify the 1,000 least similar command lines from 327

the remaining 2,806 as negative command lines. 328

Additionally, we designated the generated similar 329

command line as the positive command line. This 330

method avoids evaluation inaccuracies by prevent- 331

ing the inclusion of semantically similar command 332

lines among the negatives. 333

4 CmdCaliper: A Semantic-Aware 334

Command-Line Embedding Model 335

Utilizing the proposed dataset CmdDataset, a 336

command-line embedding model can be trained 337

with a contrastive objective, like sentence embed- 338

ding methodologies, as seen in (Gao et al., 2021; 339

Chuang et al., 2022; Neelakantan et al., 2022). 340

Given an embedding model, denoted as E, the pro- 341

cedure of embedding a command line ci into an em- 342

bedding vector ei can be described as ei = E(ci). 343

In each training iteration, several similar pairs are 344

randomly sampled from the training set to form 345

a batch, which contains k similar command-line 346

pairs {(xi, x+i)}ki=1, where (xi, x
+
i) represents the 347

ith similar command-line pair. Within the batch, 348

4

Training Set Testing Set

Num of command-line pair 28,520 2,807
Num of unique command line 55,909 5,576

Max. command-line length 3,464 7,502
Min. command-line length 3 2
Avg. command-line length 91.635 96.301

Std. of command-line length 60.794 196.675

Table 1: The statistic information of CmdDataset.

Coverage Rate (%)

Windows Commands 73.52
Windows Common File Extensions 70.67

Table 2: Coverage rates of CmdDataset across all Win-
dows Commands and Windows common file extensions.

the similar command line x+i is regarded as a349

positive sample of sample xi, thereby encourag-350

ing the associated embedding vectors to be closer351

within the feature space. Conversely, other sam-352

ples {x+j ,∀j ∈ {1, 2, . . . , k} \ {i}} are treated353

as in-batch negatives (Sohn, 2016; Neelakantan354

et al., 2022; Gao et al., 2021), encouraging the em-355

bedding vectors to be farther. The InfoNCE loss356

(van den Oord et al., 2018), denoted as Linfo, can357

be calculated as follows:358

Linfo = −
k∑

i=1

log
exp(

E(xi)·E(x+
i)

τ)
k∑

j=1
exp(

E(xi)·E(x+
j)

τ)

, (1)359

where τ is a hyperparameter that τ ∈ R+.360

5 Evaluation on CmdDataset361

5.1 Experimental Settings362

In the entire CmdDataset synthesis pipeline, to en-363

hance the diversity of the generated command lines,364

we follow the approach outlined in (Wang et al.,365

2023a) and set the temperature parameter to 1 for366

all LLMs to encourage more random outputs.367

5.2 The Statistics of the Dataset368

The statistical information for the training and test-369

ing sets of the CmdDataset is presented in Table 1.370

Thanks to the real-world sources of our testing set,371

the standard deviation of the testing data signifi-372

cantly differs from that of the training set, enabling373

a more generalized and accurate evaluation.374

5.3 The Diversity of the Synthesized375

Command Line376

In this experiment, we aim to assess the diversity377

of these synthesized command lines. We calculated378

Figure 3: The distribution of the highest ROUGE-L
overlap score between the generated command lines
and the initial command-line seeds.

their coverage across all Windows commands2 and 379

common file name extensions in a clean Windows 380

10 virtual machine, as demonstrated in Table 2. To 381

avoid bias, we excluded our manually formulated 382

initial seeds and focused only on the command 383

lines generated by LLMs. Overall, our synthesized 384

command lines achieve a coverage rate of 73.52% 385

out of 306 unique Windows commands and 70.67% 386

out of 75 common file extensions. For more details 387

about the coverage rate calculation process, please 388

refer to Appendix C. 389

We conducted an in-depth analysis of the dif- 390

ferences between the generated command lines 391

and the initial command-line seeds, which served 392

as a foundational starting point for constructing 393

the command-line dataset. For each generated 394

command line, we calculated the highest ROUGE- 395

L overlap (Lin, 2004) which ranges from 0 to 1 396

among all command-line seeds. A higher ROUGE- 397

L score indicates a greater overlap between the 398

generated command lines and the initial command- 399

line seeds. The distribution of ROUGE-L scores 400

is illustrated in Fig. 3. These findings suggest that 401

the command lines synthesized by our pipeline 402

(Sec. 3.1) are not limited to minor tweaks of the 403

original command-line seeds. On the contrary, they 404

are capable of producing a broad range of com- 405

mand lines, some of which may exhibit significant 406

differences from the initial seeds. 407

5.4 The Diversity within the Similar 408

Command-Line Pairs 409

In this section, we examined the distribution of 410

ROUGE-L overlap for each pair of similar com- 411

mand lines, as shown in Fig. 4. These metrics help 412

determine whether similar command-line pairs are 413

derived from minor modifications to arguments or 414

entirely different commands achieving a similar 415

objective. Notably, our findings reveal that most 416

2Windows Command-line reference A-Z

5

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands#command-line-reference-a-z

Figure 4: The distribution of ROUGE-L overlap score
for all similar command-line pairs.

ROUGE-L scores are low, nearing zero, suggesting417

that the “similarity” in our command-line dataset418

is not solely based on lexical similarities but rather419

reflects genuine semantic similarities. This vital420

understanding enables us to train command-line421

embedding models from a semantic perspective422

and subsequently evaluate the performance of dif-423

ferent command-line embedding models.424

5.5 The Quality of the LLM’s Command-Line425

Explanations426

In Sec. 3.2, we utilize ChatGPT (OpenAI, 2022)427

to generate explanations for command lines and428

employ GTE-Large (Li et al., 2023) to convert these429

explanations into embeddings for data processing.430

In this evaluation, our focus is on assessing the431

quality of the explanations generated by LLM.432

We randomly selected 200 command lines and433

their explanations from our training set. An expert434

(collaborator of this work) with over three years of435

cybersecurity experience assessed the correctness436

of each explanation, providing scores as positive,437

neutral, or negative, while ignoring minor syntax438

errors. Normalizing the expert’s scores against439

the highest possible total, we obtained a score of440

98.25%, indicating that most command-line expla-441

nations accurately describe their purposes. Several442

good and bad examples are listed in Table 10.443

5.6 The Quality of the Similar444

Command-Line Pairs445

In this experiment, we investigate whether the446

command-line pairs generated by LLMs are truly447

similar in terms of semantics. Leveraging the find-448

ings presented in Sec. 5.5, which demonstrate a449

high alignment between the explanations generated450

by LLMs and those provided by human experts,451

we follow the same experimental settings, utilizing452

identical prompts and instructing ChatGPT (Ope-453

nAI, 2022) to generate explanations for each com-454

mand line in the testing set.455

Figure 5: The histogram of the explanation similar-
ity between random command-line pairs and similar
command-line pairs in the testing set of CmdDataset.

LLMs for Data Synthesis Coverage
Rate (%)

GPT-3.5-Turbo (OpenAI, 2022) 48.75
Mixtral 8x7B (Jiang et al., 2024) 27.5

WizardLM-13B-v1.2 (Xu et al., 2024) 35
Gemini-1.0-Pro (Team et al., 2023) 51.25

Qwen1.5-14B-Chat (Bai et al., 2023) 23.75
Claude-3-Haiku (Anthropic, 2024) 30

LLM Pool (our) 70

Table 3: Explanation clusters coverage rates of the com-
mand lines synthesized by different LLMs.

After acquiring all explanations, we employ 456

GTE-Large (Li et al., 2023) to embed all expla- 457

nations into corresponding embedding vectors and 458

calculate the similarity between explanations for 459

each similar command-line pair. Subsequently, we 460

randomly construct an equal number of command- 461

line pairs, totaling 2,807 pairs, with both command 462

lines in each pair randomly sampled from all com- 463

mand lines in the testing set. 464

Fig. 5 illustrates the similarity distributions of 465

both similar and random command-line pairs. No- 466

tably, there is a significant gap in the explanation 467

similarity between these two groups. Specifically, 468

the average explanation similarity of each simi- 469

lar command-line pair exceeds that of 97.483% of 470

the random command-line pairs, indicating the ef- 471

fectiveness of synthesizing similar command lines 472

with LLMs. Note that the range of similarity for 473

GTE-Large is approximately between 0.65 and 1. 474

5.7 Effectiveness of a Pool of LLMs 475

In this experiment, we aim to study whether a pool 476

of LLMs can make the synthesized command lines 477

more diverse versus utilizing a single LLM as we 478

described in Sec. 3.1. First, we instruct each LLM 479

in our pool to synthesize 7,500 command lines from 480

the same initial seeds, totaling 52,500 command 481

lines. Using findings from Sec.5.5, we then gen- 482

erate high-quality explanations for all synthesized 483

6

command lines. Next, we embed these explana-484

tions into vectors using GTE-Large (Li et al., 2023)485

and cluster them with DBSCAN (Ester et al., 1996),486

using a maximum distance of 0.08, a minimum of487

5 samples per cluster, and cosine similarity as the488

distance metric. This process resulted in 80 dis-489

tinct clusters (excluding the noise cluster), each490

representing a specific purpose or intention based491

on similar command line explanations. We then492

computed the coverage rates of the LLM pool and493

each individual LLM across these clusters to assess494

the diversity of synthesized command lines.495

The results are presented in Table. 3. It is evident496

that command lines synthesized by the LLM pool497

cover the highest number of explanation clusters,498

reaching up to 70%. This highlights the capability499

of utilizing a pool of LLMs pre-trained on diverse500

training data to generate a broader range of com-501

mand lines.502

6 Evaluation on CmdCaliper503

6.1 Experimental Settings504

CmdCaliper was trained on three distinct model505

scales: small, base, and large, which are initialized506

from the GTE-small, -base, and -large (Li et al.,507

2023), respectively. For more details about the hy-508

perparameters and training processes, please refer509

to to Appendix E.510

6.2 Compare with SOTAs511

This section compares several SOTA sentence em-512

bedding methods using the testing set from Cmd-513

Dataset. We adopt Mean Reciprocal Ranking@K514

(MRR) and Top@K metrics for evaluating the per-515

formance of CmdCaliper, following the text search516

task methodology (Muennighoff et al., 2022). For517

more details about the two evaluation metrics,518

please refer to Appendix D. Both metrics yield519

scores between 0 and 100. The results of this com-520

parative analysis are presented in Table 8.521

The results indicate that CmdCaliper consis-522

tently achieves competitive performance with state-523

of-the-art (SOTA) models across all evaluation met-524

rics and scales. Specifically, CmdCaliper-Base525

achieved an MRR@3 score of 87.56, surpassing526

our pretrained model - GTE-Base (Li et al., 2023)527

by 9.36 and outperforming all sentence embed-528

ding models of comparable size. On a larger scale,529

CmdCaliper-Large achieved an MRR@3 score of530

89.12, surpassing GTE-Large by 4.86. Remarkably,531

even CmdCaliper-Small, with a mere 0.03B pa-532

Methods Params
(B)

MRR
@3

MRR
@10

Top
@3

Top
@10

Levenshtein
distance1 – 71.23 72.45 74.99 81.83

Word2Vec2 – 45.83 46.93 48.49 54.86

E5S
3 0.03 81.59 82.6 84.97 90.59

GTES
4 0.03 82.35 83.28 85.39 90.84

CmdCaliper S 0.03 86.81 87.78 89.21 94.76

BGE-enB
5 0.11 79.49 80.41 82.33 87.39

E5B 0.11 83.16 84.07 86.14 91.56
GTRB

6 0.11 81.55 82.51 84.54 90.1
GTEB 0.11 78.2 79.07 81.22 86.14

CmdCaliper B 0.11 87.56 88.47 90.27 95.26

BGE-enL 0.34 84.11 84.92 86.64 91.09
E5L 0.34 84.12 85.04 87.32 92.59

GTRL 0.34 88.09 88.68 91.27 94.58
GTEL 0.34 84.26 85.03 87.14 91.41

CmdCaliper L 0.34 89.12 89.91 91.45 95.65
1(Haldar and Mukhopadhyay, 2011) 2(Mikolov et al., 2013)

3(Wang et al., 2022) 4(Li et al., 2023) 5(Xiao et al., 2023) 6(Ni
et al., 2022)

Table 4: Comparison with the SOTAs for different pre-
trained language models. Subscript S, B, and L denote
the Small, Base, and Large versions respectively.

Models \ r (%) 20 40 60 80

GTRBase 0.793 0.852 0.866 0.903
E5Base 0.796 0.859 0.87 0.899

GTEBase 0.8 0.868 0.874 0.903
CmdCaliperBase 0.869 0.906 0.927 0.939

Table 5: The AUC comparison for different embedding
models and different sample rate r%.

rameters, is comparable with all SOTA embedding 533

models at the large scale (with 0.335B parameters). 534

6.3 Semantic-Based Malicious 535

Command-Line Detection 536

In this section, we approach malicious command- 537

line detection as a retrieval task using the open- 538

source atomic-red-team dataset (Canary), which 539

includes command lines corresponding to 55 differ- 540

ent MITRE ATT&CK techniques (mitre) (i.e., each 541

technique describes different command line attack 542

behaviors). We iteratively select r% of the mali- 543

cious command lines from each technique as query 544

command lines, while the remaining 1− r% serve 545

as positive command lines. Command lines from 546

other techniques act as negative command lines. 547

This process is repeated for each technique, and 548

we calculate the average area under curve (AUC). 549

The intuition behind this experiment is that a good 550

embedding model should cluster malicious com- 551

mand lines from the same technique closer together, 552

7

Embedding Models Params
(B) Acc. (%)

E5Base 0.11 93.86
GTEBase 0.11 92.8

CmdCaliperBase 0.11 96.37

Table 6: Accuracy comparison for command-line classi-
fication fine-tuned on fixed embedding models.

as they share similar attack behaviors. For more553

details about the experiment setup, please refer to554

Appendix F.555

The detection results are illustrated in Table. 5.556

As observed, CmdCaliper-Base significantly out-557

performs all embedding models not fine-tuned on558

the command-line dataset. This difference is espe-559

cially pronounced when the sample ratio is smaller.560

For instance, at a 20% sample ratio (r = 20),561

CmdCaliper-Base improves upon GTE-Base (Li562

et al., 2023) by approximately 0.069 in AUC. This563

suggests that when the query command-line set is564

smaller, the model requires a deeper understanding565

of the semantics of command lines.566

6.4 Transfer to Command-Line Classification567

Fine-tuning an additional module on a pre-trained568

embedding model for tasks like classification or569

regression often outperforms training from scratch.570

This is because well-trained embeddings capture571

rich, meaningful information that can be used572

across tasks. In this experiment, we trained a logis-573

tic regression classifier for Windows command clas-574

sification using fixed command-line embeddings575

from different approaches.576

Collecting a labeled command-line dataset poses577

significant challenges. To address this, we selected578

seven Windows commands: ‘find’, ‘robocopy’,579

‘msiexec’, ‘rundll32’, ‘sc query’, ‘certutil’, and580

‘print’ to synthesize 24,500 training and 24,500581

testing command lines. For more details about the582

the classification dataset synthesis and the experi-583

mental setup, please refer to Appendix G.584

The results of the classification are presented585

in Table. 6. As observed, CmdCaliper generally586

outperformed other sentence embedding models587

in terms of accuracy for the same model size. For588

example, CmdCaliper-Base achieved a 3.57% im-589

provement over GTE-Base (Li et al., 2023). These590

findings highlight the importance of specialized em-591

bedding models for command-line data, allowing592

the models to encode more command-line informa-593

tion into their embedding vectors.594

Model Params
(B)

MRR
@3

MRR
@10

Top
@3

Top
@10

Random
Initialization 0.11 70.43 72.14 74.49 84.04

BertBase 0.11 82.25 83.38 85.79 92.13
GTEBase 0.11 87.56 88.47 90.27 95.26

Table 7: Comparison of the performance of CmdCaliper
fine-tuning from the different model.

6.5 Does Command-Line Embedding Benefit 595

from Sentence Embedding? 596

We conducted experiments under three settings: 597

training the Bert-Base (Devlin et al., 2019) net- 598

work architecture, the pretrained model of GTE- 599

Base (Li et al., 2023), with randomly initialized 600

weights; fine-tuning from Bert-Base; and fine- 601

tuning directly from the GTE-Base model. The 602

results of the comparison are illustrated in Table 7. 603

As observed, the performance of the pretrained 604

model significantly influences the performance of 605

the command-line embedding model. For instance, 606

fine-tuning from the embedding model yields the 607

highest MRR@3, showing a 5.31% improvement 608

compared to direct fine-tuning with BERT. 609

We believe that the reason command-line embed- 610

ding models benefit from a good sentence embed- 611

ding model lies in the fact that, although command 612

lines often have entirely different grammar and 613

structure from general sentences, in many cases, 614

we can still infer some partial meanings of the com- 615

mand lines from semantically meaningful words 616

such as filenames, arguments, or folder names. 617

7 Conclusion 618

In this work, we introduce CmdDataset, a dataset 619

of similar command-line pairs. The training set uti- 620

lizes the impressive capabilities of an LLM pool for 621

automated generation, while the testing set consists 622

of real-world malicious command lines for realistic 623

evaluation. We also present CmdCaliper, the first 624

dedicated command-line embedding model. Our re- 625

sults show that CmdCaliper, specifically designed 626

for command-line processing, outperforms existing 627

sentence embedding methods in various command- 628

line downstream tasks, such as command classi- 629

fication, malicious command line detection, and 630

similar command-line retrieval. 631

We open-source the dataset, model weights, and 632

all program codes, hoping this study sheds light on 633

future command-line embedding research. 634

8

Methods Hidden
Dim

MRR
@3

MRR
@10

Top
@3

Top
@10

BGE-enLarge [1] 1024 84.11 84.92 86.64 91.09
E5Large [2] 1024 84.12 85.04 87.32 92.59

GTELarge [3] 1024 84.26 85.03 87.14 91.41
OpenAI-text-embedding-3-small [4] 1536 84.35 85.28 87.78 92.8

OpenAI-text-embedding-3-large 3072 89.55 90.19 92.59 96.12
CyCraft-CmdCraft 1024 89.76 90.32 92.59 95.87

Table 8: Comparison with the SOTAs for different pre-trained language models. Subscript S, B, and L denote the
Small, Base, and Large versions respectively.

8 Limitation635

Despite the contributions made in this paper, sev-636

eral tasks listed below are worth exploring in the637

future.638

• Support more command-line interpreters:639

Given their prominence in recent cyberse-640

curity incidents, this study focuses on Win-641

dows and PowerShell commands. Com-642

pelling statistics (Kutscher, 2023) reveal that643

over two-thirds of script-based attacks lever-644

age PowerShell. Nevertheless, an investi-645

gation into a unified command-line embed-646

ding model capable of spanning multiple647

command-line interpreters presents a promis-648

ing avenue for future research.649

• Resilience against command-line obfuscation:650

While CmdCaliper was trained on semanti-651

cally similar command-line pairs, providing652

a certain degree of resilience against obfus-653

cated command lines in this study, attackers654

often employ more sophisticated command-655

line obfuscation techniques to evade defense656

and detection mechanisms. This poses a sig-657

nificant challenge when relying solely on the658

embedding model for detecting malicious ac-659

tivities.660

• Nested command line: We can obtain the661

corresponding semantic embedding vector by662

inputting a command line into CmdCaliper.663

However, a command line itself can be a664

composition of multiple command lines as665

well, making it difficult to accurately em-666

bed them into the feature space. Techniques667

such as few-shot learning (Brown et al., 2020)668

or instruction-finetuned text embeddings (Su669

et al., 2023) may provide potential solutions670

for generating command-line embeddings for671

specific downstream tasks. This area repre-672

sents another possibility for future investiga- 673

tion. 674

References 675

Anthropic. 2024. Claude 3 haiku: our fastest model yet. 676

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 677
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 678
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 679
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 680
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 681
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 682
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng- 683
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, 684
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, 685
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx- 686
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang 687
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang 688
Zhu. 2023. Qwen technical report. arXiv preprint 689
arXiv:2309.16609. 690

Marcus Botacin. 2023. Gpthreats-3: Is automatic mal- 691
ware generation a threat? In IEEE Security and 692
Privacy Workshops. 693

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 694
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 695
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 696
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 697
Gretchen Krueger, Tom Henighan, Rewon Child, 698
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 699
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 700
teusz Litwin, Scott Gray, Benjamin Chess, Jack 701
Clark, Christopher Berner, Sam McCandlish, Alec 702
Radford, Ilya Sutskever, and Dario Amodei. 2020. 703
Language models are few-shot learners. In Proceed- 704
ings of the 2020 Conference on Advances in Neural 705
Information Processing Systems. 706

Red Canary. Atomic red team. 707

P. V. Sai Charan, Hrushikesh Chunduri, P. Mohan 708
Anand, and Sandeep K Shukla. 2023. From text 709
to mitre techniques: Exploring the malicious use of 710
large language models for generating cyber attack 711
payloads. 712

Efstratios Chatzoglou, Georgios Karopoulos, Georgios 713
Kambourakis, and Zisis Tsiatsikas. 2023. Bypassing 714
antivirus detection: old-school malware, new tricks. 715

9

https://www.anthropic.com/news/claude-3-haiku
https://github.com/redcanaryco/atomic-red-team
http://arxiv.org/abs/arXiv:2305.15336
http://arxiv.org/abs/arXiv:2305.15336
http://arxiv.org/abs/arXiv:2305.15336
http://arxiv.org/abs/arXiv:2305.15336
http://arxiv.org/abs/arXiv:2305.15336
http://arxiv.org/abs/arXiv:2305.15336
http://arxiv.org/abs/arXiv:2305.15336
http://arxiv.org/abs/arXiv:2305.04149
http://arxiv.org/abs/arXiv:2305.04149
http://arxiv.org/abs/arXiv:2305.04149

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,716
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-717
Wen Li, Wen tau Yih, Yoon Kim, and James Glass.718
2022. DiffCSE: Difference-based contrastive learn-719
ing for sentence embeddings. In Proceedings of the720
2022 Conference of the North American Chapter of721
the Association for Computational Linguistics.722

DARPA. 2019. Transparent computing engagement 5723
data release.724

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and725
Kristina Toutanova. 2019. BERT: Pre-training of726
deep bidirectional transformers for language under-727
standing. In Proceedings of the 2019 Conference728
of the North American Chapter of the Association729
for Computational Linguistics: Human Language730
Technologies.731

Dinil Mon Divakaran and Sai Teja Peddinti. 2024. Llms732
for cyber security: New opportunities.733

Feng Dong, Liu Wang, Xu Nie, Fei Shao, Haoyu Wang,734
Ding Li, Xiapu Luo, and Xusheng Xiao. 2023. DIST-735
DET: A Cost-Effective distributed cyber threat de-736
tection system. In Proceedings of the 32nd USENIX737
Security Symposium.738

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xi-739
aowei Xu. 1996. A density-based algorithm for dis-740
covering clusters in large spatial databases with noise.741
In KDD.742

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.743
SimCSE: Simple contrastive learning of sentence em-744
beddings. In Proceedings of the 2021 Conference on745
Empirical Methods in Natural Language Processing.746

Andrew Golczynski and John A. Emanuello. 2021. End-747
to-end anomaly detection for identifying malicious748
cyber behavior through nlp-based log embeddings.749
In Proceedings of the 1st International Workshop on750
Adaptive Cyber Defense.751

Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. Log-752
bert: Log anomaly detection via bert. In Proceedings753
of the 2021 International Joint Conference on Neural754
Networks.755

Rishin Haldar and Debajyoti Mukhopadhyay. 2011.756
Levenshtein distance technique in dictionary lookup757
methods: An improved approach.758

Or Honovich, Thomas Scialom, Omer Levy, and Timo759
Schick. 2023. Unnatural instructions: Tuning lan-760
guage models with (almost) no human labor. In Pro-761
ceedings of the 61st Annual Meeting of the Associa-762
tion for Computational Linguistics.763

Albert Q. Jiang, Alexandre Sablayrolles, Antoine764
Roux, Arthur Mensch, Blanche Savary, Chris765
Bamford, Devendra Singh Chaplot, Diego de las766
Casas, Emma Bou Hanna, Florian Bressand, Gi-767
anna Lengyel, Guillaume Bour, Guillaume Lam-768
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-769
Anne Lachaux, Pierre Stock, Sandeep Subramanian,770

Sophia Yang, Szymon Antoniak, Teven Le Scao, 771
Théophile Gervet, Thibaut Lavril, Thomas Wang, 772
Timothée Lacroix, and William El Sayed. 2024. Mix- 773
tral of experts. 774

Diederik Kingma and Jimmy Ba. 2015. Adam: A 775
method for stochastic optimization. In Proceedings 776
of the 3rd International Conference on Learning Rep- 777
resentations. 778

Jurgen Kutscher. 2023. M-Trends 2023: Cy- 779
bersecurity insights from the frontlines. 780
https://www.mandiant.com/resources/blog/ 781
m-trends-2023. 782

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 783
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 784
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock- 785
täschel, Sebastian Riedel, and Douwe Kiela. 2020. 786
Retrieval-augmented generation for knowledge- 787
intensive nlp tasks. In Advances in Neural Infor- 788
mation Processing Systems. 789

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, 790
Pengjun Xie, and Meishan Zhang. 2023. Towards 791
general text embeddings with multi-stage contrastive 792
learning. arXiv:2308.03281. 793

Chin-Yew Lin. 2004. ROUGE: A package for automatic 794
evaluation of summaries. In The Proceedings of 2004 795
Text Summarization Branches Out. 796

Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, 797
Xinyu Xing, and Dan Meng. 2019. Log2vec: A 798
heterogeneous graph embedding based approach for 799
detecting cyber threats within enterprise. In Pro- 800
ceedings of the 2019 ACM SIGSAC Conference on 801
Computer and Communications Security. 802

Forrest McKee and David Noever. 2023. Chatbots in a 803
honeypot world. 804

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey 805
Dean. 2013. Efficient estimation of word represen- 806
tations in vector space. In Proceedings of the 1st 807
International Conference on Learning Representa- 808
tions, Workshop Track Proceedings. 809

mitre. Mitre att&ck. 810

Stephen Moskal, Sam Laney, Erik Hemberg, and Una- 811
May O’Reilly. 2023. Llms killed the script kiddie: 812
How agents supported by large language models 813
change the landscape of network threat testing. 814

Farzad Nourmohammadzadeh Motlagh, Mehrdad Ha- 815
jizadeh, Mehryar Majd, Pejman Najafi, Feng Cheng, 816
and Christoph Meinel. 2024. Large language models 817
in cybersecurity: State-of-the-art. 818

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and 819
Nils Reimers. 2022. Mteb: Massive text embedding 820
benchmark. arXiv preprint arXiv:2210.07316. 821

10

https://drive.google.com/drive/folders/1okt4AYElyBohW4XiOBqmsvjwXsnUjLVf
https://drive.google.com/drive/folders/1okt4AYElyBohW4XiOBqmsvjwXsnUjLVf
https://drive.google.com/drive/folders/1okt4AYElyBohW4XiOBqmsvjwXsnUjLVf
http://arxiv.org/abs/arXiv:2404.11338
http://arxiv.org/abs/arXiv:2404.11338
http://arxiv.org/abs/arXiv:2404.11338
http://arxiv.org/abs/arXiv:1101.1232
http://arxiv.org/abs/arXiv:1101.1232
http://arxiv.org/abs/arXiv:1101.1232
http://arxiv.org/abs/arXiv:2401.04088
http://arxiv.org/abs/arXiv:2401.04088
http://arxiv.org/abs/arXiv:2401.04088
https://www.mandiant.com/resources/blog/m-trends-2023
https://www.mandiant.com/resources/blog/m-trends-2023
https://www.mandiant.com/resources/blog/m-trends-2023
https://www.mandiant.com/resources/blog/m-trends-2023
https://www.mandiant.com/resources/blog/m-trends-2023
https://www.mandiant.com/resources/blog/m-trends-2023
http://arxiv.org/abs/arXiv:2301.03771
http://arxiv.org/abs/arXiv:2301.03771
http://arxiv.org/abs/arXiv:2301.03771
https://attack.mitre.org/
http://arxiv.org/abs/arXiv:2310.06936
http://arxiv.org/abs/arXiv:2310.06936
http://arxiv.org/abs/arXiv:2310.06936
http://arxiv.org/abs/arXiv:2310.06936
http://arxiv.org/abs/arXiv:2310.06936
http://arxiv.org/abs/arXiv:2402.00891
http://arxiv.org/abs/arXiv:2402.00891
http://arxiv.org/abs/arXiv:2402.00891
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-822
ford, Jesse Michael Han, Jerry Tworek, Qiming823
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy,824
Johannes Heidecke, Pranav Shyam, Boris Power,825
Tyna Eloundou Nekoul, Girish Sastry, Gretchen826
Krueger, David Schnurr, Felipe Petroski Such, Kenny827
Hsu, Madeleine Thompson, Tabarak Khan, Toki828
Sherbakov, Joanne Jang, Peter Welinder, and Lilian829
Weng. 2022. Text and code embeddings by con-830
trastive pre-training. ArXiv:2201.10005.831

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-832
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,833
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.834
Large dual encoders are generalizable retrievers. In835
Proceedings of the 2022 Conference on Empirical836
Methods in Natural Language Processing.837

Talha Ongun, Jack W. Stokes, Jonathan Bar Or, Ke Tian,838
Farid Tajaddodianfar, Joshua Neil, Christian Seifert,839
Alina Oprea, and John C. Platt. 2021. Living-off-the-840
land command detection using active learning. In841
Proceedings of the 24th International Symposium on842
Research in Attacks, Intrusions and Defenses, page843
442–455.844

OpenAI. 2022. Introducing chatgpt.845

OpenAI. 2023. New models and developer products846
announced at devday.847

Yin Minn Pa Pa, Shunsuke Tanizaki, Tetsui Kou, Michel848
Van Eetenand Katsunari Yoshioka, and Tsutomu Mat-849
sumoto. 2023. An attacker’s dream? exploring the850
capabilities of chatgpt for developing malware. In851
Proceedings of the 16th Cyber Security Experimenta-852
tion and Test Workshop.853

Shishir G. Patil, Tianjun Zhang, Xin Wang, and854
Joseph E. Gonzalez. 2023. Gorilla: Large language855
model connected with massive apis. arXiv preprint856
arXiv:2305.15334.857

Jeffrey Pennington, Richard Socher, and Christopher858
Manning. 2014. GloVe: Global vectors for word rep-859
resentation. In Proceedings of the 2014 Conference860
on Empirical Methods in Natural Language Process-861
ing.862

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine863
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,864
Wei Li, and Peter J. Liu. 2020. Exploring the limits865
of transfer learning with a unified text-to-text trans-866
former. Journal of Machine Learning Research.867

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,868
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi869
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom870
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish871
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-872
han Xiong, Alexandre Défossez, Jade Copet, Faisal873
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,874
Thomas Scialom, and Gabriel Synnaeve. 2023. Code875
llama: Open foundation models for code.876

Kihyuk Sohn. 2016. Improved deep metric learning 877
with multi-class n-pair loss objective. In Proceed- 878
ings of the 2016 Conference on Advances in Neural 879
Information Processing Systems. 880

Splunk. Splunk attack data repository. 881

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, 882
Yushi Hu, Mari Ostendorf, Wen tau Yih, Noah A. 883
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One 884
embedder, any task: Instruction-finetuned text em- 885
beddings. In Findings of the Association for Compu- 886
tational Linguistics: ACL 2023. 887

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 888
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 889
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 890
An instruction-following llama model. https:// 891
github.com/tatsu-lab/stanford_alpaca. 892

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean- 893
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 894
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie 895
Millican, David Silver, Melvin Johnson, Ioannis 896
Antonoglou, Julian Schrittwieser, Amelia Glaese, 897
Jilin Chen, Emily Pitler, Timothy Lillicrap, Ange- 898
liki Lazaridou, Orhan Firat, James Molloy, Michael 899
Isard, Paul R. Barham, Tom Hennigan, Benjamin 900
Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong 901
Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza 902
Rutherford, Erica Moreira, Kareem Ayoub, Megha 903
Goel, Jack Krawczyk, Cosmo Du, Ed Chi, Heng- 904
Tze Cheng, Eric Ni, Purvi Shah, Patrick Kane, Betty 905
Chan, Manaal Faruqui, Aliaksei Severyn, Hanzhao 906
Lin, YaGuang Li, Yong Cheng, Abe Ittycheriah, 907
Mahdis Mahdieh, Mia Chen, Pei Sun, Dustin Tran, 908
Sumit Bagri, Balaji Lakshminarayanan, Jeremiah 909
Liu, Andras Orban, Fabian Güra, Hao Zhou, Xiny- 910
ing Song, Aurelien Boffy, Harish Ganapathy, Steven 911
Zheng, HyunJeong Choe, Ágoston Weisz, Tao Zhu, 912
Yifeng Lu, Siddharth Gopal, Jarrod Kahn, Maciej 913
Kula, Jeff Pitman, Rushin Shah, Emanuel Taropa, 914
Majd Al Merey, Martin Baeuml, Zhifeng Chen, Lau- 915
rent El Shafey, Yujing Zhang, Olcan Sercinoglu, 916
George Tucker, Enrique Piqueras, Maxim Krikun, 917
Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca 918
Roelofs, Anaïs White, Anders Andreassen, Tamara 919
von Glehn, Lakshman Yagati, Mehran Kazemi, Lu- 920
cas Gonzalez, Misha Khalman, Jakub Sygnowski, 921
Alexandre Frechette, Charlotte Smith, Laura Culp, 922
Lev Proleev, Yi Luan, Xi Chen, James Lottes, Nathan 923
Schucher, Federico Lebron, Alban Rrustemi, Na- 924
talie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao, 925
Bartek Perz, Dian Yu, Heidi Howard, Adam Blo- 926
niarz, Jack W. Rae, Han Lu, Laurent Sifre, Mar- 927
cello Maggioni, Fred Alcober, Dan Garrette, Megan 928
Barnes, Shantanu Thakoor, Jacob Austin, Gabriel 929
Barth-Maron, William Wong, Rishabh Joshi, Rahma 930
Chaabouni, Deeni Fatiha, Arun Ahuja, Gaurav Singh 931
Tomar, Evan Senter, Martin Chadwick, Ilya Kor- 932
nakov, Nithya Attaluri, Iñaki Iturrate, Ruibo Liu, 933
Yunxuan Li, Sarah Cogan, Jeremy Chen, Chao Jia, 934
Chenjie Gu, Qiao Zhang, Jordan Grimstad, Ale Jakse 935
Hartman, Xavier Garcia, Thanumalayan Sankara- 936
narayana Pillai, Jacob Devlin, Michael Laskin, Diego 937

11

https://openai.com/blog/chatgpt
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
http://arxiv.org/abs/arXiv:2308.12950
http://arxiv.org/abs/arXiv:2308.12950
http://arxiv.org/abs/arXiv:2308.12950
https://github.com/splunk/attack_data
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

de Las Casas, Dasha Valter, Connie Tao, Lorenzo938
Blanco, Adrià Puigdomènech Badia, David Reitter,939
Mianna Chen, Jenny Brennan, Clara Rivera, Sergey940
Brin, Shariq Iqbal, Gabriela Surita, Jane Labanowski,941
Abhi Rao, Stephanie Winkler, Emilio Parisotto, Yim-942
ing Gu, Kate Olszewska, Ravi Addanki, Antoine943
Miech, Annie Louis, Denis Teplyashin, Geoff Brown,944
Elliot Catt, Jan Balaguer, Jackie Xiang, Pidong Wang,945
Zoe Ashwood, Anton Briukhov, Albert Webson, San-946
jay Ganapathy, Smit Sanghavi, Ajay Kannan, Ming-947
Wei Chang, Axel Stjerngren, Josip Djolonga, Yut-948
ing Sun, Ankur Bapna, Matthew Aitchison, Pedram949
Pejman, Henryk Michalewski, Tianhe Yu, Cindy950
Wang, Juliette Love, Junwhan Ahn, Dawn Bloxwich,951
Kehang Han, Peter Humphreys, Thibault Sellam,952
James Bradbury, Varun Godbole, Sina Samangooei,953
Bogdan Damoc, Alex Kaskasoli, Sébastien M. R.954
Arnold, Vijay Vasudevan, Shubham Agrawal, Jason955
Riesa, Dmitry Lepikhin, Richard Tanburn, Srivat-956
san Srinivasan, Hyeontaek Lim, Sarah Hodkinson,957
Pranav Shyam, Johan Ferret, Steven Hand, Ankush958
Garg, Tom Le Paine, Jian Li, Yujia Li, Minh Gi-959
ang, Alexander Neitz, Zaheer Abbas, Sarah York,960
Machel Reid, Elizabeth Cole, Aakanksha Chowdh-961
ery, Dipanjan Das, Dominika Rogozińska, Vitaliy962
Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas963
Zilka, Flavien Prost, Luheng He, Marianne Mon-964
teiro, Gaurav Mishra, Chris Welty, Josh Newlan,965
Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu,966
Raoul de Liedekerke, Justin Gilmer, Carl Saroufim,967
Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,968
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel,969
Albin Cassirer, Yunhan Xu, Daniel Sohn, Deven-970
dra Sachan, Reinald Kim Amplayo, Craig Swan-971
son, Dessie Petrova, Shashi Narayan, Arthur Guez,972
Siddhartha Brahma, Jessica Landon, Miteyan Pa-973
tel, Ruizhe Zhao, Kevin Villela, Luyu Wang, Wen-974
hao Jia, Matthew Rahtz, Mai Giménez, Legg Yeung,975
James Keeling, Petko Georgiev, Diana Mincu, Boxi976
Wu, Salem Haykal, Rachel Saputro, Kiran Vodra-977
halli, James Qin, Zeynep Cankara, Abhanshu Sharma,978
Nick Fernando, Will Hawkins, Behnam Neyshabur,979
Solomon Kim, Adrian Hutter, Priyanka Agrawal,980
Alex Castro-Ros, George van den Driessche, Tao981
Wang, Fan Yang, Shuo yiin Chang, Paul Komarek,982
Ross McIlroy, Mario Lučić, Guodong Zhang, Wael983
Farhan, Michael Sharman, Paul Natsev, Paul Michel,984
Yamini Bansal, Siyuan Qiao, Kris Cao, Siamak Shak-985
eri, Christina Butterfield, Justin Chung, Paul Kishan986
Rubenstein, Shivani Agrawal, Arthur Mensch, Kedar987
Soparkar, Karel Lenc, Timothy Chung, Aedan Pope,988
Loren Maggiore, Jackie Kay, Priya Jhakra, Shibo989
Wang, Joshua Maynez, Mary Phuong, Taylor Tobin,990
Andrea Tacchetti, Maja Trebacz, Kevin Robinson,991
Yash Katariya, Sebastian Riedel, Paige Bailey, Kefan992
Xiao, Nimesh Ghelani, Lora Aroyo, Ambrose Slone,993
Neil Houlsby, Xuehan Xiong, Zhen Yang, Elena Gri-994
bovskaya, Jonas Adler, Mateo Wirth, Lisa Lee, Music995
Li, Thais Kagohara, Jay Pavagadhi, Sophie Bridgers,996
Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed,997
Tianqi Liu, Richard Powell, Vijay Bolina, Mariko998
Iinuma, Polina Zablotskaia, James Besley, Da-Woon999
Chung, Timothy Dozat, Ramona Comanescu, Xi-1000

ance Si, Jeremy Greer, Guolong Su, Martin Polacek, 1001
Raphaël Lopez Kaufman, Simon Tokumine, Hexiang 1002
Hu, Elena Buchatskaya, Yingjie Miao, Mohamed 1003
Elhawaty, Aditya Siddhant, Nenad Tomasev, Jin- 1004
wei Xing, Christina Greer, Helen Miller, Shereen 1005
Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma, Ange- 1006
los Filos, Milos Besta, Rory Blevins, Ted Klimenko, 1007
Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Os- 1008
car Chang, Mantas Pajarskas, Carrie Muir, Vered 1009
Cohen, Charline Le Lan, Krishna Haridasan, Amit 1010
Marathe, Steven Hansen, Sholto Douglas, Rajku- 1011
mar Samuel, Mingqiu Wang, Sophia Austin, Chang 1012
Lan, Jiepu Jiang, Justin Chiu, Jaime Alonso Lorenzo, 1013
Lars Lowe Sjösund, Sébastien Cevey, Zach Gle- 1014
icher, Thi Avrahami, Anudhyan Boral, Hansa Srini- 1015
vasan, Vittorio Selo, Rhys May, Konstantinos Aiso- 1016
pos, Léonard Hussenot, Livio Baldini Soares, Kate 1017
Baumli, Michael B. Chang, Adrià Recasens, Ben 1018
Caine, Alexander Pritzel, Filip Pavetic, Fabio Pardo, 1019
Anita Gergely, Justin Frye, Vinay Ramasesh, Dan 1020
Horgan, Kartikeya Badola, Nora Kassner, Subhra- 1021
jit Roy, Ethan Dyer, Víctor Campos Campos, Alex 1022
Tomala, Yunhao Tang, Dalia El Badawy, Elspeth 1023
White, Basil Mustafa, Oran Lang, Abhishek Jin- 1024
dal, Sharad Vikram, Zhitao Gong, Sergi Caelles, 1025
Ross Hemsley, Gregory Thornton, Fangxiaoyu Feng, 1026
Wojciech Stokowiec, Ce Zheng, Phoebe Thacker, 1027
Çağlar Ünlü, Zhishuai Zhang, Mohammad Saleh, 1028
James Svensson, Max Bileschi, Piyush Patil, Ankesh 1029
Anand, Roman Ring, Katerina Tsihlas, Arpi Vezer, 1030
Marco Selvi, Toby Shevlane, Mikel Rodriguez, Tom 1031
Kwiatkowski, Samira Daruki, Keran Rong, Allan 1032
Dafoe, Nicholas FitzGerald, Keren Gu-Lemberg, 1033
Mina Khan, Lisa Anne Hendricks, Marie Pellat, 1034
Vladimir Feinberg, James Cobon-Kerr, Tara Sainath, 1035
Maribeth Rauh, Sayed Hadi Hashemi, Richard Ives, 1036
Yana Hasson, Eric Noland, Yuan Cao, Nathan Byrd, 1037
Le Hou, Qingze Wang, Thibault Sottiaux, Michela 1038
Paganini, Jean-Baptiste Lespiau, Alexandre Mou- 1039
farek, Samer Hassan, Kaushik Shivakumar, Joost van 1040
Amersfoort, Amol Mandhane, Pratik Joshi, Anirudh 1041
Goyal, Matthew Tung, Andrew Brock, Hannah Shea- 1042
han, Vedant Misra, Cheng Li, Nemanja Rakićević, 1043
Mostafa Dehghani, Fangyu Liu, Sid Mittal, Jun- 1044
hyuk Oh, Seb Noury, Eren Sezener, Fantine Huot, 1045
Matthew Lamm, Nicola De Cao, Charlie Chen, Sid- 1046
harth Mudgal, Romina Stella, Kevin Brooks, Gau- 1047
tam Vasudevan, Chenxi Liu, Mainak Chain, Nivedita 1048
Melinkeri, Aaron Cohen, Venus Wang, Kristie Sey- 1049
more, Sergey Zubkov, Rahul Goel, Summer Yue, 1050
Sai Krishnakumaran, Brian Albert, Nate Hurley, 1051
Motoki Sano, Anhad Mohananey, Jonah Joughin, 1052
Egor Filonov, Tomasz Kępa, Yomna Eldawy, Jiaw- 1053
ern Lim, Rahul Rishi, Shirin Badiezadegan, Taylor 1054
Bos, Jerry Chang, Sanil Jain, Sri Gayatri Sundara 1055
Padmanabhan, Subha Puttagunta, Kalpesh Krishna, 1056
Leslie Baker, Norbert Kalb, Vamsi Bedapudi, Adam 1057
Kurzrok, Shuntong Lei, Anthony Yu, Oren Litvin, 1058
Xiang Zhou, Zhichun Wu, Sam Sobell, Andrea Si- 1059
ciliano, Alan Papir, Robby Neale, Jonas Bragagnolo, 1060
Tej Toor, Tina Chen, Valentin Anklin, Feiran Wang, 1061
Richie Feng, Milad Gholami, Kevin Ling, Lijuan 1062
Liu, Jules Walter, Hamid Moghaddam, Arun Kishore, 1063

12

Jakub Adamek, Tyler Mercado, Jonathan Mallinson,1064
Siddhinita Wandekar, Stephen Cagle, Eran Ofek,1065
Guillermo Garrido, Clemens Lombriser, Maksim1066
Mukha, Botu Sun, Hafeezul Rahman Mohammad,1067
Josip Matak, Yadi Qian, Vikas Peswani, Pawel Janus,1068
Quan Yuan, Leif Schelin, Oana David, Ankur Garg,1069
Yifan He, Oleksii Duzhyi, Anton Älgmyr, Timo-1070
thée Lottaz, Qi Li, Vikas Yadav, Luyao Xu, Alex1071
Chinien, Rakesh Shivanna, Aleksandr Chuklin, Josie1072
Li, Carrie Spadine, Travis Wolfe, Kareem Mohamed,1073
Subhabrata Das, Zihang Dai, Kyle He, Daniel von1074
Dincklage, Shyam Upadhyay, Akanksha Maurya,1075
Luyan Chi, Sebastian Krause, Khalid Salama, Pam G1076
Rabinovitch, Pavan Kumar Reddy M, Aarush Sel-1077
van, Mikhail Dektiarev, Golnaz Ghiasi, Erdem Gu-1078
ven, Himanshu Gupta, Boyi Liu, Deepak Sharma,1079
Idan Heimlich Shtacher, Shachi Paul, Oscar Aker-1080
lund, François-Xavier Aubet, Terry Huang, Chen1081
Zhu, Eric Zhu, Elico Teixeira, Matthew Fritze,1082
Francesco Bertolini, Liana-Eleonora Marinescu, Mar-1083
tin Bölle, Dominik Paulus, Khyatti Gupta, Tejasi1084
Latkar, Max Chang, Jason Sanders, Roopa Wil-1085
son, Xuewei Wu, Yi-Xuan Tan, Lam Nguyen Thiet,1086
Tulsee Doshi, Sid Lall, Swaroop Mishra, Wanming1087
Chen, Thang Luong, Seth Benjamin, Jasmine Lee,1088
Ewa Andrejczuk, Dominik Rabiej, Vipul Ranjan,1089
Krzysztof Styrc, Pengcheng Yin, Jon Simon, Mal-1090
colm Rose Harriott, Mudit Bansal, Alexei Robsky,1091
Geoff Bacon, David Greene, Daniil Mirylenka, Chen1092
Zhou, Obaid Sarvana, Abhimanyu Goyal, Samuel1093
Andermatt, Patrick Siegler, Ben Horn, Assaf Is-1094
rael, Francesco Pongetti, Chih-Wei "Louis" Chen,1095
Marco Selvatici, Pedro Silva, Kathie Wang, Jack-1096
son Tolins, Kelvin Guu, Roey Yogev, Xiaochen Cai,1097
Alessandro Agostini, Maulik Shah, Hung Nguyen,1098
Noah Ó Donnaile, Sébastien Pereira, Linda Friso,1099
Adam Stambler, Adam Kurzrok, Chenkai Kuang,1100
Yan Romanikhin, Mark Geller, ZJ Yan, Kane Jang,1101
Cheng-Chun Lee, Wojciech Fica, Eric Malmi, Qi-1102
jun Tan, Dan Banica, Daniel Balle, Ryan Pham,1103
Yanping Huang, Diana Avram, Hongzhi Shi, Jasjot1104
Singh, Chris Hidey, Niharika Ahuja, Pranab Sax-1105
ena, Dan Dooley, Srividya Pranavi Potharaju, Eileen1106
O’Neill, Anand Gokulchandran, Ryan Foley, Kai1107
Zhao, Mike Dusenberry, Yuan Liu, Pulkit Mehta,1108
Ragha Kotikalapudi, Chalence Safranek-Shrader, An-1109
drew Goodman, Joshua Kessinger, Eran Globen, Pra-1110
teek Kolhar, Chris Gorgolewski, Ali Ibrahim, Yang1111
Song, Ali Eichenbaum, Thomas Brovelli, Sahitya1112
Potluri, Preethi Lahoti, Cip Baetu, Ali Ghorbani,1113
Charles Chen, Andy Crawford, Shalini Pal, Mukund1114
Sridhar, Petru Gurita, Asier Mujika, Igor Petrovski,1115
Pierre-Louis Cedoz, Chenmei Li, Shiyuan Chen,1116
Niccolò Dal Santo, Siddharth Goyal, Jitesh Pun-1117
jabi, Karthik Kappaganthu, Chester Kwak, Pallavi1118
LV, Sarmishta Velury, Himadri Choudhury, Jamie1119
Hall, Premal Shah, Ricardo Figueira, Matt Thomas,1120
Minjie Lu, Ting Zhou, Chintu Kumar, Thomas Ju-1121
rdi, Sharat Chikkerur, Yenai Ma, Adams Yu, Soo1122
Kwak, Victor Ähdel, Sujeevan Rajayogam, Travis1123
Choma, Fei Liu, Aditya Barua, Colin Ji, Ji Ho1124
Park, Vincent Hellendoorn, Alex Bailey, Taylan Bi-1125
lal, Huanjie Zhou, Mehrdad Khatir, Charles Sut-1126

ton, Wojciech Rzadkowski, Fiona Macintosh, Kon- 1127
stantin Shagin, Paul Medina, Chen Liang, Jinjing 1128
Zhou, Pararth Shah, Yingying Bi, Attila Dankovics, 1129
Shipra Banga, Sabine Lehmann, Marissa Bredesen, 1130
Zifan Lin, John Eric Hoffmann, Jonathan Lai, Ray- 1131
nald Chung, Kai Yang, Nihal Balani, Arthur Bražin- 1132
skas, Andrei Sozanschi, Matthew Hayes, Héctor Fer- 1133
nández Alcalde, Peter Makarov, Will Chen, Anto- 1134
nio Stella, Liselotte Snijders, Michael Mandl, Ante 1135
Kärrman, Paweł Nowak, Xinyi Wu, Alex Dyck, Kr- 1136
ishnan Vaidyanathan, Raghavender R, Jessica Mal- 1137
let, Mitch Rudominer, Eric Johnston, Sushil Mit- 1138
tal, Akhil Udathu, Janara Christensen, Vishal Verma, 1139
Zach Irving, Andreas Santucci, Gamaleldin Elsayed, 1140
Elnaz Davoodi, Marin Georgiev, Ian Tenney, Nan 1141
Hua, Geoffrey Cideron, Edouard Leurent, Mah- 1142
moud Alnahlawi, Ionut Georgescu, Nan Wei, Ivy 1143
Zheng, Dylan Scandinaro, Heinrich Jiang, Jasper 1144
Snoek, Mukund Sundararajan, Xuezhi Wang, Zack 1145
Ontiveros, Itay Karo, Jeremy Cole, Vinu Rajashekhar, 1146
Lara Tumeh, Eyal Ben-David, Rishub Jain, Jonathan 1147
Uesato, Romina Datta, Oskar Bunyan, Shimu Wu, 1148
John Zhang, Piotr Stanczyk, Ye Zhang, David Steiner, 1149
Subhajit Naskar, Michael Azzam, Matthew Johnson, 1150
Adam Paszke, Chung-Cheng Chiu, Jaume Sanchez 1151
Elias, Afroz Mohiuddin, Faizan Muhammad, Jin 1152
Miao, Andrew Lee, Nino Vieillard, Jane Park, Ji- 1153
ageng Zhang, Jeff Stanway, Drew Garmon, Abhijit 1154
Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar, Lu- 1155
owei Zhou, Jonathan Evens, William Isaac, Geoffrey 1156
Irving, Edward Loper, Michael Fink, Isha Arkatkar, 1157
Nanxin Chen, Izhak Shafran, Ivan Petrychenko, 1158
Zhe Chen, Johnson Jia, Anselm Levskaya, Zhenkai 1159
Zhu, Peter Grabowski, Yu Mao, Alberto Magni, 1160
Kaisheng Yao, Javier Snaider, Norman Casagrande, 1161
Evan Palmer, Paul Suganthan, Alfonso Castaño, 1162
Irene Giannoumis, Wooyeol Kim, Mikołaj Rybiński, 1163
Ashwin Sreevatsa, Jennifer Prendki, David Soergel, 1164
Adrian Goedeckemeyer, Willi Gierke, Mohsen Jafari, 1165
Meenu Gaba, Jeremy Wiesner, Diana Gage Wright, 1166
Yawen Wei, Harsha Vashisht, Yana Kulizhskaya, Jay 1167
Hoover, Maigo Le, Lu Li, Chimezie Iwuanyanwu, 1168
Lu Liu, Kevin Ramirez, Andrey Khorlin, Albert 1169
Cui, Tian LIN, Marcus Wu, Ricardo Aguilar, Keith 1170
Pallo, Abhishek Chakladar, Ginger Perng, Elena Al- 1171
lica Abellan, Mingyang Zhang, Ishita Dasgupta, 1172
Nate Kushman, Ivo Penchev, Alena Repina, Xihui 1173
Wu, Tom van der Weide, Priya Ponnapalli, Car- 1174
oline Kaplan, Jiri Simsa, Shuangfeng Li, Olivier 1175
Dousse, Fan Yang, Jeff Piper, Nathan Ie, Rama Pa- 1176
sumarthi, Nathan Lintz, Anitha Vijayakumar, Daniel 1177
Andor, Pedro Valenzuela, Minnie Lui, Cosmin Padu- 1178
raru, Daiyi Peng, Katherine Lee, Shuyuan Zhang, 1179
Somer Greene, Duc Dung Nguyen, Paula Kurylow- 1180
icz, Cassidy Hardin, Lucas Dixon, Lili Janzer, Kiam 1181
Choo, Ziqiang Feng, Biao Zhang, Achintya Sing- 1182
hal, Dayou Du, Dan McKinnon, Natasha Antropova, 1183
Tolga Bolukbasi, Orgad Keller, David Reid, Daniel 1184
Finchelstein, Maria Abi Raad, Remi Crocker, Pe- 1185
ter Hawkins, Robert Dadashi, Colin Gaffney, Ken 1186
Franko, Anna Bulanova, Rémi Leblond, Shirley 1187
Chung, Harry Askham, Luis C. Cobo, Kelvin Xu, 1188
Felix Fischer, Jun Xu, Christina Sorokin, Chris Al- 1189

13

berti, Chu-Cheng Lin, Colin Evans, Alek Dimitriev,1190
Hannah Forbes, Dylan Banarse, Zora Tung, Mark1191
Omernick, Colton Bishop, Rachel Sterneck, Rohan1192
Jain, Jiawei Xia, Ehsan Amid, Francesco Piccinno,1193
Xingyu Wang, Praseem Banzal, Daniel J. Mankowitz,1194
Alex Polozov, Victoria Krakovna, Sasha Brown, Mo-1195
hammadHossein Bateni, Dennis Duan, Vlad Firoiu,1196
Meghana Thotakuri, Tom Natan, Matthieu Geist,1197
Ser tan Girgin, Hui Li, Jiayu Ye, Ofir Roval, Reiko1198
Tojo, Michael Kwong, James Lee-Thorp, Christo-1199
pher Yew, Danila Sinopalnikov, Sabela Ramos, John1200
Mellor, Abhishek Sharma, Kathy Wu, David Miller,1201
Nicolas Sonnerat, Denis Vnukov, Rory Greig, Jen-1202
nifer Beattie, Emily Caveness, Libin Bai, Julian1203
Eisenschlos, Alex Korchemniy, Tomy Tsai, Mimi1204
Jasarevic, Weize Kong, Phuong Dao, Zeyu Zheng,1205
Frederick Liu, Fan Yang, Rui Zhu, Tian Huey Teh,1206
Jason Sanmiya, Evgeny Gladchenko, Nejc Trdin,1207
Daniel Toyama, Evan Rosen, Sasan Tavakkol, Lint-1208
ing Xue, Chen Elkind, Oliver Woodman, John Car-1209
penter, George Papamakarios, Rupert Kemp, Sushant1210
Kafle, Tanya Grunina, Rishika Sinha, Alice Tal-1211
bert, Diane Wu, Denese Owusu-Afriyie, Cosmo1212
Du, Chloe Thornton, Jordi Pont-Tuset, Pradyumna1213
Narayana, Jing Li, Saaber Fatehi, John Wieting,1214
Omar Ajmeri, Benigno Uria, Yeongil Ko, Laura1215
Knight, Amélie Héliou, Ning Niu, Shane Gu, Chenxi1216
Pang, Yeqing Li, Nir Levine, Ariel Stolovich, Re-1217
beca Santamaria-Fernandez, Sonam Goenka, Wenny1218
Yustalim, Robin Strudel, Ali Elqursh, Charlie Deck,1219
Hyo Lee, Zonglin Li, Kyle Levin, Raphael Hoff-1220
mann, Dan Holtmann-Rice, Olivier Bachem, Sho1221
Arora, Christy Koh, Soheil Hassas Yeganeh, Siim1222
Põder, Mukarram Tariq, Yanhua Sun, Lucian Ionita,1223
Mojtaba Seyedhosseini, Pouya Tafti, Zhiyu Liu, An-1224
mol Gulati, Jasmine Liu, Xinyu Ye, Bart Chrzaszcz,1225
Lily Wang, Nikhil Sethi, Tianrun Li, Ben Brown,1226
Shreya Singh, Wei Fan, Aaron Parisi, Joe Stan-1227
ton, Vinod Koverkathu, Christopher A. Choquette-1228
Choo, Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash1229
Shroff, Mani Varadarajan, Sanaz Bahargam, Rob1230
Willoughby, David Gaddy, Guillaume Desjardins,1231
Marco Cornero, Brona Robenek, Bhavishya Mit-1232
tal, Ben Albrecht, Ashish Shenoy, Fedor Moiseev,1233
Henrik Jacobsson, Alireza Ghaffarkhah, Morgane1234
Rivière, Alanna Walton, Clément Crepy, Alicia Par-1235
rish, Zongwei Zhou, Clement Farabet, Carey Rade-1236
baugh, Praveen Srinivasan, Claudia van der Salm,1237
Andreas Fidjeland, Salvatore Scellato, Eri Latorre-1238
Chimoto, Hanna Klimczak-Plucińska, David Bridson,1239
Dario de Cesare, Tom Hudson, Piermaria Mendolic-1240
chio, Lexi Walker, Alex Morris, Matthew Mauger,1241
Alexey Guseynov, Alison Reid, Seth Odoom, Lu-1242
cia Loher, Victor Cotruta, Madhavi Yenugula, Do-1243
minik Grewe, Anastasia Petrushkina, Tom Duerig,1244
Antonio Sanchez, Steve Yadlowsky, Amy Shen,1245
Amir Globerson, Lynette Webb, Sahil Dua, Dong1246
Li, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi,1247
Ananth Agarwal, Tomer Shani, Matan Eyal, Anuj1248
Khare, Shreyas Rammohan Belle, Lei Wang, Chetan1249
Tekur, Mihir Sanjay Kale, Jinliang Wei, Ruoxin1250
Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao1251
Zhao, Stephan Lee, Pandu Nayak, Doug Fritz, Man-1252

ish Reddy Vuyyuru, John Aslanides, Nidhi Vyas, 1253
Martin Wicke, Xiao Ma, Evgenii Eltyshev, Nina Mar- 1254
tin, Hardie Cate, James Manyika, Keyvan Amiri, 1255
Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier, 1256
Nilesh Tripuraneni, David Madras, Mandy Guo, 1257
Austin Waters, Oliver Wang, Joshua Ainslie, Jason 1258
Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, 1259
Feng Yang, Riham Mansour, Jason Gelman, Yang Xu, 1260
George Polovets, Ji Liu, Honglong Cai, Warren Chen, 1261
XiangHai Sheng, Emily Xue, Sherjil Ozair, Christof 1262
Angermueller, Xiaowei Li, Anoop Sinha, Weiren 1263
Wang, Julia Wiesinger, Emmanouil Koukoumidis, 1264
Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark 1265
Goldenson, Parashar Shah, MK Blake, Hongkun Yu, 1266
Anthony Urbanowicz, Jennimaria Palomaki, Chrisan- 1267
tha Fernando, Ken Durden, Harsh Mehta, Nikola 1268
Momchev, Elahe Rahimtoroghi, Maria Georgaki, 1269
Amit Raul, Sebastian Ruder, Morgan Redshaw, Jin- 1270
hyuk Lee, Denny Zhou, Komal Jalan, Dinghua Li, 1271
Blake Hechtman, Parker Schuh, Milad Nasr, Kieran 1272
Milan, Vladimir Mikulik, Juliana Franco, Tim Green, 1273
Nam Nguyen, Joe Kelley, Aroma Mahendru, Andrea 1274
Hu, Joshua Howland, Ben Vargas, Jeffrey Hui, Kshi- 1275
tij Bansal, Vikram Rao, Rakesh Ghiya, Emma Wang, 1276
Ke Ye, Jean Michel Sarr, Melanie Moranski Preston, 1277
Madeleine Elish, Steve Li, Aakash Kaku, Jigar Gupta, 1278
Ice Pasupat, Da-Cheng Juan, Milan Someswar, Tejvi 1279
M., Xinyun Chen, Aida Amini, Alex Fabrikant, Eric 1280
Chu, Xuanyi Dong, Amruta Muthal, Senaka Buth- 1281
pitiya, Sarthak Jauhari, Nan Hua, Urvashi Khan- 1282
delwal, Ayal Hitron, Jie Ren, Larissa Rinaldi, Sha- 1283
har Drath, Avigail Dabush, Nan-Jiang Jiang, Har- 1284
shal Godhia, Uli Sachs, Anthony Chen, Yicheng 1285
Fan, Hagai Taitelbaum, Hila Noga, Zhuyun Dai, 1286
James Wang, Chen Liang, Jenny Hamer, Chun-Sung 1287
Ferng, Chenel Elkind, Aviel Atias, Paulina Lee, Vít 1288
Listík, Mathias Carlen, Jan van de Kerkhof, Marcin 1289
Pikus, Krunoslav Zaher, Paul Müller, Sasha Zykova, 1290
Richard Stefanec, Vitaly Gatsko, Christoph Hirn- 1291
schall, Ashwin Sethi, Xingyu Federico Xu, Chetan 1292
Ahuja, Beth Tsai, Anca Stefanoiu, Bo Feng, Ke- 1293
shav Dhandhania, Manish Katyal, Akshay Gupta, 1294
Atharva Parulekar, Divya Pitta, Jing Zhao, Vivaan 1295
Bhatia, Yashodha Bhavnani, Omar Alhadlaq, Xiaolin 1296
Li, Peter Danenberg, Dennis Tu, Alex Pine, Vera 1297
Filippova, Abhipso Ghosh, Ben Limonchik, Bhar- 1298
gava Urala, Chaitanya Krishna Lanka, Derik Clive, 1299
Yi Sun, Edward Li, Hao Wu, Kevin Hongtongsak, 1300
Ianna Li, Kalind Thakkar, Kuanysh Omarov, Kushal 1301
Majmundar, Michael Alverson, Michael Kucharski, 1302
Mohak Patel, Mudit Jain, Maksim Zabelin, Paolo 1303
Pelagatti, Rohan Kohli, Saurabh Kumar, Joseph Kim, 1304
Swetha Sankar, Vineet Shah, Lakshmi Ramachan- 1305
druni, Xiangkai Zeng, Ben Bariach, Laura Weidinger, 1306
Amar Subramanya, Sissie Hsiao, Demis Hassabis, 1307
Koray Kavukcuoglu, Adam Sadovsky, Quoc Le, 1308
Trevor Strohman, Yonghui Wu, Slav Petrov, Jeffrey 1309
Dean, and Oriol Vinyals. 2023. Gemini: A family of 1310
highly capable multimodal models. 1311

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 1312
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 1313
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 1314
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 1315

14

http://arxiv.org/abs/arXiv:2312.11805
http://arxiv.org/abs/arXiv:2312.11805
http://arxiv.org/abs/arXiv:2312.11805

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,1316
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,1317
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-1318
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan1319
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,1320
Isabel Kloumann, Artem Korenev, Punit Singh Koura,1321
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-1322
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-1323
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-1324
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-1325
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,1326
Ruan Silva, Eric Michael Smith, Ranjan Subrama-1327
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-1328
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,1329
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,1330
Melanie Kambadur, Sharan Narang, Aurelien Ro-1331
driguez, Robert Stojnic, Sergey Edunov, and Thomas1332
Scialom. 2023. LLaMA 2: Open foundation and1333
fine-tuned chat models.1334

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.1335
Representation learning with contrastive predictive1336
coding.1337

Laurens van der Maaten and Geoffrey Hinton. 2008.1338
Visualizing data using t-sne. Journal of Machine1339
Learning Research.1340

Liang Wang, Nan Yang, Xiaolong Huang, Binxing1341
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,1342
and Furu Wei. 2022. Text embeddings by weakly-1343
supervised contrastive pre-training. arXiv preprint1344
arXiv:2212.03533.1345

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,1346
Rangan Majumder, and Furu Wei. 2023a. Improving1347
text embeddings with large language models. arXiv1348
preprint arXiv:2401.00368.1349

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa1350
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh1351
Hajishirzi. 2023b. Self-instruct: Aligning language1352
models with self-generated instructions. In Proceed-1353
ings of the 61st Annual Meeting of the Association1354
for Computational Linguistics.1355

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas1356
Muennighoff. 2023. C-pack: Packaged resources1357
to advance general chinese embedding.1358

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,1359
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei1360
Lin, and Daxin Jiang. 2024. WizardLM: Empow-1361
ering large pre-trained language models to follow1362
complex instructions. In Proceedings of the 12th In-1363
ternational Conference on Learning Representations.1364

Jiali Zeng, Yongjing Yin, Yufan Jiang, Shuangzhi Wu,1365
and Yunbo Cao. 2022. Contrastive learning with1366
prompt-derived virtual semantic prototypes for un-1367
supervised sentence embedding. In Findings of the1368
Association for Computational Linguistics: EMNLP1369
2022.1370

A Testing Set Collection Detail 1371

To deduplicate, we utilized ChatGPT (OpenAI, 1372

2022) to transform all command lines into concise 1373

descriptions that encapsulate the purpose and in- 1374

tention. Subsequently, we transformed these brief 1375

descriptions into embeddings using GTE-Large (Li 1376

et al., 2023), which achieved SOTA performance on 1377

the MTEB leaderboard (Muennighoff et al., 2022) 1378

among models of similar size. We then applied 1379

DBSCAN (Ester et al., 1996) for clustering the em- 1380

beddings. Through this approach, each cluster con- 1381

tains command lines with highly similar semantics 1382

based on their explanations. Finally, we extracted 1383

two command lines from each cluster, resulting in 1384

a testing set comprising 2,807 command lines in 1385

total. 1386

B Initial-Seed Collection Detail 1387

To gather high-quality initial seeds, we first ex- 1388

tracted all command lines executed in DARPA 1389

Transparent Computing (DARPA, 2019), totaling 1390

142,886 unique command lines. We then applied 1391

a heuristic filtering process to eliminate command 1392

lines that are semantically similar and differ only 1393

slightly, such as variations in log file suffixes. Ulti- 1394

mately, we curated 722 command lines as part of 1395

the initial seeds. 1396

To further extend the initial seeds, we formu- 1397

lated 796 command lines based on the descriptions 1398

and corresponding syntax found in Windows Com- 1399

mands3. Additionally, we parsed all example com- 1400

mand lines from SS644, totaling 497 command 1401

lines, and collected an additional 46 command 1402

lines from GitHub. Together, these contributions 1403

amounted to 2,061 high-quality and diverse com- 1404

mand lines, which were integrated to form our ini- 1405

tial command-line seeds. 1406

C Windows-Commands Coverage Rate 1407

Detail 1408

While many Windows commands are listed sepa- 1409

rately, several utilize identical executable files, like 1410

‘reg add’ and ‘reg copy’. To present a unified per- 1411

spective, commands with shared executable were 1412

further grouped into one, resulting in 306 unique 1413

Windows commands. 1414

For common file name extensions, we first 1415

parsed all extensions from a clean Windows 10 1416

3Windows Command-line reference A-Z
4SS64 Windows CMDs

15

http://arxiv.org/abs/arXiv:2307.09288
http://arxiv.org/abs/arXiv:2307.09288
http://arxiv.org/abs/arXiv:2307.09288
http://arxiv.org/abs/arXiv:1807.03748
http://arxiv.org/abs/arXiv:1807.03748
http://arxiv.org/abs/arXiv:1807.03748
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands#command-line-reference-a-z
https://ss64.com/nt/commands.html

- "C:\Windows\System32\bitsadmin.exe" /transfer 59697582645 /priority foreground
http://example.com/example1234 "C:\Users\Public\Videos\V123456789\log32.dll"
- powershell -command "Start-BitsTransfer -Source
’http://malicious.com/malicious1234’ -Destination
’C:\Users\Public\Videos\V99999999\log32.dll’ -Priority High"

- "cmd" /c "net use \\REMOTEDIR /user:Administrator password /persistent:no"
- python -c "import os; os.system(’net use \\REMOTEDIR /user:Administrator
password /persistent:no’)"

- reg query "HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall" /f
"Chrome" /s
- Get-ItemProperty HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall* |
Select-Object -Property DisplayName, UninstallString | Where-Object
{$_.DisplayName -like ’*Chrome*’} | Format-Table -AutoSize

- schtasks /create /tn "TaskName" /tr "C:\Path\to\program.exe" /sc daily /st
00:00
- cronjob schedule daily 00:00 /path/to/program

Table 9: The similar command-line pairs in CmdDataset. Similar command lines are not merely similar on the
lexical level but also in terms of their intrinsic purpose and semantic meaning.

Here are 12 Windows command line examples for referencing:
1. {sampled command line seed 1}
2. {sampled command line seed 2}
...
12. {sampled command line seed 12}

Your job is to synthesize 4 new Windows command lines. Please adhere to the
following synthesizing guidelines:
- Ensure diverse command lines in appearance, argument value, purpose, result, and
length, particularly making sure the generated command lines differ significantly
from the reference command lines in every aspect.
- Prioritize practicality in generated commands, ideally those executed or
executable. For example, please give me real argument value, filename, IP address,
and username.
- Include Windows native commands, commands from installed applications or packages
(for entertainment, work, artistic, or daily purposes), commands usually adopted
by IT, commands corresponding with mitre att&ck techniques, or even some commonly
used attack command lines. The more uncommon the command line, the better.,
- Do not always generate short command lines only. Be creative to synthesize all
kind of command lines.

Give me your generated command lines only without any explanation or anything else.
Separate each generated command line with "\n" and add a prefix "<CMD>" before each
generated cmd.

Figure 6: The prompt used for generating a single command line. 12 exemplary command lines are randomly
sampled from total command-line seeds for in-context demonstration.

16

Your task is to generate a similar Windows command line for each entry in the
following command line list.
In this task, ’similar’ means that the command lines share the same purpose, or
intention, rather than merely having a similar appearance.

Consequently, the generated command lines may differ significantly in argument
values, format, and order from the original command line, or even from a different
executable file, as long as they serve a similar purpose or intention.
{query command line}

Be creative to make the command lines appear distinctly different while adhering
to the defined ’similar’ criteria. For instance, you might employ obfuscation
techniques, randomly rearrange the order of arguments, change the way to call the
exe file, or substitute the executable file with a similar one.
Please provide only the generated similar command lines without any explanation,
prefixed with "<CMD>", and separate each command line with "\n".

Figure 7: The prompt used for generating similar command lines. The query command line is randomly sampled
from the total command-line seeds.

Command Line Explanation Labels

net use Z:
\\192.168.1.1\SharedFolder
/user:administrator Passw0rd! |
findstr /i connected

This command line is used to map a network
drive to the letter Z, connect to a shared folder
on a specific IP address using administrator
credentials, and then search for the keyword
"connected" in the output.

Positive

schtasks /create /sc weekly /d
MON,TUE,WED,THU,FRI /tn
"WeeklyBackup" /tr
"C:\Scripts\backup.bat" /st 18:00

This command line creates a scheduled task
to run a backup script every weekday at 6:00
PM.

Positive

tasklist /fi "IMAGENAME eq
notepad.exe" /fo list | find "1234"

This command line is used to list all running
processes with the name "notepad.exe" and
then search for a specific process ID "1234"
within the list.

Positive

findstr /s /i /m "hello world"
"world take care" C:\Users* *.pdf

Search for the phrase "hello world" in all PDF
files located in the C:\Users directory and its
subdirectories, ignoring case and only
displaying the file names that contain the
phrase.

Neutral

Table 10: Example of command lines and their corresponding explanations generated by GPT-3.5-Turbo (OpenAI,
2022). The rightmost column denotes the labels (e.g., Positive, Neutral, or Negative) assigned by the expert.

17

virtual machine, and removing those with special1417

characters and frequencies lower than 0.05%. This1418

process yielded a total of 75 common extensions.1419

We then identified how many of these extensions1420

are included in our training set.1421

D Evaluation Metrics Detail1422

MRR@K is a key metric in information retrieval1423

and recommendation systems. It calculates the1424

average reciprocal rank of the first relevant item1425

within a list of ranked results, focusing on the top1426

K positions. This method helps us gauge how well1427

the most relevant item ranks among the top 10 with1428

the highest predicted scores. The Top@K metric is1429

similar to MRR@K but differs in that it awards a1430

score if the ground truth is within the top K ranks,1431

without the rank-dependent decay seen in MRR.1432

E Hyperparameters and Training Process1433

of CmdCaliper Detail1434

We trained CmdCaliper for 2 epochs using the1435

Adam optimizer (Kingma and Ba, 2015) with a1436

learning rate of 0.00002 and a batch size of 64. For1437

the temperature parameter τ in Equation 1, we set1438

it to 0.05. CmdCaliper was trained on three distinct1439

model scales: small, base, and large. These mod-1440

els were initialized from the GTE-small (Li et al.,1441

2023), GTE-base, and GTE-large, respectively.1442

We randomly selected 1,000 similar pairs from1443

the training set to form a validation set. Evalua-1444

tions on the validation set were conducted every 501445

training steps. The checkpoint that demonstrated1446

optimal performance on the validation set was then1447

used for subsequent evaluations on the testing set.1448

F Semantic-Based Malicious1449

Command-Line Detection Detail1450

Initially, we define the pre-collected set of ma-1451

licious command lines as the ‘malicious gene1452

pool’. Given a new command line, we leverage1453

a command-line embedding model to obtain their1454

embedding vectors, and compute the semantic sim-1455

ilarity between each command line within the ma-1456

licious gene pool. If one of the similarities exceeds1457

a pre-defined threshold, we classify the new com-1458

mand line as malicious. This approach enables1459

us to detect malicious command lines from a se-1460

mantic perspective, even when attackers attempt to1461

obfuscate command lines to evade pattern-based1462

detection.1463

In this experiment, we utilize the open-source 1464

dataset: atomic-red-team (Canary), which encom- 1465

passes a variety of command lines corresponding 1466

to numerous MITRE ATT&CK techniques (e.g., 1467

Abuse Elevation Control Mechanism or Browser 1468

Session Hijacking). The dataset consists of a set 1469

of techniques, denoted as {t1, t2, . . . , tn}. Within 1470

each technique ti, we obtain a set of malicious 1471

command lines, denoted as Li, containing Mi en- 1472

tries: Li = {ci1, ci2, . . . , ciMi
}. By unioning all 1473

these malicious command line sets, we form a total 1474

command line set A, which consists of 1,523 ma- 1475

licious command lines across various techniques, 1476

represented as A =
⋃n

i=1 Li. To construct the mali- 1477

cious gene pool Pi for each technique ti, we select 1478

the first r% of the command lines from each tech- 1479

nique, defined as Pi = {ci1, ci2, . . . , ci⌈ r
100

×Mi⌉}. 1480

The remaining command lines form the incom- 1481

ing command line set Oi, denoted as: Oi = 1482

{ci⌈ r
100

×Mi⌉+1
, . . . , ciMi

}. 1483

For malicious gene pool construction, we ex- 1484

clude techniques with fewer than 9 malicious com- 1485

mand lines, resulting in a total of 55 distinct mali- 1486

cious gene pools corresponding to different tech- 1487

niques. For the evaluation of each technique ti, 1488

we first exclude the command lines in the mali- 1489

cious gene pool to form a candidate command line 1490

set Ci, denoted as Ci = A \ Pi. We treat the in- 1491

coming command line set Oi as the positive set, 1492

while the negative set Gi is formed by excluding 1493

all command lines corresponding to the technique 1494

ti, denoted as Gi = A \ Li. 1495

Given a command line cij from the candidate 1496

command line set Ci and an embedding model 1497

E, the embedding vector eij can be computed by 1498

eij = E(cij). Subsequently, the malicious score 1499

scij
of the command line cij for the technique ti is 1500

determined by calculating its maximum similarity 1501

with each command line pik in the malicious gene 1502

pool Pi: 1503

sicij
= max

pik∈Pi

S(eij , E(pik)) (2) 1504

where S(·) is the similarity function (e.g., cosine 1505

similarity function). Note that if the command 1506

line cj belongs to the positive set Oi of the tech- 1507

nique ti, then the malicious score should exceed the 1508

pre-defined threshold τ for correct classification; 1509

otherwise, the score should be below the threshold 1510

if the command line is in the negative set Gi. 1511

We iteratively evaluated all 55 techniques and 1512

18

concatenated all malicious scores to compute the1513

area under the curve (AUC). This evaluation metric1514

aligns with real-world application scenarios where1515

a static threshold is usually applied across all tech-1516

niques.1517

G Classification Dataset Synthesis Detail1518

These commands to synthesize the command-1519

line classification dataset were chosen based1520

on their ability to accept a wide range of ran-1521

domly generated strings as arguments, provided1522

that the corresponding file exists. The classi-1523

fier’s task is to identify the corresponding Win-1524

dows command, regardless of the argument’s1525

length or complexity. For example, the com-1526

mand lines “find ‘fewj2po3kdlewfmpemrgborktig1527

fe34krop4k5ogjs9rkgewfefw34f’" and “find ‘test’"1528

should both be correctly categorized under the1529

‘find’ command. This highlights the importance1530

of a robust command-line embedding model in en-1531

coding the command information within its embed-1532

dings, as it plays a crucial role in determining the1533

purpose of each command line.1534

In this experiment, we used the pattern “<com-1535

mand> ‘<argument value>’" to randomly generate1536

7,000 command lines for each command. Of these,1537

3,500 were assigned to the training set and the re-1538

maining 3,500 to the testing set. The arguments for1539

each command line were formed by concatenating1540

seven random strings, made up of ASCII letters1541

and digits, with lengths ranging from 1 to 20 char-1542

acters, separated by spaces. To increase the diffi-1543

culty of classification and simulate the obfuscation1544

techniques that attackers might use in real-world1545

scenarios to evade detection, we also randomly in-1546

corporated seven different commands into the argu-1547

ment values. For example, a synthesized command1548

line might read: “certutil.exe ‘msiexec tr9QI1L1549

find C print oGod 5K 7Okf4 2ZcVT9 rundll32 sc1550

query mNjIL robocopy q5’", where only the first1551

command, ‘certutil’, is valid.1552

We randomly selected 20% of the training set to1553

serve as a validation set in the search for optimal1554

hyperparameters. Subsequently, we utilized the1555

obtained optimal hyperparameters to train a logistic1556

regression classifier for performance evaluation on1557

the testing set.1558

19

