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for Defending Against Ransomware in the Hypervisor

ABSTRACT

Ransomware has caused escalating financial losses for individuals
and companies, increasing annually. To combat this, we present
Time Machine, a real-time, fine-grained sector-level live view navi-
gation solution designed to safeguard filesystems from ransomware
attacks at the hypervisor level. Time Machine offers several key
advancements over existing solutions. Operating at the hypervisor
level minimizes the risk of bypassing via privilege escalation and
eliminates reliance on hardware-based solutions. Time Machine
redirects I/O operations without altering the original storage disk.
Utilizing local or cloud-based key-value store backends, it offers
flexible storage spaces for live view navigation and the capabil-
ity of backend migration. This approach ensures comprehensive
filesystem protection without data loss, allowing users to browse
and recover data to any specific timestamp. Time Machine is de-
signed to operate independently of detection algorithms but can
also integrate with them for enhanced protection. Evaluation results
demonstrate that our prototype effectively safeguards the filesys-
tem with minimal overhead. With a 256MB memory cache and
affordable storage, Time Machine successfully defends against 12
ransomware variants on Windows and Linux platforms, incurring
an average runtime overhead of less than 5%.
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1 INTRODUCTION

Ransomware remains one of the most prominent threats faced by
individuals and enterprises, as highlighted by the global epidemic
of Wannacry, which affected approximately 230,000 computers in
2017 [13]. According to a 2024 report from the World Economic
Forum [35], ransomware activity increased by 50% during the first
half of 2023, fueled by the rise of Ransomware-as-a-Service (RaaS).
The accessibility of RaaS, with prices as low as $40, has democra-
tized ransomware attacks, enabling even novice threat actors to
carry them out.

Similarly, SOPHOS’s 2023 global cross-industry ransomware
survey [22] revealed alarming trends. The average ransom pay-
ment doubled from $812,380 in 2022 to $1,542,333 in 2023. Despite
widespread distribution, only 34% of attackers demanded less than
$100,000. Governments and numerous companies have increasingly
become targets of ransomware attacks, with 66% of surveyed or-
ganizations reporting incidents. Using cryptocurrency for ransom
payments ensures anonymity and facilitates cross-border extor-
tion [11]. In 2023, ransomware payments exceeded 1 billion dollars,

reaching record highs. As the attack landscape evolves, encompass-
ing a broader array of devices, it becomes imperative to bolster
defenses against ransomware.

This study discusses crypto-ransomware, which encrypts files
in disk drives and requests ransoms from victims to unlock files.
While it is infeasible to unlock encrypted files without a key, statis-
tics [22] showed that 76% of victims suffered from data encryption,
and 46% of victims paid the ransom to regain their data. Existing ran-
somware defense solutions face various challenges. Backup-based
approaches may require a lot of storage spaces, and it may fail to
protect every change instantly. Shadow-based approaches usually
keep only the latest record. The offered protection granularity might
be insufficient for recovering user data stored between the oldest
and the encrypted filesystem state. Detection-based approaches
may suffer from detection lag before an attack is conducted, and
be vulnerable to unknown types of ransomware. Hardware-based
approaches require additional hardware, which may restrict the
scalability of the approaches and bring additional costs. Filesystem-
based approaches (snapshot and log-based) usually implements in
the same filesystem targeted by attackers. Attackers could remove
the snapshots or log records. Nevertheless, all solutions deployed
within the same machine compromised by ransomware could be
bypassed if the system suffers from privilege escalation attacks.

In this paper, we propose Time Machine, a real-time, fine-grained
sector-level live view navigation service with migratable backend
storage for virtual machines to defend against crypto-ransomware.
Time Machine leverages the hypervisor to monitor and redirect I/O
payloads for real-time navigation. Instead of using local storage, we
propose using a migratable key-value store as the backend storage
of our proposed approach. The design of Time Machine allows
the backend storage to be outsourced to a cloud service, provid-
ing even more robust and durable protection against ransomware
attacks. The backend storage is composed of two parts: a cache
in non-persistent storage (e.g., memory) and a collection in persis-
tent storage (e.g., disks). Redirected I/O payloads are segmented
into units of sectors, where a sector index serves as the key to the
backend storage, and the creating timestamp and content is the
corresponding record value.

Based on the proposed design, we successfully tackle the afore-
mentioned challenges faced by existing solutions. Compared to
backup-based approaches, segmenting data into smaller units makes
it easier to optimize storage space. The I/O redirection design al-
lows performing backup in real-time. Compared to shadow-based
approaches, our approach preserves multiple copies of sectors of
different timestamps, ensuring the filesystem state can be restored
to any specific timestamp. Our proposed approach is not required
to perform detection. Therefore, neither detection lag nor false neg-
atives need to be considered. Our proposed approach is a software-
based solution. Also, integrating our approach at the hypervisor
level prevents it from being compromised by ransomware running
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on the same OS. It can seamlessly protect any existing virtual ma-
chines without requiring modifications to the configuration of the
guest OS, ensuring compatibility and ease of deployment. Besides
the proposed novel design, we attempt to perform various optimiza-
tions to minimize the required backed storage spaces and improve
the overall I/O performance.

Our proposed Time Machine can be deployed to various infras-
tructures. The most typical application is on servers providing vir-
tual machines, which are widely used for web services, databases,
and compute engines. Integrating the approach on base servers
can extend robust protection to every virtual machine on them.
Additionally, services offering remote desktop access, such as Win-
dows 365, can integrate our approach to extend protection from the
server side to the client side. Furthermore, local machines can be
included by deploying their operating systems on hypervisors. As
mentioned earlier, the flexibility of our database design allows our
system to fit diverse infrastructures, from remote to local, based on
user demands.

The rest of the paper is organized as follows. We introduce
research works to detect ransomware and approaches to recover
from ransomware attacks in Section 2. We present our proposed
approach in Section 3, the implementation of the system in Section
4, and the evaluation of its performance in Section 5. A concluding
remark is finally given in Section 6.

2 RELATED WORK
2.1 Ransomware Detection Research

Encryption imposes heavy computational loads on processors and
introduces delays in file reading and complete disk erasure. Numer-
ous ransomware detection systems [1-3, 25, 37] have been proposed
to differentiate ransomware activities from benign software, aiming
to identify and halt malicious operations promptly. Ransomware
typically exhibits distinct behaviors compared to benign software,
such as frequent file access, high-throughput encryption, and suspi-
cious API calls. Machine learning approaches have been introduced
into ransomware detection to enhance accuracy and reduce false
positive rates. Since each detection approach is tailored for a spe-
cific execution platform and privilege level, they leverage different
software features to distinguish ransomware. Both benign and ma-
licious programs utilize encryption, memory management, file sys-
tem, and network APIs, leading many detection systems to rely on
API call parameters, sequences, and results. Furthermore, some stud-
ies [6, 32, 39, 41] suggest that machine learning-based approaches
using Opcode sequences as features yield highly accurate detec-
tion. Encrypted files often exhibit relatively high entropy, a crucial
characteristic of crypto-ransomware. While compression can also
produce high entropy output, entropy is commonly employed as a
feature in many detection systems [8, 15-17, 21, 26, 27, 36]. Addi-
tionally, certain ransomware establishes connections to Command
and Control (C&C) servers to retrieve encryption keys. This behav-
ior may be accompanied by data exfiltration, with domain names,
IP addresses, packet counts, and packet payloads aiding in the con-
struction of more accurate classifiers. Our work offers an efficient
recovery mechanism that operates independently of detection func-
tionality. Depending on specific performance requirements, users
have the flexibility to combine various detection mechanisms.

2.2 Decryption-based Recovery

While ransomware detectors strive to halt attacks as swiftly as
possible, some victim files may still become encrypted since distin-
guishing ransomware before an attack commences is often challeng-
ing. Decryption-based approaches have been proposed to rescue
files without the need for a ransom payment. Notably, No More Ran-
som [10] is a reputable decryption service that has aided countless
victims in file recovery. However, this service is only effective for
known ransomware samples, and specific vulnerabilities within the
ransomware design are required for decryption to succeed, such
as breakable cryptographic schemes, predictable encryption key
generation, or encryption key reuse. Additionally, a decryptor must
be either leaked or released by the attackers or security analysts.
PayBreak [19] and RWGuard [26] decrypt locked files by intercept-
ing keys through hooks on crypto libraries like Microsoft Crypto
API and Crypto++. Unfortunately, these methods are ineffective
against ransomware employing self-implemented cryptographic
functions.

2.3 Backup-based Recovery

ShieldFS [8] prevents files from being modified by redirecting mali-
cious writes to a separate process space, ensuring zero file losses.
However, it also introduces a performance overhead of 0.26x. Re-
demption [17] redirects I/O requests to a protected area and syn-
chronizes writes based on their malicious scores, making the system
resilient to new types of ransomware. CLDSafe [40], designed for
cloud servers, offers a backup strategy that determines whether to
preserve older file versions by assessing the similarity between the
versions. Paik et al. [30] conceal backup storage from ransomware
using the alternative data stream provided by NTFS, reducing the
data transfer required for backing up files on remote machines.
However, this approach still requires a huge disk capacity to store
the backup in the same filesystem. Time Machine addresses these
issues while retaining their advantages. It provides real-time protec-
tion and conceals the backend storage from ransomware, all while
introducing minimal overhead and requiring only a small amount
of additional storage.

2.4 Existing Filesystem Features

Several modern filesystem features can be used to counter ran-
somware attacks. Copy-on-write filesystems, such as Btrfs and ZFS,
offer efficient snapshot capabilities that can be a basis for restoring
data after a ransomware attack. When files are deleted or modified,
these filesystems preserve the old data and only record the differ-
ences between the snapshot and new versions. However, snapshots
have to be taken manually or periodically. Log-structured filesys-
tems (LFS) [34] also natively preserve historical data. Since the
physical distance between target sectors affects the writing speed
to optical and magnetic disks, LFS maximizes sequential writes. An
LFS maintains a log of the filesystem’s history. Instead of replac-
ing old data, new data and inodes (metadata) are appended to the
end of the log. The latest inode’s location is kept in an inode map,
which is compact enough to be cached in memory. LFS can easily
establish snapshots by keeping references to old inodes and data
in the log [29]. NILFS [20], an implementation of a log-structured
filesystem, supports creating snapshots with each synchronous
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write. However, LFS requires garbage collection to recycle space
storing outdated data, which deteriorates the overall performance
and suffers from severe fragmentation over time [33]. Compared
to Time Machine, relying on filesystem-based snapshots to defend
against ransomware limits the sizes and the location of snapshot
storage. Additionally, it is not secure enough since ransomware can
remove snapshots if it gains admin privileges. Time Machine ad-
dresses these problems with hypervisor isolation and a migratable
sector-level backend storage.

2.5 Hardware Supported Recovery

Ransomware defense systems typically ensure their authenticity by
implementing functionality in kernel space, making them vulnera-
ble to kernel attacks. To fully protect every file and every change,
these systems often introduce high overhead or require substantial
additional storage for backups. Several works [4, 5, 12, 27, 31] have
addressed these issues using the out-of-place update characteristic
of solid-state drives (SSDs). Embedding ransomware defenses in
the SSD controller ensures the system is isolated from software and
functions correctly, with outdated data awaiting erasure serving
as a natural backup. This approach results in minimal backup and
restoration overhead. However, the lack of rich context information
limits the accuracy of detection systems embedded in the firmware.
RansomTag [23] further migrates the detection mechanism to the
hypervisor, leveraging the introspection capability of virtual ma-
chines to provide more accurate predictions using information such
as file systems and network activities. Nonetheless, working with
specific hardware incurs additional cost, making them less econom-
ical than traditional storage solutions.

3 APPROACH
3.1 Threat Model and Assumptions

Our threat model assumes that ransomware employs various tech-
niques used by other types of malware to execute attacks. To evade
detection, ransomware may encrypt only portions of files instead of
entire files. It may exploit vulnerabilities to compromise guest sys-
tems, steal data, spread malware, and even act as a zombie within
botnets. Additionally, some ransomware attempts to bypass de-
tection and protection mechanisms through privilege escalation
attacks. By obtaining administrator permissions, ransomware can
bypass kernel-based defense systems or target snapshot data stored
on storage devices. Furthermore, ransomware may disrupt Virtual
Machine Introspection (VMI) techniques by obstructing the acqui-
sition of accurate OS context information, thereby hindering VMI-
based detection approaches. We also assume that attackers may
possess prior knowledge of the detection and protection algorithms
used in the system and attempt to circumvent them.

Given that our approach operates within a hypervisor envi-
ronment, we assume the hypervisor itself, the associated remote
servers, and the data storage on the VM host are trusted and pro-
tected against unauthorized access or modification. Conversely,
the guest operating system is untrustworthy and could be compro-
mised.
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Figure 1: Overall Architecture.

3.2 Architecture Overview

The study aims to develop a sector-level live view navigation solu-
tion within the hypervisor with minimal overhead and manageable
capacity requirements. Its objective is to monitor guest I/O behavior
on the hypervisor and reroute I/O operations to the backend storage
system, ensuring that any I/O activity by the guest does not directly
impact the guest’s hard disk. Recorded data encompasses the sector
of write requests, timestamps, and the contents of write requests.
For guest read requests, the system retrieves content from either
the backend storage system or the hard disk, depending on the
presence of the requested sector’s content in the backend storage
system. By logging all I/O behavior, the system enables browsing of
the guest hard drive’s state at any given timestamp and facilitates
complete restoration to its state at that time.

Figure 1 illustrates the overall architecture of Time Machine.
When the I/O driver of the guest OS initiates a read request, it
is initially intercepted by the I/O interception mechanism within
the hypervisor. This interception process involves dividing the
request into sectors. The lookup module plays a pivotal role as a
classifier, determining whether the sector-level read request should
be routed to the collection, which serves as the backend storage in
our proposed system, or to the disk driver, based on the existence
of the requested data within the collection.

With the assistance of the lookup module, querying data from
the collection becomes unnecessary if there is no corresponding
information about the requested sector. For write requests, as they
are transmitted to the hypervisor, they are also intercepted by the
I/O interception mechanism and segmented into sectors. Subse-
quently, these requests are redirected to the collection, where the
sector’s value is recorded along with its timestamp. Notably, the
collection manager oversees the maintenance of collection size, aim-
ing to minimize storage requirements under normal and extreme
conditions.

Before forwarding explicit requests to the collection, the collec-
tion manager evaluates factors such as the target sector, request
timestamp, and information from the lookup module. It decides
whether to record the request, replace old values with current ones,
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or directly inform the disk for actual disk access. Furthermore, if the
collection exceeds a predetermined threshold, it optionally updates
data from a specified period to the disk and removes corresponding
data from the collection.

To expedite read/write requests, we implement a key-value store
caching strategy within the collection. This cache records the most
recently accessed values using the requested sector as the cache
key. When a sector’s value is requested, the system first checks the
cache for the result before querying the key-value store collection.
This approach accelerates response to requests by minimizing the
need to query the collection for frequently accessed data.

The main goal of this work is to facilitate the restoration of the
disk to any specified timestamp. Prior to initiating the system recov-
ery process, Time Machine introduces a READ mode, enabling users
to navigate the filesystem at a designated timestamp. The opera-
tional framework of the READ mode closely resembles the original
one, with the exception of the read content and the treatment of
write requests. When handling read requests in READ mode, the
system retrieves the most recent data preceding the given times-
tamp from the collection to present the filesystem as it appeared at
that particular moment. It’s crucial to note that in READ mode, all
write requests are rejected to prevent any alterations to the content
of both the collection and the disk.

Additionally, Time Machine offers a RESTORE mode to revert the
state of the disk to a specified timestamp. Users can conveniently
examine the filesystem’s state at any given timestamp using the
READ mode, allowing them to employ Time Machine’s RESTORE
mode effectively to revert the disk to that specific timestamp.

Please note that the design of Time Machine supports two dis-
tinct deployment models. The backend storage components de-
picted in Figure 1 can be located within the host operating system
or the cloud environment. These deployment models alleviate con-
straints on storage spaces and provide more robust setups with
limited performance overhead. In the subsequent subsections, we
comprehensively explain how the performance and storage spaces
are optimized in each module within the overall architecture.

3.3 Enhancing I/O Speed

As previously mentioned, within our framework, an I/O request is
redirected to the collection. However, a drawback arises from the
framework’s inability to determine whether information for the
requested sector exists in the collection. For example, in the case of
aread request at the sector level, the framework must initially check
the collection for the data. If the data is not found, the request is
forwarded to the disk driver to access the value. With every request
issued by the guest OS to the hypervisor, the framework is required
to search for data in the collection, regardless of its presence.

To tackle this issue, Time Machine introduces a lookup module
designed to manage the presence status of data within the collection.
This module utilizes a bitmap to indicate which sectors are stored in
the collection. Each bit in the bitmap corresponds to the presence of
a sector, with a value of one indicating its existence. When a sector-
level write request is intercepted by the I/O interception module
and marked for recording in the collection, the corresponding bit
in the bitmap is set to denote its presence. With the lookup module
implemented, any request or operation no longer needs to query

the collection for values if the bitmap indicates the absence of the
sector. Interestingly, this mechanism involves a trade-off between
time and space. Each bit in the bitmap can also represent multiple
sectors, such as blocks. If any sector within a group of sectors is not
recorded in the collection, the grouped sectors are still considered
present, i.e., the bit mapped to the grouped sectors is set. In this
scenario, the system initially queries the collection for data; if no
results are found, the request is then forwarded for actual disk
access. While this approach reduces the space required for the
bitmap, it also introduces additional overhead.

An additional enhancement aimed at improving I/O speed is
employing a cache strategy within the collection module of Time
Machine. This involves integrating a cache system preceding the
key-value store collection, which enhances the efficiency of queries
made to the collection during I/O request handling. The cache sys-
tem is implemented using an in-memory key-value store database.
Similar to the key-value store collection, the cache system can be
locally stored within the host OS or hosted on a remote server
to leverage the benefits of cloud storage. In operation, the cache
system utilizes the requested sector as the cache key and stores
the most recently accessed values. When a request queries the
key-value store collection and retrieves the required values, these
sectors and values are cached within the cache system. Subsequent
requests for the same sector to the key-value store collection can
then directly obtain values from the cache system, thus bypass-
ing the need for repeated queries. Additionally, any new records
added to the key-value store collection are cached, ensuring that the
cache system contains the latest values for the sectors. In practice,
the cache system is allocated a memory limit to prevent resource
exhaustion. It retains recently accessed keys and evicts the least
recently used keys if the memory limit is at risk of being exceeded.

3.4 Maintaining Collection Size

This section discussed various automated and manual approaches
that can be employed to manage and maintain the collection size
of the backend storage.

3.4.1 Optional Auto-Commit for Releasing Collection Size. The
collection manager module oversees the size of the key-value store
collection. However, the space available for the key-value store
collection is limited. Despite the ample space provided by cloud
storage, it is not unlimited. Therefore, the system employs an auto-
commit mechanism and establishes three thresholds as criteria for
assessment.

Before adding a record to the collection, the system checks if
the collection size exceeds a predefined notification threshold or
upper bound threshold. Upon surpassing the upper bound threshold,
the system initiates a process to write a specific period of data
back to the disk at a time, starting from the oldest data, until the
collection size is smaller than the initial threshold. Subsequently,
the corresponding record is removed from the collection.

If the collection size exceeds the notification threshold, a notifi-
cation is sent to the user, prompting them to inspect the file system
to free up space in the collection. In the prototype implementa-
tion, the initial threshold, notification threshold, and upper bound
threshold are set to 20 GB, 25 GB, and 30 GB, respectively. This
auto-commit mechanism reclaims excess space when the collection
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size becomes too large. However, the data being written back to
the disk is not guaranteed to be unencrypted. Extended operational
periods or intentional attacks leading to excessive redundant op-
erations could breach threshold limits, resulting in the update of
encrypted content to the disk.

Note that the auto-commit feature is optional because ransomware
may escape detection and fill up the backend storage. In a typical
usage, the collection should be filled slowly and a regular manual
commit would work for releasing collection spaces. When the fea-
ture is disabled, all write operations to the drive are rejected when
the collection is full and the user is notified.

3.4.2  Bitmap for Handling Unused Blocks. To counteract the impact
of targeted attacks aimed at filling up the collection, Time Machine
implements protective measures within the collection manager
module. Firstly, it introduces the concept of a block bitmap in the
EXT4 file system. This bitmap maintains a record of the usage status
of blocks on the disk. Any write request targeting an unused block
can directly access the disk without being logged into the collection.
This prevents attackers from compromising storage efficiency by
filling up unused blocks, such as creating files or downloads. Each
bit in the bitmap corresponds to the status of a single data block.

In cases where the block bitmap has not been initialized, Time
Machine examines the disk to ascertain the filesystem’s usage status
before booting the guest system. Alternatively, it retrieves the block
usage status from the existing bitmap. When a write request is
directed at an unused block, Time Machine marks it as one in the
bitmap. Consequently, subsequent requests pertaining to the block
can be logged to prevent data loss.

3.4.3 Request Consolidation for Saving Collection Size. Attackers
may still attempt to continuously write to existing content blocks,
i.e., data blocks marked as one in the block bitmap. As these re-
quests are all logged in the collection, they effectively increase its
size, potentially leading to overflow and requiring the flushing of
collection content back to the disk. Despite the hypervisor’s poten-
tial utilization of write coalescing or other optimization techniques
to enhance efficiency and reduce overhead, consistent writing to
used blocks could still result in collection overflow, albeit possi-
bly requiring more write operations to achieve. Consequently, the
second protection mechanism is devised to streamline existing con-
tent block records by merging records with matching sectors and
requesting timestamps falling within a designated time threshold.
Time Machine provides support for two strategies to merge
records within the key-value store collection. The first strategy
utilizes the concept of interarrival time: when two records relating
to the same sector have a time interval between them within a
specified threshold, the system merges them by retaining the more
recent record and removing the older one. The second strategy
involves slicing time segments: fixed time segments are continu-
ously connected in a series. For each sector, only the most recent
record within a time segment is retained. All other records, except
the newest one, are removed from the key-value store collection.
These strategies mitigate the impact of multiple write requests to
the same sector and help reduce the overall collection size. Figure 2
shows the schematic diagram illustrating the two strategies.

o Interarrival Time Strategy Figure 2a demonstrates the strategy
utilizing interarrival time. Let us consider a scenario where there
exists a record with the value ’AAA’ stored for a specific sector in
the key-value store collection. At timestamp ty, a write request
was recorded with the value BBB’. Subsequently, at timestamp
11, a write request with the value ’"CCC’ is transmitted to the
collection manager module. Given that the time interval between
to and t; falls within the defined threshold, the record with the
value 'BBB’ is first removed from the collection, followed by
the insertion of the new record with the value ’CCC’. Similarly,
records with the value ’"CCC’ are deleted before inserting the new
record with the value 'DDD’ since the time interval between t;
and ty is smaller than the threshold. Conversely, at timestamp
13, only the new record with the value ’EEE’ is inserted into the
collection, while the old records remain unchanged due to the
prolonged time interval between ¢, and t3.

e Time Segment Strategy Figure 2b demonstrates the strategy
employing time segments. Let us consider a scenario where there
exists a record with the value ’PPP’ in the collection. At times-
tamp tg, a write request is sent to the collection module. Given
that the request timestamp falls within the time segment s; and
no record has been inserted within sy, the record with the value
’QQQ’ is inserted into the collection. However, within time seg-
ment sz, two distinct write requests are received. Only the latest
one will be retained. Specifically, at timestamp t1, the record with
the value 'RRR’ will be inserted into the collection. Therefore,
at timestamp ty, it will be replaced by the record with the value
’SSS’.

The choice between the two strategies involves a trade-off. A
time segment strategy ensures a higher probability of retaining
data for each interval but may store more redundant information
for long-lasting and repetitive write operations. Conversely, the
interarrival time strategy retains only a few data points during
rapid and extensive write operations. However, it may result in
significantly fewer records when dealing with a repetitive data
stream.

Due to the protection mechanisms in place, attackers face sig-
nificant challenges in filling up the collection to its threshold size
and triggering the auto-commit mechanism. Their only exploitable
avenue lies in manipulating existing content blocks. However, the
rate at which the collection size grows is controlled by the thresh-
old time implemented within the protection mechanism. For each
sector, attackers are limited to inserting only one record within
a time segment or interarrival time threshold. Additionally, their
ability to write values to sectors is severely restricted; they cannot
write values to any sectors in the guest OS.

The duration of the threshold time can vary significantly, rang-
ing from minutes to several hours, depending on the users’ desired
granularity of restoration. A prolonged threshold period causes
the collection’s size to grow slowly, with records merging for each
sector, thus making exploitation more difficult for attackers. Con-
versely, a shorter threshold time results in the collection containing
more detailed information, thereby enhancing the degree of restora-
tion achievable.



Anonymous Submission to ACM CCSW 2024, Due 22 Jul 2024, Salt Lake City, USA

Time Interval <=

Time Interval <=

Time Interval > Threshold

Threshold Threshold
J J 1 TIME
C Y Y | >
WHte  seeereeeeeereeeenens Write oo eees write write
Record : : : : Record Record
Content: AAA Content: DDD Content: EEE
BBB  coceceeeeeeeieeiit 1670 0 TR ETET TR DDD EEE
to L ‘tz t3
(a) The strategy of utilizing interarrival time.
Time Segm'ent s1 sy
(Threshold Time)
' e ' e ' e '
r ¥ + ~ TIME R
! l il ] Ll
! v write twrite write
Record Record : : Record
Content: PPP Content: QQQ Content: SSS
QQQ e sSS
to t t,

(b) The strategy of utilizing time segments.

Figure 2: Schematic diagram of the two strategies to streamline the records of existing content blocks.

3.4.4 User Notification. To address the inability to determine whether
data is encrypted, Time Machine employs a user notification mech-
anism within the collection manager module. File encryption opera-
tions often involve writing to different sectors in a short period. This
mechanism alerts users when there is a significant increase in the
collection size over a short period, indicating potential encryption
activity. The notification mechanism operates on the premise that if
numerous write requests target several used sectors within a brief
period, it suggests potential file encryption within the guest oper-
ating system. This pattern resembles processes that alter numerous
files or substantially modify the content of large files. The mecha-
nism notifies users upon detecting such behavior. Additionally, it
provides information on which sectors are currently undergoing
writing. While the warning mechanism effectively signals potential
threats, it may yield false positives. For instance, system updates
or data compression activities could trigger alerts. However, such
occurrences are infrequent during normal operations or can be
anticipated in advance.

It is important to note that our entire framework operates inde-
pendently of the detection mechanism. The notification mechanism
described earlier can be seamlessly substituted with advanced detec-
tion algorithms, offering enhanced protection against ransomware
at the hypervisor level. For instance, employing state-of-the-art
approaches [9] allows for reliable differentiation between com-
pressed and encrypted data fragments. Additionally, leveraging
virtual machine introspection (VMI) techniques enables the acquisi-
tion of necessary contextual information from the guest operating
system at the hypervisor level, facilitating the implementation of
ransomware detection algorithms [38]. By adopting such strategies,
our framework provides a more comprehensive defense against

ransomware attacks, enhancing security for virtualized environ-
ments.

3.5 Timestamp-based State Retrieval and
Recovery

In contrast to other related works, Time Machine offers the capa-
bility to restore the system state to any specific version based on
a timestamp. Leveraging the information stored in the key-value
store collection, it becomes feasible to revert the system to its state
before an attack occurs. A critical aspect to consider is that users
may prefer to examine the filesystem initially to determine the
timestamp at which files within the guest operating system were
not yet encrypted. This preliminary check aids users in making
an informed decision regarding the optimal timestamp for system
restoration.

To enhance user-friendliness, Time Machine offers a READ mode,
enabling users to inspect the filesystem at any specific timestamp
without affecting the disk or the collection module. In READ mode,
all I/O requests issued by the guest’s storage driver are intercepted.
Subsequently, the I/O interception module rejects write requests
to prevent any alteration of the collection module or disk contents.
Following the standard flow depicted in Figure 1, read requests
in READ mode are partitioned into sectors and directed to either
the collection module or the disk driver. The collection module,
operating in READ mode, retrieves the corresponding values at the
specified timestamp by seeking the latest value preceding the times-
tamp. By employing READ mode, users can explore the filesystem
at any timestamp, similar to using the system normally but with
read-only characteristics and access to previous states.
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Once users become aware that the system has been compro-
mised by ransomware or other malware or receive a notification to
update the disk due to the collection size surpassing the notification
threshold, they can utilize Time Machine’s RESTORE mode. This
mode enables them to update the disk to a specified timestamp. In
RESTORE mode, Time Machine first searches for the latest value
of each sector with data preceding the given timestamp in the key-
value store collection. It then updates these values to the disk based
on the recorded sectors. Using RESTORE mode to update the disk
status triggers an initialization process, which involves clearing all
records in the collection module and removing the bitmaps in both
the lookup and collection manager modules. To utilize RESTORE
mode effectively, users can employ the READ mode to examine
the previous state of the filesystem and identify the timestamp at
which the disk was in the desired state. Subsequently, they can use
RESTORE mode to revert the disk to that specific timestamp.

4 IMPLEMENTATION

To validate our approach, we developed a proof-of-concept proto-
type of Time Machine. This prototype was implemented by modi-
fying the open-source QEMU hypervisor [7], specifically version
7.2.91, running on an Ubuntu 20.04/x86-64 system. The guest oper-
ating systems utilized in our prototype are Ubuntu 18.04/x86-64 and
64-bit Microsoft Windows 10. QEMU, being a type Il hypervisor, typ-
ically resorts to software emulation when native hardware support
is unavailable. However, traditional software-based virtualization
methods, such as full virtualization or emulation, often incur sub-
stantial CPU overhead due to the need for instruction translation
and emulation, leading to significant performance penalties.

We leverage QEMU’s hardware virtualization support to mitigate
this issue and enable a Kernel-based Virtual Machine (KVM) [18].
By enabling KVM, guest operating systems can execute code di-
rectly on the CPU with minimal overhead. This approach achieves
near-native performance levels, making KVM particularly suitable
for performance-sensitive workloads. The prototype introduces
approximately 2800 lines of additional C code to QEMU.

In our prototype, we utilize MongoDB as the key-value collection.
To ensure compatibility with MongoDB, we selected Remote Dictio-
nary Server (Redis) as the cache system. Moreover, we employ the
Least Recently Used (LRU) algorithm to manage key replacements
in Redis. Due to space limitations, detailed introductions of the
involved components have been moved to Appendix A.

5 EVALUATION
5.1 Experimental Setup

Recently, Windows and Linux have emerged as the dominant oper-
ating systems worldwide. Windows, in particular, holds a strong
presence in the desktop market, making it a primary target for
attackers. Consequently, there has been a significant increase in
ransomware incidents targeting Windows systems. On the other
hand, Linux has traditionally been the preferred operating system
for web servers, including those hosted on public cloud platforms.
As a result, ransomware targeting Linux systems is on the rise.

In our experiments, ransomware samples were executed on
Ubuntu 18.04/x86-64 and 64-bit Microsoft Windows 10 systems,
both with 2 GB RAM. The host machine, running on VirtualBox, is

an Ubuntu 20.04/x86-64 system equipped with 12 GB RAM and 8
processors. To enable the KVM accelerator in QEMU, the Nested
VT-x/AMD-V option has been turned on. To further simulate the
performance of Time Machine within an internal network environ-
ment, we migrated the collection to a different system, as detailed
in Section 5.5. This system consists of an Ubuntu 20.04/x86-64 setup,
equipped with 12 GB of RAM and a single processor, serving as the
backend storage server.

The primary reason for employing a two-layer VM architecture
is for greater flexibility and convenience in performing experiments.
However, this approach may also lead to lower guest I/O throughput.
The threshold time used in the protection strategy for used blocks,
including interarrival time and time segment, was set to 5 minutes.

Based on the characteristics of ransomware, we assume that all
ransomware samples either encrypt user files or lock the user’s sys-
tem. To simulate real-world scenarios, we created a user document
directory containing various file types, such as documents, media
files, program source files, and archive files. Additionally, to ensure
the successful execution of ransomware samples, we disabled the
antivirus software, firewalls, and any other processes that might
obstruct malicious operations within the guest machine. Apart from
these adjustments, we did not alter any guest OS settings.

Since certain ransomware variants require network connectivity
to transmit encryption keys or potentially steal data, they may not
execute successfully without network access. To address this, we
granted the guest machine unrestricted network access through
Network Address Translation (NAT). Each ransomware sample was
executed with administrator privileges to ensure its ability to carry
out attacks on user files. Prior to running each sample, we reverted
both the guest and host machines using a snapshot to ensure that
the samples were not influenced by previous executions.

We systematically verify the capability of our prototype to re-
cover the guest’s filesystem to any given timestamp through the
following procedure. Firstly, we power on the guest machine and
perform random operations (OP) on files within the user document
directory, including file creation, writing, and content appending.
Next, we execute the ransomware sample for a duration of 30 min-
utes. Subsequently, we examine whether the ransomware has en-
crypted any files in the directory. If no encryption is detected, we
proceed to the next step. Otherwise, we proceed to the restoration
process. If no files are encrypted, we assess whether the filesystem
can be restored to its state prior to the OP operations performed
on the files. We utilize the RESTORE mode of the prototype for
this assessment. If encryption is detected, we browse the filesystem
at two timestamps: one preceding the encryption but after the OP
operations, and another prior to the OP operations. We utilize the
READ mode of the prototype for this browsing process. Following
the browsing process, we employ the RESTORE mode to revert
the filesystem to its state before encryption but after the opera-
tions were conducted. Finally, we assess whether the filesystem has
reverted successfully after restoration.

5.2 Effectiveness of Recovery

We gathered real-world Linux and Windows ransomware samples
from MalwareBazaar [24] and the Github [28] to assess the recovery
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effectiveness. Subsequently, each ransomware sample was executed
on its corresponding operating system for 30 minutes.

To confirm Time Machine’s capability to browse the filesystem
at any timestamp, we utilized the READ mode of Time Machine to
inspect the filesystem state at timestamps preceding the encryption
but after the operations and the timestamp before the operations,
as discussed in Section 5. Success was determined by examining
the files within the user document directory and ensuring they
matched their expected state.

To validate Time Machine’s ability to recover to any given times-
tamp, we utilized the RESTORE mode to revert the disk to the
timestamp preceding the encryption but after the operations. Sub-
sequently, we compared the files in the user document directory
with their original versions (after random operations), ensuring
they remained unchanged. If the files were identical, we concluded
that Time Machine could recover from the ransomware samples.

Table 1 presents the results of the browsing and recovery tests,
where "Browsing" denotes the capability to navigate the filesystem
at any given timestamp, and "Recovery" indicates the ability to re-
store the disk to a specified timestamp. Throughout the experiment,
we conducted tests on 11 Linux! and 12 Windows? ransomware
samples. However, only 6 Linux and 6 Windows ransomware sam-
ples exhibited encryption behavior. Results for ransomware samples
without encryption behavior were excluded from Table 1. Never-
theless, we conducted recovery and browsing tests for all samples,
even if the ransomware samples were invalid. In such cases, we
restored the disk to its state before any operations occurred. In sum-
mary, Time Machine successfully enables browsing the filesystem
at any timestamp and facilitates fine-grained recovery of the entire
disk to a specified timestamp for all tested ransomware samples.

We further investigated the growth behavior of the collection size
after ransomware encryption through case studies. Leveraging the
characteristics of specific ransomware that alter file extensions after
encryption, we calculated the total number of files encrypted in
the file system and retrieved their original filenames. We compared
the number of files encrypted, the total size of these files, and
the resulting increase in the collection size. After executing Buhti,
approximately 219 files were encrypted, amounting to roughly 72.91
MB of data. The execution resulted in a collection size increase of
about 57.66MB. Similarly, for Linux’s Cylance, approximately 242
files were encrypted, amounting to roughly 78.25 MB of data. The
execution led to an increase in the collection size of around 76.35MB.

5.3 Effectiveness of Handling Collection Size

As outlined in Section 3.4, Time Machine implements several protec-
tion mechanisms to thwart targeted attacks on the collection size. To
evaluate the efficacy of these protective measures, we conduct three
types of attack experiments and analyze their respective effects on
the collection size. Note that the baseline in the experiments indi-
cates that Time Machine is configured without employing unused
block bitmap, interarrival time, and time segment strategies.

1Linux Samples: Erebus, Kuiper, RansomEXX, Hive, Qilin, Lockbit, GonnaCry,
AvosLocker, Buhti, Cylance, IceFire.

2Windows Samples: Phobos, WastedLocker, WannaCry, Thanos, TeslaCrypt, Satana,
RedBoot, Radamant, Petya, Mamba, Locky, Cylance.

Table 1: List of ransomware samples that perform encryption.

Linux Samples

Ransomware | Recovery | Browsing
Erebus v v
Kuiper v v

AvosLocker v v
Buhti v v
Cylance v v
IceFire v v

Windows Samples

Ransomware | Recovery | Browsing
Phobos v v
WastedLocker v v
WannaCry v v
RedBoot v v
Thanos v v
Cylance v v

5.3.1 Altering Existing Files. In the first scenario, we envisage at-
tackers attempting to overflow the collection by consistently alter-
ing existing files within the guest environment. Here, we initiate
the guest, execute a program to iteratively write to a file (50K,
100K, 200K, and 300K times), power off the guest, and analyze the
resulting increase in the collection size. The outcomes of this ini-
tial experiment are depicted in Figure 3. When a file is modified
within the guest, it typically generates write requests aimed at
utilized blocks on the disk. Consequently, the protective mecha-
nism addressing unused blocks has minimal impact on reducing
the collection size. Conversely, the protective mechanism targeting
used blocks demonstrates a notable reduction in the collection size
during the experiment.

Figure 3 further evaluates the effectiveness of the two protection
strategies for used blocks. Both strategies display efficient manage-
ment of used blocks, resulting in similar increases in the collection
size irrespective of the number of modifications performed. From
the standpoint of minimizing the collection size, the interarrival
time strategy proves advantageous if the duration between each
write request lengthens but remains within the merge threshold.
However, this approach compromises restoration precision. If users
continually modify a file while ransomware encrypts it, only the
latest version will be recorded in the collection. Nevertheless, files
are typically locked during modification, preventing ransomware
from directly encrypting them. Therefore, the drawback of the
interarrival time method is tolerable in such scenarios, and the
prototype adopts the interarrival time as the protective strategy for
used blocks.

It is important to note that to ensure the modification operations
are directed to the hypervisor, we utilize the fsync system call to
compel it to flush data to the hypervisor before each write request.
It ensures that the number of modifications equals the number of
write requests corresponding to the sector number of the file.

5.3.2  Generating Large Files. In the second scenario, we explore
the potential for attackers to fill the collection size by generating
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Figure 3: The increased collection size corresponding to writ-
ing a file many times in Linux.
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Figure 4: The increased collection size corresponding to cre-
ating a large file in Linux.

large files within the guest environment. Here, we power on the
guest, create a sizeable file of various sizes (0.5GB, 1GB, 2GB, and
3GB), power off the guest, and examine the resulting increase in
the collection size. The outcomes of this experiment are depicted
in Figure 4.

Without protective mechanisms, the collection logs all write
requests to the disk, resulting in a size increase closely aligned with
the size of the created file. Given that file creation within the guest
typically triggers write requests targeting unused blocks on the
disk, the protective mechanism for used blocks has minimal impact
on reducing the collection size. However, the safeguard for unused
blocks enables write requests directed toward such blocks to access
the disk directly. Consequently, most of the I/O requests generated
by file creation within the guest can be written directly to the disk,
exerting minimal influence on the collection size.

5.3.3 Generating Numerous Files. In the third scenario, we investi-
gate where attackers seek to fill the collection size by generating
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Figure 5: The increased collection size corresponding to cre-
ating many files in Linux.

numerous files within the guest environment. Here, we initialize
the guest machine, execute a program designed to create varying
numbers of files within the guest (50K, 100K, 200K, 300K), power
off the guest, and subsequently analyze the resulting increase in
the collection size. Each file is populated with 512-byte random
values generated using the rand function in C. The experimental
outcomes employing different protection strategies are illustrated
in Figure 5.

Similar to the second scenario, file creation within the guest
typically triggers write requests to unused blocks on the disk, re-
sulting in limited effectiveness of the protection mechanism against
used blocks. However, as the number of created files increases, the
collection size expands regardless of the employed strategies. It
is due to file creation within the guest leading to write requests
to its respective data blocks and incurring write requests to the
inode block of the directory for file creation. In the EXT4 filesystem,
file/directory creation necessitates modification of the extent tree
structure or the corresponding inode content, thereby contributing
to the growth of the collection size. Despite the inevitable increase
in collection size, both protection mechanisms for used and unused
blocks effectively mitigate the issue.

5.4 Resource Constraints of Cache

In this section, we investigate the impact of the cache system on

Time Machine. We begin the experiment by clearing all records

in both the key-value store collection and the cache server, elimi-

nating any extraneous factors apart from the maximum memory

constraint of the cache system. Subsequently, we power on the

guest and utilize IOzone [14] to assess the I/O performance of Time

Machine across different memory limits. By configuring various

parameters of IOzone, we conduct tests covering six categories of

1/O performance:

o Write: Evaluate the throughput of writing a new file.

o Re-Write: Assess the writing throughput to an existing file.

o Read: Measure the throughput of reading an existing file.

e Re-Read: Gauge the throughput of reading a recently accessed
file.
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Figure 6: I/0 throughput with different cache sizes.

e Random Read: Determine the throughput of reading a file with
accesses occurring at random locations within the file.

e Random Write: Assess the throughput of writing a file with ac-
cesses occurring at random locations within the file.

Figure 6 shows the results of the experiment. The memory limit
ranges from 1GB to 16MB. Across different memory limits, the
categories related to write operations exhibit similar throughput
compared to the guest in QEMU without Time Machine. Write
operations typically involve write requests to unused blocks, which
directly access the disk in our mechanism. For re-write and random
write operations, since the initial collection size was reset to zero,
there are fewer instances requiring the handling of used blocks.
Most write requests are directly logged in the collection, resulting
in throughput close to the baseline. Moreover, as write-related op-
erations and the cache mechanism are less correlated, the memory
limit’s impact on the three writing operations is minimal.

In contrast, read-related operations show a relatively noticeable
downward trend compared to write-related operations. There is a
more pronounced relationship between cache size reduction and
throughput decline for re-read operations, which involve retrieving
recently read files. We hypothesize that when the memory size is
limited, the data in the cache may be overwritten by the system’s
I/O operations, rendering the cache less effective for re-reads and
decreasing throughput. Without the assistance of the cache system,
the I/O throughput of all categories experiences a further decline,
with read-related operations being more affected. This decline is
attributed to the impact on the system’s operational I/O operations,
which consequently affect the performance of all I/O operations.

Based on the findings illustrated in Figure 6, Time Machine
demonstrates comparable I/O throughput to the baseline when
configured with both 1GB and 256MB memory. We used the av-
erage overhead across the six categories of I/O operations as the
selection criterion. Considering resource conservation, we opt for
a maximum memory limit of 256MB.

5.5 Impact on I/O Performance

To evaluate the impact of Time Machine on I/O performance, we
conduct benchmarks in two environments: (1) an operating system
running on the hypervisor as the baseline, and (2) an operating
system running on the hypervisor with Time Machine enabled. We
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utilize both Linux and Windows operating systems in the exper-
iment. Despite not implementing the protection mechanism for
unused blocks in Windows due to filesystem dependencies, we
include an evaluation of Windows in this section. This analysis
explores the relationship between I/O throughput and the collec-
tion size. We employ IOzone to evaluate the I/O throughput in both
environments and analyze the associated I/O overhead with various
collection sizes.

In each round of testing, we record the collection size before
booting a guest virtual machine, which is labeled in the legend
of the figures. After booting, we measure the I/O throughput and
prepare for the next test round. We run a program in the guest that
periodically modifies the files to fill the collection size. By varying
the number of modifications and the size of modified files, we fill
the collection to ensure the size keeps increasing for the sake of
performance comparison under different sizes.

5.5.1 Linux OS. The results measured in Linux are depicted in
Figure 7. Figure 7a shows the results when Time Machine employs
local backend storage for the collection. The bars, from left to right,
represent the baseline and the throughputs with increased collec-
tion size. As the collection size increases, the I/O throughputs of all
testing categories exhibit a slight decrease compared to the baseline.
We attribute this non-linear decline in I/O throughput to the char-
acteristics of the key-value store collection. Overall, the increase
in collection size does not significantly affect I/O throughput. On
average, the overhead is approximately 3.5%. Notably, the write op-
eration demonstrates relatively lower overhead than other testing
categories due to the protection mechanism for the unused blocks.
For other operations, the overhead ranges from approximately 2%
to 7% across all collection sizes compared to the baseline, which
remains within acceptable limits.

On the other hand, Figure 7b presents the results under the
condition where Time Machine interacts with the backend storage
collection over the network. The I/O throughput performance is
similar to that of the local setup. The results indicate that the I/O
overhead compared to the local setup is less than 1% on average,
which is negligible.

5.5.2  Windows OS. Figure 8a depicts the results for Windows OS
when Time Machine employs local backend storage for the collec-
tion. Note that the handling of unused blocks was not activated in
this experiment. Similar to the findings in the Linux OS, the I/O
throughput slightly decreased for all tested categories compared to
the baseline. With the deactivated handling unused blocks feature,
all write requests must be processed and preserved in the collection.
Always writing data to the disk directly resulted in a decline in
the I/O throughput for write operations compared to Linux. For
other operations, the trends are similar to those in the Linux OS.
In summary, the overhead is approximately 4.5% on average. All
tested operations show an overhead of approximately 3% to 9% for
various collection sizes compared to the baseline.

Figure 8b presents the results of Time Machine interacting with
the backend storage collection over the network. We observe that
the I/O throughput is not significantly different from the local setup
for all tested categories. The average overhead is less than 1%.
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Figure 7: 1/0 throughput measured on Linux.

5.5.3 Restoration Time. The restoration time for Linux and Win-
dows with various collection sizes is shown in Figure 9. It is evident
that the time required for Time Machine’s RESTORE mode to revert
the disk is closely proportional to the collection size. For instance,
when the collection size reaches approximately 25GB, the restore
time for Windows and Linux OSes is about 101 and 104 seconds,
respectively.

5.6 Attack Scenario

This section introduces the potential attacks targeting Time Ma-
chine and discusses the corresponding countermeasures.

5.6.1 Attacks Targeted on the Collection Module. Time Machine
stores its backend data in the collection module, thus eliminating
the hardware dependency associated with SSD-based approaches
by leveraging software solutions. Although Time Machine benefits
from the expansive storage capacity of cloud storage, its storage
space is still finite. Consequently, Time Machine cannot indefinitely
record all I/O activities. If attackers understand the mechanism of
Time Machine, they might intentionally execute numerous redun-
dant I/O operations. Such actions could increase the collection size,
reduce the I/O efficiency of the guest OS, and potentially cause over-
flow in the collection module. It, in turn, could result in malicious
operations being written to the disk.
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Figure 8: I/O throughput measured on Windows.
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As mentioned in section 3.4, Time Machine utilizes a protection
mechanism in the collection manager module to mitigate such
conditions. Increasing the collection size significantly is not easy
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for attackers. Even if they manage to do so, Time Machine issues a
warning to users if the collection size grows rapidly within a short
period. Therefore, attackers would need to fill the collection size
gradually to avoid detection. However, this process would take a
long time, during which users might proactively update data from
the collection to the disk, necessitating a refill. Moreover, if the
collection is filled slowly, the impact on I/O performance would
likely be minimal or negligible.

5.6.2 Attacks Targeted on the Collection Manager Module. .

Time Machine relies on an auto- or manually-commit mechanism
to flush data to the disk. The effectiveness of the user notification
mechanism depends on how rapidly the collection is filled. Given
the characteristics of Time Machine, attackers could gradually en-
crypt a few files over an extended period. In such cases, the user
notification mechanism may not promptly detect the malicious
activity. Users might also fail to notice abnormal file encryption
and continue using the computer until the collection size reaches
its limit.

Encrypting a few files gradually over an extended period means
that users and other ransomware detection tools have more time
to discover the attack in its early stages. It allows users to take
countermeasures and thwart the attack before encrypting impor-
tant files. Additionally, requiring users to inspect the filesystem
status once the collection size exceeds a notification threshold can
help prevent malicious payloads from being updated to the disk.
Furthermore, the attacker portals used for receiving ransom pay-
ments are usually unstable. These portals and payment methods
may be outdated after the encryption is completed. Therefore, from
the ransomware’s perspective, extending the encryption period to
counter Time Machine offers no real benefit.

Our proposed approach, with Time Machine residing in the
hypervisor, offers a unique defense against common privilege esca-
lation attacks within the operating system. These attacks, which
often seek to bypass defenses by acquiring administrator privileges,
are inherently thwarted by our system’s architecture. Our approach
operates independently of the detection algorithm, allowing it to
incorporate state-of-the-art methods to enhance protection against
ransomware.

5.7 Limitation

The limitation of Time Machine lies in the potential data loss caused
by the auto-commit mechanism and I/O overhead. However, the
primary contribution of this work is not the development of a
robust ransomware detection algorithm at the hypervisor level.
Instead, our work introduces a framework that employs a sector-
level live view navigation approach at the hypervisor level to protect
user files within the guest operating system comprehensively. This
framework operates independently of detection mechanisms and
can integrate with existing detection approaches to mitigate the
risk of data loss attributed to the auto-commit mechanism.

Despite this limitation, a detection mechanism can also help im-
prove storage efficiency. If a potent detection mechanism achieves
100% accuracy in detecting ransomware, there would be no need to
continuously record I/O requests for extended periods to prevent
potential data loss. The collection size can be minimized by setting
a smaller upper bound threshold.
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Time Machine is an architecture-agnostic system that operates
independently of the guest operating system and disk, eliminating
hardware dependencies by offloading storage tasks to a software-
based storage server. Although this approach incurs slightly higher
1/0O overhead compared to SSD-based solutions, the overhead re-
mains within an acceptable range. Further optimizations to the
storage server/backend efficiency could help mitigate this over-
head. Future work includes integrating detection algorithms and
exploring more efficient storage algorithms.

6 CONCLUSION

We proposed Time Machine, a real-time fine-grained sector-level

live view navigation approach designed to protect filesystems against
ransomware attacks at the hypervisor level. Time Machine require

no hardware dependency and instead leverages the capability of
key-value store collection to record the I/O requests. Additionally,

it incorporates two optimization strategies to improve the perfor-
mance of the proposed approach. With all the I/O requests being

recorded, Time Machine provides complete protection and enables

users to easily navigate the filesystem at any given timestamp and

recover the filesystem content to the selected timestamp. The evalu-
ation results demonstrate that Time Machine can effectively secure

user data from ransomware attacks while maintaining minimal

overhead (<5%). We believe the proposed approach pinpoints an

innovative direction for defending against ransomware attacks.
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A IMPLEMENTATION DETAILS

A.1 Monitor Guest 10

The key component of the prototype is the I/O interception module
within the hypervisor. To accomplish this, interception of I/O re-
quests before their actual access to the disk in QEMU is necessary.
While KVM benefits from virtualization support provided by phys-
ical hardware for CPU, memory, and other functions to improve
efficiency, it lacks built-in I/O device support. Nevertheless, I/O de-
vices that are emulated by QEMU through pure software emulation
result in longer paths for each I/O operation and decreased per-
formance when communicating between virtual machines and the
host machine. Thus, the introduction of VirtIO addresses this issue.
VirtIO serves as a universal virtual I/O device protocol, defining
two primary aspects: device configuration and initialization on the
control plane, and data transfer on the data plane. It allows hypervi-
sors to export a standardized set of simulated devices and provides
access to virtual machines through an Application Programming
Interface (API). The VirtIO frontend driver resides within the guest
machine as the guest I/O driver, while the VirtIO backend driver is
implemented in QEMU as the backend I/O driver. Virtual queues
(virtqueue), typically in the form of ring buffers (virtio-ring), facil-
itate communication between the guest and the virtual machine
manager. These queues can be implemented in various ways as long
as coherence between the guest and the hypervisor is maintained.
Virtual queues serve as storage for information exchanged between
the guest I/O driver and the hypervisor I/O driver. They can buffer
multiple I/O requests from the guest I/O driver simultaneously,
which are then processed in batches by the hypervisor I/O driver.
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Subsequently, the actual I/O operations are executed physically
by invoking the device driver on the host machine. This approach
enables batch processing based on agreements rather than handling
each I/O request from the guest machine individually. As a result, it
improves the efficiency of information exchange between the guest
machine and the hypervisor.

The Simplified Function Call Graph (CFG) of the I/O mecha-
nism with VirtIO in QEMU is illustrated in Figure 10. Typically, in
the guest machine, I/O requests are pushed to the virtual queue,
and it then notifies the hypervisor to handle the I/O requests. The
start point of the I/O request to the VirtIO block device in QEMU
is the virtio_blk_handle_output function. To receive I/O requests
from the guest machine, it calls the virtio_blk_get_request function
to pop the I/O request from the virtual queue and encapsulates
the request into a data structure called VirtIOBlockReq. The vir-
tio_blk_handle_request function consolidates I/O requests into a
MultiReqBuffer data structure. When the MultiReqBuffer reaches its
capacity or when traversal of the virtual queue (available ring)
is complete, it invokes the wvirtio_blk_submit_multireq function
to submit I/O requests to the VirtIO backend driver. Depending
on whether the request is for read or write, the submit_requests
function calls the corresponding function to handle the requests.
For read requests, it ultimately invokes the blk_co_do_preadv_part
function to issue the read request to the block driver by using the
bdrv_co_preadv_part function for actual disk access. Conversely, for
write requests, the blk_co_do_pwritev_part function is invoked to
initiate the write request to the block driver by using the
bdrv_co_do_pwritev_part function.

During these processes, the content of the I/O requests is stored
in the QEMUIOVector data structure. In practice, the Time Machine

prototype intercepts the I/O request within the blk_co_do_pwritev_part

and blk_co_do_preadv_part functions. It redirects each read/write
request to achieve the expected functionality and protect the guest
machine from ransomware attacks.

A.2 Collection Module

As mentioned in Section 3, Time Machine employs a key-value store
collection to archive information regarding redirected requests man-
aged by the I/O interception module. This collection dynamically
records changes in disk status over time and retrieves values to
respond to read requests. It stores three variables: target sector,
request timestamp, and the corresponding value. In our prototype,
we utilize MongoDB as the key-value collection. MongoDB was
chosen due to its extensive and active community, which offers
abundant resources such as documentation, tutorials, and commu-
nity forums. Furthermore, MongoDB boasts a robust ecosystem
of tools and libraries that seamlessly integrate with various pro-
gramming languages and frameworks, simplifying development
and maintenance efforts. Its scalability allows for the handling of
databases with terabyte-level data, and it is compatible with cloud
platforms like Amazon Web Services (AWS) and Google Cloud Plat-
form (GCP). In MongoDB, a record is represented as a document,
a structured data format comprising field-value pairs. Each docu-
ment in the prototype’s MongoDB consists of an unsigned 64-bit
variable representing the sector, another unsigned 64-bit variable
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Figure 10: Simple Function Call Graph for VirtIO in QEMU.

representing the timestamp, and a 512-byte variable representing
the value.

To ensure compatibility with MongoDB, we selected Remote
Dictionary Server (Redis) as the cache system in our prototype.
The data structure stored in Redis’s in-memory storage mirrors
that of MongoDB. We designate the sector as the key in Redis, al-
lowing it to store only the latest value for each sector. To mitigate
resource utilization, we impose memory usage restrictions on the
Redis server. Following an evaluation of the relationship between
the I/O overhead of the guest operating system and memory limits,
as detailed in section 5.4, we cap the maximum memory Redis can
utilize at 256MB. This limitation has little impact on the I/O over-
head of the guest operating system. Moreover, we employ the Least
Recently Used (LRU) algorithm to manage key replacements in
Redis. This means replacing the least-recent used keys with newer
ones, ensuring optimal memory utilization. In essence, keys that
have been least recently accessed compared to others are priori-
tized for replacement. The prototype communicates with both the
MongoDB server and the Redis server to record and retrieve disk
information.

A.3 Usage of Blocks in Filesystem

As mentioned in section 3.4, Time Machine introduces the concept
of the block bitmap within the EXT4 filesystem to track which
blocks are not in use, enabling direct data writing to these blocks
without any adverse effects. Basically, most common file systems
incorporate such functionality. Unix operating systems typically uti-
lize the EXT4 filesystem, with older versions employing EXT2/EXT3.
On the other hand, Windows operating systems commonly employ
file systems such as FAT, NTFS, or exFAT. This subsection is ded-
icated to acquiring block usage information for NTFS and EXT4,
which are the primary file systems utilized in Windows and Linux,
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respectively. Specifically, we implement such an analysis mecha-
nism for the EXT4 file system in our prototype.

The Fourth Extended File System (EXT4) is split into a sequence
of block groups. Each group, typically with a default block size
of 4KB, encompasses 32768 blocks, totaling 128MB in length. The
total number of block groups is determined by dividing the size
of the device by the size of a block group. The simplified layout
of a typical EXT4 is depicted in Figure 11a. The superblock con-
tains essential information about the filesystem, including block
counts, inode counts, supported features, maintenance data, and
more. Meanwhile, the group descriptors are the descriptors associ-
ated with each block group and record the locations of data block
bitmaps, inode bitmaps, and the inode table. Typically, each group
descriptor spans 0x40 bytes. The data block bitmap monitors the
utilization status of data blocks within the block group, while the
inode bitmap tracks the occupancy of entries in the inode table. In
both bitmaps, each bit represents the usage status of a data block
or inode table entry. In a regular UNIX filesystem, the inode serves
as a data structure for all metadata related to a file. To retrieve
information associated with a file, it can navigate through directory
files to locate the directory entry corresponding to the file, then
access the inode to retrieve metadata and the location of the data
blocks for that file.

Based on the layout of the EXT4 file system, we extract infor-
mation about data block usage from the data block bitmap. Due to
potential misalignment between the filesystem and the disk, block
numbers in the filesystem do not directly map to those seen in
the hypervisor. To resolve this discrepancy, the prototype initially
parses the start offset of the filesystem on the disk. It then retrieves
the location of the data block bitmap from the corresponding group
descriptors and constructs the entire block bitmap based on their
block group numbers, adjusted by the offset. With the block usage
bitmap, write requests can directly access the disk for unused blocks
without influencing the size of the collection.

The New Technology File System (NTFS) consists of several
components, including the partition boot sector (PBS), master file
table (MFT), a series of metafiles, and data areas. A simplified layout
of NTFS is depicted in Figure 11b. The partition boot sector stores
boot information, while the master file table contains metadata
about all files, directories, and metafile data, similar to the inode
data structure in EXT4. In other words, each file on an NTFS is
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represented by a record in the master file table. The MFT backup
serves as a partial copy of the MFT and is utilized if corruption
occurs. Additionally, NTES includes several files that define and
organize the file system. The metafile $Bitmap tracks cluster usage
on the NTFS filesystem, with each bit in the $Bitmap representing
the usage status of a cluster. According to the layout of the NTFS,
the data block usage information can be extracted from the $Bitmap,
with the need to convert the unit of clusters to blocks. Although
we only introduced two filesystems here, other filesystems can
also retrieve data block usage information. Only the protection
mechanism for unused blocks needs to understand the layout of a
filesystem, and we believe that all the other approaches can work
in all operating systems/filesystems.

Note that the I/O interception module splits requests into sector-
level operations, which may not align with the block size used in
the bitmap. Traditionally, for spinning disks, consolidating related
blocks nearby minimizes the movement required by the head actu-
ator and disk to access data blocks, leading to improved disk I/O
performance. While SSDs lack moving parts, achieving data locality
can still increase transfer request sizes while reducing the overall
number of requests. Additionally, this locality may concentrate
writes on a single erase block, significantly boosting file rewrite
speeds. Hence, minimizing fragmentation is essential for optimizing
performance. Essentially, data locality is a highly desirable char-
acteristic of a filesystem, and each read/write request to a data
may consist of several consecutive sectors with high probability.
By leveraging the characteristic of the filesystem, the prototype
applies a compromise method wherein a block is marked as used
if and only if all the sectors within it are written during a write
request initiated by the guest operating system or if a write request
is completed that has modified sectors within the block.
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