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Abstract—Malicious binaries have caused data and monetary
loss to people, and these binaries keep evolving rapidly nowa-
days. With tons of new unknown attack binaries, one essential
daily task for security analysts and researchers is to analyze
and effectively identify malicious parts and report the critical
behaviors within the binaries. While manual analysis is slow and
ineffective, automated malware report generation is a long-term
goal for malware analysts and researchers. This study moves
one step toward the goal by identifying essential functions in
malicious binaries to accelerate and even automate the analyzing
process. We design and implement an expert system based on
our proposed graph neural network called MalwareExpert. The
system pinpoints the essential functions of an analyzed sample
and visualizes the relationships between involved parts. We
evaluate our proposed approach using executable binaries in
the Windows operating system. The evaluation results show that
our approach has a competitive detection performance (97.3%
accuracy and 96.5% recall rate) compared to existing malware
detection models. Moreover, it gives an intuitive and easy-to-
understand explanation of the model predictions by visualizing
and correlating essential functions. We compare the identified
essential functions reported by our system against several expert-
made malware analysis reports from multiple sources. Our
qualitative and quantitative analyses show that the pinpointed
functions indicate accurate directions. In the best case, the
top 2% of functions reported from the system can cover all
expert-annotated functions in three steps. We believe that the
MalwareExpert system has shed light on automated program
behavior analysis.

Index Terms—Graph neural network, Machine learning for
security, Malware analysis, Reverse Engineering

I. INTRODUCTION

Malicious software is one of the most critical threats people
and enterprises face nowadays. It has brought many data
and monetary losses, and the even worse news is that new
malware still grows much faster than humans can handle.
The report shows that millions of new malware samples were
observed monthly, accumulating billions of malware samples
since 2013 [1]. Also, the number of observed ransomware
attacks in the first half of 2021 has surpassed the total number
of records observed in 2020 [2]. It is a foreseen future that
cyberattacks will be more frequent and severe, and we need
to figure out a more effective way to defend against them.
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The vast number of malware samples has incurred much
workload for security analysts. Although detecting malicious
binaries is an age-old problem, malware detection is still
challenging [3], [4], and it still requires a lot of human
resources to analyze identified samples for further clarification.
Even with the help of artificial intelligence models, there
are still difficulties in various areas, including data labeling,
feature selection, model selection, and evaluation. Suppose
a sample can be accurately classified into either benign or
malicious first. Analyzing a sample in-depth and understanding
its behavior is still a time-consuming task. No matter how
accurate a model is, a security analyst needs to know why and
how the model makes a decision — especially when dealing
with an unknown binary in real-world cases.

This study attempts to develop an expert system to analyze
a malware sample and report essential functions identified
in the sample. The system is composed of two components.
One is to detect samples as malicious or benign accurately,
and the other is to identify essential functions in the samples
that lead to the detection. We design our approach based on
static binary analysis techniques. To our knowledge, most
existing machine learning-based detection approaches target
improving detection performance. Although they can achieve
high accuracy and low false-positive rates, it is challenging to
explain why a model determines a malicious binary and how
we can leverage the detection result to simplify the malicious
sample analyzing process.

We tackle this problem by addressing the limitations and
challenges observed in the current research works. The objec-
tive of our approach is to construct an explainable detection
model. In addition to having a competitive detection accuracy,
the retrieved binary semantic representations can be further
used to explain the detection result and guide security analysts
for better in-depth analysis. Our contribution is three-fold.
First, we propose a graph neural network-based (GNN-based)
malware detector which can achieve competitive performance
in accuracy, precision, recall, and false-positive rates. Sec-
ond, the GNN-based model produces explainable results by
indicating the most critical subgraphs that lead to malicious
detections. The identified subgraphs can be easily mapped to
the evaluated samples’ corresponding functions and function
calls. Last, we further use our approach to analyze real-
world samples and compare them against expert-made analysis
reports to show the effectiveness of our approach. Specifically,
we answer the following research questions to validate our
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research.
• RQ1: How many samples are required to train a good

detector? (Section V-B)
• RQ2: Does our approach have a competitive performance

to the state-of-the-art static-based detection approaches?
(Section V-C)

• RQ3: Does our approach work well for unknown samples?
(Section V-D)

• RQ4: What are the impacts of having function embeddings?
(Section V-E)

• RQ5: What is the performance of the explainers? (Sec-
tion V-F)

• RQ6: How to quantify the quality of clues provided by our
proposed system? (Section V-G)

• RQ7: What behavior is explained from real-world samples
using our proposed system? (Section V-H)

• RQ8: Does our approach work with customized packers?
(Section V-I)

• RQ9: How the reverse engineering tools are selected for
performance evaluation? (Section V-J).
The rest of this paper is organized as follows. We overview

several research works that employ machine learning and
neural network approaches to detect malware in Section II.
In Section III, we review past research on Graph Neural
Networks, feature representation, and graph-related model
explanation, which are utilized in our proposed methods.
We introduce our approach in Section IV and evaluate its
performance in Section V. Finally, a concluding remark and
future research directions are given in Section VI.

II. RELATED WORK

Many research works have employed machine learning
techniques for malware detection and classification. These
works generally take static, dynamic, or raw binary features as
input and output binary (e.g., benign or malicious) or multi-
class (e.g., malware families) results. This section discusses
machine learning-based malware detection research works
using static analysis features. We classify these works into
three categories: 1) using typical file content-based features, 2)
employing modern embedding-based features, and 3) making
explainable predictions.

A. File Content-based Feature

Binary analysis techniques can be used to extract program
information and runtime behavior from binary executable
files. Before employing machine learning-based approaches,
extracted program information and runtime behaviors must be
transformed into features represented in fixed-length vectors.
This section introduces several handcrafted features and how
these features are used in machine learning models.

Raff et al. [5] propose two approaches to detect malware
based on features extracted from the executable file header
information. Their work focuses on Windows portable exe-
cutable (PE) files. In the first approach, they parse the PE
header information into feature vectors based on experts’
domain knowledge and build a random forest model to perform
the detection. In the second approach, PE header bytes are

transformed into features using the N-gram algorithm instead
of relying on domain knowledge. A long short-term memory
(LSTM) model is then used to build a detection model. The
results show that the two models are both effective for predic-
tion. More in-depth experiments [6] [7] are also conducted
to understand better what the model learned from N-gram
features. They conclude that the model learned entropy and
string features from N-gram features.

Researchers [8], [9] also attempt to convert an executable
binary into a corresponding gray-scale image and use the
images to train a CNN-based malware detector. The detection
performance looks good on malware classification compared to
models built from other features. Vasan et al. [10] further use
image-based CNN models to create an ensemble architecture
to improve the overall detection performance. Le et al. [11]
propose deep learning-based malware classification without
feature engineering. They feed raw binary byte sequences
into a convolutional and recurrent neural network to classify
malware families. Training a model with either gray images or
raw binary byte sequences looks interesting and compelling.
No domain knowledge is required in the preprocessing and
training process. However, the rationale behind the models
could be not intuitive and difficult to explain.

Anderson and Roth [12] propose the EMBER dataset, which
defines several feature extraction methods for static malware
analysis models, including header/section information, print-
able strings, entropy, import/export functions, and the N-gram
of the most frequently used instructions. They further leverage
a gradient-boosted decision tree model (LightGBM) to build a
malware detection model, showing that it outperforms several
featureless deep learning models. Pham et al. [13] use a
gradient-enhanced decision tree algorithm to detect malware
with a high detection rate and low false alarm rate. Also,
they perform feature reduction on the features of the EMBER
dataset to reduce the training time. The results show that
the feature extraction from PE files using static analysis and
domain knowledge would improve the performance.

B. Embedding-based Feature
Working with typical file content-based features is straight-

forward. However, it does not provide sufficient insights
for analysts to understand the criteria for detection and the
semantics behind the models. One step toward understanding
how a model works is using embeddings as features, which
are frequently used in natural language processing. There are
several benefits to using embeddings as features. Embeddings
can be used to preserve contextual information. They also
preserve geometric properties so typical distance measurement
matrixes can measure the similarity between embeddings.

Many research works have proposed approaches to gen-
erate embeddings from sequential or structured data [14]–
[20]. There are also embeddings explicitly designed for
source codes and program binaries, such as FCG2vec [21],
code2vec [22], and SAFE [23]. With embeddings, security
researchers further build machine learning models to detect
and classify malicious samples. FireEye proposes a model [24]
that detects malware from raw byte sequences. It generates em-
beddings and feeds them into a one-dimensional convolutional
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layer and temporal max-pooling layers. Then, they use fully
connected layers and a softmax layer to determine whether
a sample is malicious. Hashemi et al. [25] propose a new
approach for unknown malware detection using opcode graph
embedding. They translate each opcode into a vertex. The
weight of each directed edge represents the transition probabil-
ity from one opcode to another. They use Power Iteration [26]
to generate graph embedding for detecting malware. Hassen
et al. [21] propose a function-call-graph representation vector
for malware classification, and it could combine graph and
non-graph features within the representation vector. Broder et
al. [27] calculate graph similarity using the MinHash signature
of functions and classify the malware groups. Hugo et al. [28]
efficiently condense structural information of function call
graphs by calculating the neighborhood hash value for each
node and evaluating the graph kernel in linear time for each
call graph. They generate feature space embeddings fed into a
linear SVM for training and detecting malicious functionality
in samples and also attempt to perform interpretation of the
model decisions. Xu et al. [29] compute the control flow graph
embedding for each binary function and calculate the distance
between embeddings to decide the similarity of functions.
They achieve faster embedding time and better vulnerable
detection ability than prior works. Fan et al. [30] depict the
complex relationships among various entities (i.e., file, archive,
machine, API, DLL) in PE files by constructing heterogeneous
information networks (HIN). Based on different views of the
HIN relations, meta-graphs representing the relatedness among
files are generated and embedded into a lower-dimension
vector through metagraph2vec. Moreover, embeddings are
combined via a fusion algorithm and put into a Support
Vector Machine (SVM) for further malware classification.
Zhang et al. [31] extract behavior information of programs into
word sequences. A semantic-captured word embedding model
(GloVe) vectorized each word and formed a feature map for
each file. Furthermore, a convolutional neural network (CNN)
utilizes these vector maps for analyzing benign and malicious
binaries.

C. Explainable Prediction

Well-tuned neural network models can give us high accuracy
rates and good performance. Sometimes, we only need a little
insight and domain knowledge of malware analysis. However,
such a black box could bring uncertainties when applied to
real-world cases. From developers’ perspectives, they have to
figure out how a model works and the critical points of a
sample to make sure everything makes sense, not just find
particular magic rules in the training dataset. We also expect
a model to learn interesting characteristics analysts may not
notice from samples. An explainable model lets developers and
users realize how a prediction is made and thus is essential
for building a trustworthy and accurate model.

Krčál et al. [32] investigate and evaluate the malware classi-
fication model learned from raw sequences of bytes and labels
to figure out what it learned. They find that the model would
take the header’s context, sections of various types, resources,
or relocation tables to classify the malware. Coull et al. [33]

evaluate the raw-bytes model proposed by FireEye [24] with
activation analysis. They conclude that import-related features
occupy an essential place, and the model could identify ASCII
strings and specific behaviors, such as calling functions from
the bytes sequence. Moreover, it learns complicated features
like checksum and Rich header information [34]. Demetrio et
al. [35] use adversarial attack techniques to find out the critical
points of MalConv. They assume that the DOS header, which
is useless in modern PE binaries, could play an essential role
in the decision. Bose et al. [36] evaluate MalConv and make
a different conclusion from Demetrio’s work. They find the
header information important, while other binary pieces could
also be accountable for the final result. Not only analyzing
what a model learned, but some works also focus on building
an explainable model. Korine et al. propose DAEMON [37],
which generates a malware classification model through multi-
stage feature mining, including entropy threshold computa-
tion, family representative N-grams extraction, and pairwise-
separating feature selection. After these stages, a random
forest model with high accuracy and explainability would be
generated based on the selected features.

In summary, researchers have developed multiple ways to
represent the characteristics of a binary, from handcrafted
features to context-preserving embeddings, to boost the detec-
tion performance of the classifiers. Generally, neural network
embedding-based approaches achieve better performance than
classical machine learning-based approaches. Nevertheless,
methods based on classical machine learning approaches are
more likely to be used in the real world than neural network
models because models based on statistics or mathematics
would be easier to understand. Some researchers have at-
tempted to inspect the content learned by the neural network
models or even tried to build a human-understandable model.
However, the answers to explaining a model’s predictions or
knowledge captured by models still need to be clarified. On
the other hand, we can easily apply a classifier to predict the
labels if the embeddings we used are distinguishable. However,
even if using some attention mechanism to show the highly
focused parts of the embedding, we still cannot understand the
relation between embeddings and prediction labels.

In this study, we proposed a new direction for building a
behavior-explainable malware classification model leveraging
multiple types of program embeddings. We generate contex-
tual embeddings from functions and function call relationships
within a program and use the embeddings to train graph neu-
ral networks to perform malicious software detection. Using
various approaches, we then identify critical structures in the
program and explain its behaviors recognized by our model.
By pointing out crucial components inside the program, we
aim to reduce the security analyst’s efforts when analyzing an
unknown malicious sample.

III. BACKGROUND

A. Representation Vector and Embedding

While developers or attackers generate binary files using
a compiler, security analysts usually have to reverse the
process by reconstructing assembly codes from machine codes.
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Furthermore, reconstructed assembly codes can be used to
build control flow graphs, function call graphs, and even an
abstract syntax tree for more in-depth analysis.

However, employing machine learning approaches for pro-
gram analysis requires one further step because most machine
learning models only handle inputs in the form of representa-
tion vectors. A representation vector (also called an embedding
vector or simply embedding) is a form that can be used to
represent complex or high-dimension inputs in a simplified
form. It is usually in the form of low-dimension vectors.
Ideally, an embedding can capture some of the input semantics
and be used for training a machine learning model. Therefore,
before feeding program samples to a model, it is essential to
have a good approach for transforming reconstructed assembly
codes into adequate embeddings.

Several works have been devoted to developing methods
for obtaining embeddings from complex structures. Dai et
al. proposed structure2vec [19], which generates embeddings
of structure data with discriminative information. It extracts
features by graph inference, which is similar to mean-field
and belief propagation. Grohe et al. investigate the vector
embedding theory [20] for structured data. In general, embed-
dings can be retrieved by using various approaches that can
handle the input structures. Examples include DeepWalk [15],
node2vec [16], the Weisfeiler-Leman algorithm [17], and Ho-
momorphism vectors [18]. Creating embeddings using a graph
neural network is one of the most generic and straightforward
approaches for graph-based input structures.

There are also embedding approaches explicitly developed
for program analysis. Program structures required for creating
embeddings can be obtained from static analysis or dynamic
analysis results. Choosing between static analysis or dynamic
analysis approaches is a trade-off between program analysis
time and the realness of the obtained information. Working
with a static analysis approach would be more efficient, and
it can analyze a program thoroughly. However, it may not be
able to get the most precise program information if a processed
program is protected. Several approaches can obtain embed-
dings from program analysis results. Asm2vec [38] attempts to
generate embeddings from low-level assembly codes and basic
blocks. It leverages natural language processing techniques
like word2vec [14] to handle each assembly instruction as a
word and pieces of assembly codes as a sentence to learn
the embeddings. Moreover, structured data such as function
call graphs and abstract syntax trees contain the relationships
between components in a program. To get more semantic in-
formation, we can take instructions to construct a control flow
graph and generate function embeddings by using algorithms
such as FCG2vec [21], code2vec [22], and SAFE [23].

B. Graph Neural Network and Model Explanation

A graph neural network (GNN) is a neural network that
processes graph structure data. While neural networks pro-
cess inputs in the form of vectors and matrices, the most
important part of a graph neural network is obtaining the
most appropriate form to represent a graph in vectors, often
called embeddings. Most models deal with graph structure data

based on message-passing schemes, which are considered the
generalization versions of the convolution operator. Using the
message passing scheme, we can pass messages such as some
features or hidden vectors to our neighbors and aggregate the
information of the messages to produce embeddings. Graph
Convolutional Network [39] (GCN) applies convolutions on
graph structure data and encodes both local graph structures
and features of nodes to generate embedding. Graph Attention
Network [40] (GAT) leverages masked self-attentional layers
that let the model knows the importance and focuses on the
relevant features of neighbor nodes to learn the representation
vector. Gated Graph Sequence Neural Network [41] (GGNN)
uses gated recurrent units (GRUs) to memorize the sequential
relationship of the node features at each update and generate
graph semantic vectors.

In recent years, extensive research works have applied
GNN techniques to antagonize various malicious activities.
Researchers [42]–[44] have explored different graph extraction
and context embedding techniques to classify PE malware
with GNN models. From extracting control flow graph or
function call graph to retain the structural information of a
program, using multiple semantic embedding methods, such
as word2vec, to capture semantic features, to applying GNN
model structures, like Graph Isomorphism Network (GIN)
or Graph Attention Network (GAT), for generating graph
embedding from a program, they aim to provide input with as
much information as possible to their final classifiers. Zhang
et al. [45] propose adversarial attacks to evade the detections
from GNN malware detection models. Interestingly, many
GNN-based detectors are designed specifically for Android
binaries [46]–[48]. The Android decompilers can precisely
decompile bytecodes into (minified) source codes.

The nature of graph-based models is that they are easier
to be explained. There are several ways to explain a graph
model’s prediction. A straightforward way is to mutate the
input and calculate the loss gradient to see what graph structure
or features affect it. Furthermore, if a model leverages the
attention mechanism to generate embeddings, it can calculate
attention scores and see the highest attention part of the
graph and features. Ying et al. [49] propose GNN explainer,
a model-agnostic approach, to identify impactful subgraphs
and node features that influence the model prediction. The
explainer focuses on maximizing mutual information between
the GNN’s prediction probability and the prediction distribu-
tion of possible crucial subgraphs. It supports explanations for
various machine learning tasks, including node classification,
graph classification, and link prediction.

Researchers also leverage GNN-based detection models
to recognize relevant activities in malicious samples. He et
al. [48] propose MsDroid, which extracts sub-graphs from a
program based on the neighboring nodes of selected sensitive
APIs. They then train a GNN-based detection model to classify
whether a sub-graph (code snippets) is malicious or benign.
Besides showing sensitive APIs correlated with malicious
behaviors in the input call graph snippets and retrieving
similarly implemented snippets from known malware, they try
to maximize the mutual information between prediction and
distribution of crucial edge dependencies, as GNN explainer,



5

to identify the importance of edges in API call graphs.
Our approach differs from previous works as follows. First,

we do not depend on any predefined API list, allowing for
greater flexibility and adaptability to changing threat land-
scapes. Second, we consider the whole graph structure instead
of API-segmented sub-graphs, allowing for a more com-
prehensive understanding of its behavior. Last, we examine
the influence of various embedding methods on classifica-
tion performance, explore different explaining possibilities,
and further validate the effectiveness of our explanations in
improving the malware analysis process. Readers can refer to
Section V for more details.

IV. APPROACH

A. Problem Statement

The proposed expert system aims to build an explainable
malware classification model that detects malicious samples
and explains further the critical part that leads to the detection.
We give a formal statement of the problem, clarify the scope
of this study, and list assumptions of the proposed approach
in this section. Suppose we have a set of binary programs X
containing |X| programs. Each program xi ∈ X (1 ≤ i ≤ |X|)
is analyzed first to generate its call graph gxi

. Suppose there
are nxi

functions in xi. The call graph gxi
is built based

on each recognized function f j
xi

(1 ≤ j ≤ nxi ) in xi and
their calling relationships. The graph gxi

can be transformed
to its corresponding embedding g⃗xi

, where each node f j
xi

in the graph can be represented as either a null embedding,
e.g., [0 . . . 0], or a preferred function embedding ⃗

f j
xi . By

collecting the graph embeddings of all programs in X and
form GX , our system trains the graph neural network model
ΦX to perform the recognition of malicious samples. Given an
arbitrary program sample x′ (known or unknown), our system
first detects x′ as either benign or malicious. Furthermore, a
model explanation is performed by feeding gx′ and ΦX to our
proposed model explainer to identify essential parts in program
x′. Table I summarizes the notations used in this study.

The usage scenario of our proposed approach is as follows.
A security analyst may use a pre-trained model from others
to perform guided sample analysis. However, to build a self-
trained model, a security analyst collects a bunch of samples
from known sources and has total control of these samples.
To capture the essence of binaries, the analyst may conduct
preprocessing procedures for these samples, such as removing
packer-related parts, to avoid noise information. Based on this
scenario, this study follows three assumptions.
• Most samples are deobfuscated or unpacked. Malicious

programs often adopt polymorphic or metamorphic tech-
niques to evade the malware detection systems using packer
or obfuscated code. Several studies [50]–[53] have discussed
packer detection, unpacking, and deobfuscation and aimed
to solve these problems systematically. Because training
a model for recognizing crucial behaviors in a malicious
program interests us the most, we ignore samples packed in
well-known packers or obfuscators. There still exist some
programs packed by customized or unknown packers or
obfuscators in our dataset. Nevertheless, our experiment

TABLE I
NOTATIONS USED IN THIS STUDY.

Notation Meanings
X A set of samples used to train the detection model.
xi A sample program in X , where 1 ≤ i ≤ |X|.
nxi Number of functions in program xi.
fj
xi

A function in xi, where 1 ≤ j ≤ nxi .
gxi The call graph constructed based on functions in xi.
⃗
fj
xi

The function embedding generated for function fj
xi

.
g⃗xi The graph embedding generated for program xi.
GX The set of graph embeddings for all programs in X .
ΦX The graph neural network model trained from GX .
x′ An arbitrary program for detection and explanation.
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Fig. 1. The workflow of the proposed MalwareExpert system.

results show that our system can capture these routines when
handling packed or obfuscated samples since identifying
function parts that perform unpacking and deobfuscating is
also a crucial process in reverse engineering.

• Use only static analysis features. We consider only features
that can be retrieved from static analysis for the following
reasons. First, the cost of retrieving static analysis is man-
ageable. We do not have to set up a runtime environment,
and the analysis time is usually proportional to the size and
complexity of a sample program. Second, static features are
deterministic. It is not affected by runtime conditions and
exceptions. The results depend only on the algorithm we
used to extract features. Third, static features are scalable.
Due to its simplicity and deterministic property, it is also
easier to scale out and scale up the feature extraction process
to accelerate the analyzing process.

• Do not consider adversarial samples. As using GNN-
based models on malware detection become more popular,
researchers have explored the possibilities of adversarial
attacks [45] on these detection models. However, we ignore
adversarial attacks in this work because we focus more on
training a model that can recognize interesting parts in a
(malicious) program, not proposing a strong detector. In our
proposed scenario, a user can choose to filter out possibly
adversarial samples to prevent his model from being pol-
luted. Adversarial samples mainly mislead a detector into
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Fig. 2. The architecture of the MalwareExpert model.

classifying the samples into benign samples. In order to
mitigate the possible impacts caused by adversarial samples,
benign samples can be collected only from trusted sources.
For malicious samples, we can only use samples that are
considered malicious by most of the detectors.

B. Workflow Overview

The workflow of our proposed detection and explanation
system is depicted in Figure 1. There are three phases: the sam-
ple preprocessing phase, the training/classification phase, and
the explanation phase. The sample preprocessing is mandatory
for the rest of the phases. In the sample processing phase,
each program executable is reverse-engineered and statically
analyzed for identifying functions and caller-callee relation-
ships in the executable. A corresponding call graph is then
built based on the analyzed information. Note that we need
additional models to perform embedding extractions, which
are used in the preprocessing phase in Figure 1. The models
can be publicly available pre-trained or self-trained models.
The selected embeddings are introduced later in Section IV-C

The training and classification phase is similar to typical
machine learning applications. They share the same path in
the workflow. With a well-trained model, an unknown program
executable can follow the same procedures used in the training
phase to obtain the embeddings of the program and then feed
the embeddings to perform the classification.

The most challenging phase in our workflow is the expla-
nation phase. This phase aims to report critical parts identified
in a classified program executable. The program can be either
a known (available in the training set) or an unknown sample.
Since the input to the classification model contains function
embeddings and graph structure, the reported critical parts
that impact a sample as malicious or benign can be shown
as functions and function calls. We expect those reported
functions and function calls to be clues for security analysts
to analyze the input program’s behaviors better. The details
of the involved phases are discussed in Sections IV-C, IV-D,
and IV-E, respectively.

C. The Sample Preprocessing Phase

Procedures involved in the sample preprocessing phase
include reverse engineering, static analysis, and embedding
extraction. The preprocessing phase is required in both the
training phase and the detection phase. There are a lot of
reverse engineering tools and static analysis tools available,
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N
or
m
al
iz
at
io
n

Ac
tiv
at
io
n

D
ro
po

ut

G
ra
ph

C
on

v

+

Fig. 4. The architecture of each DeeperGCN layer.

including IDA Pro [54], Ghidra [55], Radare2 [56], and many
other alternatives. Our study uses the open-sourced Radare2
as the default reverse engineering tool. It is used to identify
functions and build the corresponding function call graph.
A function call graph is a directed graph containing nodes
and edges, where each node represents a function, and each
directed edge represents a function call relationship. If function
fa (caller) calls function fb (callee), two nodes, a and b, are
added to the graph with a directed edge eab linked from node A
to node B.

Embedding for each function is extracted and placed in
the generated call graph, serving as the node feature. Al-
though node information, i.e., function embeddings in this
study, is not a must in graph-based classification, working
with embeddings would be better for the classification. The
structure of call graphs is relatively monotonic compared
to other graph-based applications such as social networks.
Therefore, considering both the node information and the
graph structure simultaneously to obtain the graph embeddings
can enrich the information in the output. To validate our
assumption, we consider three different function embeddings:
the null embedding, the Asm2Vec [38] embedding, and the
self-attentive function embeddings (SAFE) [23]. We use a
vector containing only zero values as the null embedding for
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each node. The sizes of SAFE and Asm2Vec embeddings
follow the settings recommended by the authors, which are
100 and 200 dimensions, respectively. The size of the null
embedding follows the smaller one, which is 100 dimensions.

The Asm2Vec model handles assembly codes of a function
as a document and learns the representation vector based on
the operand and operator tokens inside a function. Asm2Vec
updates the prediction of current instruction each time based
on the predicted function representation at the moment and
the neighboring context to generate the final function repre-
sentation. With only assembly codes, Asm2Vec can capture se-
mantic relationships between tokens in the assembly code. The
architecture of the SAFE model is depicted in Figure 3. The
model generates a function embedding from a disassembled
function. Similar to word2vec [20], it first uses an instruction-
to-vector (i2v) block to convert each instruction to a corre-
sponding vector. It then leverages a self-attentive network [57]
to generate function embeddings from the instruction vectors.
The SAFE model should be trained with sufficiently diverse
programs to ensure that it can produce different embeddings
for various executables.

D. The Training/Classification Phase

Once the graph embeddings are ready, the next step is to
train a model that classifies a program as malicious or benign.
We propose a MalwareExpert model to perform graph-based
malware classification, as shown in Figure 2. The model is
designed by extending the graph convolutional network [39]
(GCN). The model takes the call graph and function embed-
dings as input and generates the binary semantic embedding
for prediction based on the graph structure. While typical
graph neural networks have few layers (usually 2–4), it is still
challenging to effectively handle a massive number of inputs
retrieved from a program. Three typical issues are over-fitting,
over-squashing [58], and over-smoothing [59], [60] issues.
Although adding dropout layers can mitigate the problem of
over-fitting, the performance in terms of accuracy could be
better due to limited model capacity, which leads to over-
squashing and over-smoothing. Therefore, we integrate the
DeeperGCN [59] concept in our design to further solve the
over-squashing problem by increasing the number of layers in
the network.

Our MalwareExpert model first takes the node feature vec-
tors as input and uses a Linear layer to embed them into hidden
vectors to ensure the inputs can fit the memory limitation of the
hardware. For performing exact n times of graph convolutions,
the hidden vectors and the corresponding edge relations are fed
to a GraphConv layer and the following n − 1 DeeperGCN
layers. The output is the convoluted node embeddings. After
passing through the normalization and the activation layer, the
convoluted node embeddings are forwarded to the global mean
polling layer to produce the graph embedding for each sample
in the batch. Our current model design predicts scores for
the corresponding classes (benign and malicious) instead of
predicting a single malicious probability. Passing the graph
embedding to the following dropout, linear, and softmax
layers, the model finally makes the prediction based on the

class having the highest score. The primary benefit of having
prediction scores for each class is that we do not need to
define a threshold for malicious probability, which is not a
trivial task.

Existing research works mitigate the over-smoothing prob-
lem mainly by designing specific GCN-based models or ad-
justing the convolution process and normalization function to
preserve the diversity of features [59], [61]. Figure 4 shows
the architecture of each DeeperGCN layer. It uses the skip
connection operation, the pre-activation residual connection,
to keep meaningful information not fading out and prevent
gradient vanishing. The implementation setup of our Malwa-
reExpert model is as follows. We set n to 8, use GENeral-
ized Graph Convolution [59] to implement GraphConv, use
LayerNorm [62] to perform normalization, and use the ReLu
function for activation.

The process of the classification phase has the same pre-
processing steps as the training phase. Instead of training
a detection model, the classification phase uses the trained
model to perform sample classification. With only the trained
model and the input data required for the explanation phase,
which aims to explain the reason behind the prediction result,
the stages of classification and explanation are essentially
independent.

E. The Explanation Phase
When a malicious sample is reported, a security analyst

needs to understand why the sample is classified as malicious
and what is the underlying behavior behind the classification.
We believe that if a graph-based model can report which part
of the graph leads to the detection, it would benefit security
analysts and accelerate analyzing malicious programs.

We propose two approaches to identify the graph’s critical
parts that lead to a corresponding detection. A straightforward
approach is designed based on graph pruning, and the other
leverages the GNN explainer [49]. The rationale behind the
graph pruning approach is straightforward. When the graph-
based model could not recognize the critical structure pruned
from a graph, it would decrease the prediction score of the
involved class. Therefore, we use two pruning strategies for
edges derived from a target sample’s function call graph. One
is edge-pruning, which removes only a selected edge from a
graph. The other is node-pruning, which removes an edge’s
two endpoint nodes and edges connecting to the two nodes
from a graph. We apply the selected pruning strategy for each
edge from the original graph, perform the detection against
the pruned graph using our proposed model, and measure the
predicted benign score for the pruned edge. The impact of
pruning a single edge is determined by measuring the benign
score difference between the pruned and the original graph.
After measuring the impacts for an edge, we roll back the
graph to its original state. The rank of each edge is sorted
based on their impact on the prediction.

Alternatively, the GNN explainer attempts to identify critical
subgraph structures that impact the GNN model’s decision.
It can apply to various GNN architectures, including Graph
Networks, Graph Convolutional Networks, and many other
GNN-based models.
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(c) Samples in APT dataset.

Fig. 5. The number of nodes and edges observed in the collected datasets.

Each GNN prediction is evaluated based on a computation
subgraph containing the critical information for a sample’s
classification result. The hidden computation subgraph must
have enough GNN’s neural messages to flow through and
arrive at the related nodes to generate a proper prediction.
Thus, the GNN explainer trains another neural network to
maximize the mutual information between approximate com-
putation subgraphs and the model prediction, which aims to
find the core graph structure that affects the model’s behavior.

The output model from the GNN explainer takes the trained
GNN model and its prediction as input and assigns weight
to each edge in the corresponding input graph as the edge’s
importance score. We can use these GNN model explanations
as clues to examine the caller-callee relationships in the
original function call graph and infer which subgraph parts
are crucial to this sample. Based on these clues, experts can
then mine the call chain of these crucial functions.

V. EVALUATION

This section answers the following research questions (RQs)
by designing experiments to evaluate our proposed approach
and discuss several interesting findings. We implement our
proposed approach using PyTorch and run the codes on a
server with an NVIDIA Quadro RTX 6000 GPU. We follow
the TESSERACT [63] practice to perform the evaluations to
reduce the potential bias in malware detection experiments.
The TESSERACT practice suggests that the spatial and tem-
poral distribution of samples selected for evaluations should
be well-controlled. In the case of spatial distributions, the
proportion of benign and malicious samples should be fair
in most test cases. Furthermore, the number of programs de-
veloped in different periods should be balanced when dealing
with temporal distributions. Otherwise, it may mislead a model
to classify samples based on timing-relevant features instead
of the nature of the samples. In short, the samples used for
evaluations should be sufficiently diverse, or it could lead to
biased models and results.

A. Dataset

We perform the evaluations with three different datasets:
benign samples, viruses, and APT samples. While Windows
is still the primary operating system that dominates the desktop
OS market [64], we mainly use samples available on the
Windows platform in our evaluations.

TABLE II
SUMMARY OF THE DATASETS COLLECTED IN THIS STUDY.

Packed by
Dataset Arch. Well-known Packers The Rest Total
Benign 32-bit 7 30,793 30,800

64-bit 1 14,152 14,153
Virus 32-bit 5,386 64,072 69,458

64-bit 517 5,282 5,799
APT 32-bit 94 2,656 2,750
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Fig. 6. Identified packers from the virus dataset.

The datasets are collected from various sources. For benign
samples, we collect 44,953 benign samples from Windows
10 system binaries and libraries, popular packages from the
Chocolatey1 repository, and the Cygwin2 utilities. For viruses,
we collect 75,257 portable executable (PE) files from the
VirusShare3 dataset. For APT samples, we collect them from
publicly available sources4 and use 2,865 real-world samples
from 12 state-sponsored APT groups. All of them are also
executables in the PE format.

Table II shows the summary of the datasets collected in this
study. Before we use the samples to evaluate our proposed
model, we perform simple preprocessing against the samples
and drop samples that could mislead our model. We first
drop all the binaries packed by well-known packers to reduce
the possible dataset pollution from well-known packers, as
suggested by Aghakhani et al. [65]. The identified packers
from the virus dataset are shown in Figure 6. The detection
is performed by Detect-It-Easy [66] tool. Although we do
not train our model with binaries packed with well-known

1https://chocolatey.org/
2https://www.cygwin.com/
3https://virusshare.com/
4https://github.com/cyber-research/APTMalware
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packers, our virus dataset contains more than 100 unique types
of customized packed samples reported from virus scanners.
We also notice that the numbers of 32-bit binaries are generally
more than that of 64-bit binaries. When sampling binaries from
the datasets, we maintain the ratio of samples selected from
the pools equivalent to the ratio we observed in the field.

We plot the number of nodes and edges retrieved from
samples of each dataset in Figure 5. Each point in the figures
indicates the number of nodes and edges obtained from a
sample. The figures show some interesting observations in the
samples. First, we can see that some samples are plotted on
the bottom line of the figures. These samples are exceptional
because they are composed of only nodes (functions) without
edges (function calls inside the sample). We remove them
from our datasets because no call graph can be constructed
from these exceptional samples. After the removal, the benign,
virus, and APT datasets left 16,847, 55,886, and 2,665 sam-
ples, respectively. Note that many files were removed from
benign samples because they were library files. Second, we
observe that some samples have a vast number of nodes.
These samples are large-scale applications such as browsers
and office software components. It is also interesting that
some malicious samples also have many nodes. Most cases
are because a malicious code snippet is injected into a benign
target with many nodes.

B. RQ1: Is the Model Well-Trained?

This section evaluates how many samples are required to
train a good detector and what is the impact of multiple
GCN layers. We control the number of samples used to train
the model for training time and space considerations. First,
extracting the call graphs and embeddings from the sample
executables costs a lot of time. Second, the obtained call
graphs and the function embeddings from the samples also
consume many spaces. For example, given 30,000 samples
from our dataset, the total size of the raw features in JSON
format is about 40GB. Finally, the time required for training
a model is highly relevant to the number of samples fed to a
model. While the performance of the model and the number
of used samples is often a trade-off, we have to ensure that
we use a sufficient number of samples in the evaluations to
have good quality evaluations.

To answer this research question, we use different numbers
of samples ranging from 3,000 to 30,000 to train our pro-
posed model and evaluate its performance. Note that the ratio
between benign and virus samples is 1:1 in all settings. The
evaluation settings and the results are presented in Table III.
To determine if the performance change is caused by a change
in quantity and not by some of the newly added samples, we
perform experiments ten times to obtain the average results.
In each experiment, we randomly select samples from a fixed
dataset, train the model, and conduct the experiments multiple
times to eliminate distribution bias.

The results show that more training samples would improve
detection performance. However, the improvement increases
more slowly. It becomes relatively stable when more than
15,000 samples are in the training dataset. We use a total of

TABLE III
EVALUATION WITH DIFFERENT NUMBERS OF SAMPLES.

# of # of
Benign Virus Accuracy Precision Recall F1-score
1,500 1,500 0.885481 0.893238 0.906137 0.899642
4,500 4,500 0.926988 0.941606 0.923628 0.932530
7,500 7,500 0.962000 0.970297 0.950139 0.960112

12,000 12,000 0.965333 0.959766 0.972387 0.966035
15,000 15,000 0.970000 0.964912 0.976331 0.970588
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Fig. 7. Graph embeddings of samples in the benign and the virus datasets
produced by our proposed model.

30,000 samples from our benign and virus datasets, if not
otherwise mentioned, based on the evaluation results.

We further validate the GNN’s sample classification capa-
bility by visualizing the graph embeddings produced in our
model. We train the model with 30,000 samples from the
benign and virus datasets and plot the graph embeddings
using the t-SNE [67] dimension reduction approach, which
projects high-dimension embeddings to two-dimension spaces.
The results are depicted in Figure 7. The figure shows that the
malicious samples can be separated from benign ones in the
projected space in most cases. It also concludes that the model
is well-trained to perform the detection.

Readers may notice that a few red and blue points are mixed
in Figure 7. It does not indicate that our proposed model
cannot distinguish them well. While the t-SNE algorithm
reduces high-dimension points to a 2D plane, it is unavoidable
that separable points in the original space could collide in the
2D space. Therefore, the linear layer is employed in our model
to help find the correct boundary to classify high-dimensional
data.

To verify that our proposed approach does not have over-
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(a) Layers = 1
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(b) Layers = 4
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Fig. 8. Performance results for different layers of GCN implemented in our
proposed approach.
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TABLE IV
EVALUATION RESULTS FOR THE BENIGN AND VIRUS DATASETS.

Model Accuracy Precision Recall F1-score
EMBER (LightGBM) 0.998166 0.998332 0.998000 0.998166

MalConv (CNN-based) 0.944500 0.941118 0.948333 0.944711
MalwareExpert (GNN-based) 0.973787 0.981752 0.965715 0.973632

squashing and over-smoothing issues, we conduct perfor-
mance evaluations using different layers of GCNs and observe
whether the performance is stable. In the experiments, we
set the number of GCN layers to 1, 4, and 8 and plot the
measured loss and accuracy for the training and validation
phases in Figure 8. The results show that the losses and
accuracy numbers get stabler and better as the number of
layers increases.

C. RQ2: Detection Performance

This section evaluates whether our proposed approach has
a competitive performance to the state-of-the-art static mal-
ware detection approach. We compare our proposed approach
against two different flavors of detection approaches. One is
based on typical machine learning algorithms, and the other
is based on neural networks. For the case of typical machine
learning algorithms, we use the LightGBM model to evaluate
the EMBER dataset [12] but train it with our datasets. For the
case of neural networks, we consider the MalConv model [68],
which constructed a neural network model trained by raw
bytes from samples. The MalConv model is trained using the
same datasets. Because the two models output a probability
of being malicious, we use a threshold of 0.5 as the decision
boundary for the models to predict benign or malicious.

We train the two selected approaches and our proposed
approach using samples half from the benign dataset and
half from the virus dataset. The model is evaluated with
30,000 samples splitting into a ratio of 8:2 for training and
validation. The evaluation result is presented in Table IV. Our
proposed GNN-based model has a competitive performance
close to the LightGBM model and outperforms the MalConv
model. Furthermore, our proposed approach is much better
than the LightGBM model in explainability. The LightGBM
model is a tree-based model containing decision boundaries
for selected feature vectors. Although a user can inspect
and verify how a decision is made, two challenges make it
difficult to explain the classification. First, the meanings of
these decision boundaries could be magic numbers to a user.
Second, a decision often depends on several diverse inputs
before making it. However, the involved inputs may not have
any relationships, making it difficult to explain. Our approach
tackles these challenges by identifying the critical structures
in call graphs, which have direct mappings to functions and
function calls. More details on the explainability are further
discussed in Section V-G.

D. RQ3: Handling Unknown Samples

We further evaluate whether the proposed approach can
detect unknown types of samples that the model has never
seen. We train our model and then compare models with only

TABLE V
EVALUATION RESULTS FOR THE APT DATASET AND UNKNOWN BENIGN

SAMPLES.

Model Approach Accuracy Recall
LightGBM EMBER (pre-trained) 0.819382 0.639043

EMBER (self-trained) 0.938820 0.879310
CNN-based MalConv (pre-trained) 0.746384 0.493604

MalConv (self-trained) 0.883870 0.843159
GNN-based MalwareExpert 0.965021 0.950094

TABLE VI
EVALUATION RESULTS FOR DIFFERENT FUNCTION EMBEDDINGS.

Selected Function Embedding Accuracy Precision Recall F1-score
Null 0.679617 0.773491 0.593621 0.633797

Asm2Vec (self-trained) 0.897784 0.926837 0.863340 0.893472
SAFE (self-trained) 0.973412 0.976921 0.969835 0.973338
SAFE (pre-trained) 0.973787 0.981752 0.965715 0.973632

benign and virus dataset samples to perform the evaluation. In
addition to training all three approaches used in RQ2 with
our evaluation dataset, we also use the pre-trained models
available to the public to perform the evaluations. We perform
the detection against samples from the APT dataset and the
same amount of model-unknown samples from the benign
dataset, using the self-trained and the pre-trained models for
the evaluation.

The specifications of the pre-trained models are as fol-
lows. The LightGBM model is pre-trained with the EMBER
dataset containing 1.1 million binaries. The features include
PE structure, byte entropy, strings, and many static analysis
features. The pre-trained LightGBM model is publicly avail-
able under the GitHub repository of the Elastic project [69].
Researchers [12] also provide the pre-trained MalConv model
to compare the performance of the LightGBM and MalConv
models. The pre-trained MalConv model is also available
under the GitHub repository of the Elastic project [69]. Note
that we can not train our approach with EMBER dataset
because the dataset does not contain the original executables
to produce the features required by our model.

The evaluation result is presented in Table V. We observe
that the models trained with our prepared datasets (labeled as
self-trained) have better detection performance than the pre-
trained models in the LightGBM and MalConv models. The
result shows that all the self-trained LightGBM, MalConv,
and our GNN-based model can effectively recognize unknown
samples. Nevertheless, our model outperforms the other two,
indicating that, with the same training dataset, our model has
better detection ability when facing unknown samples.

E. RQ4: Impacts of Function Embeddings

This section discusses the impacts of having function
embeddings in our design. We believe that simultaneously
considering both the node information and the graph structure
to derive graph embeddings can enrich the information in
the output and benefit the prediction model. Therefore, we
validate our assumption by considering three different function
embeddings: the null embedding, the Asm2Vec embedding,
and the SAFE embedding. We train our model using the same
samples selected from the benign and virus datasets. We use
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Fig. 9. Performance evaluations for explainer efficiency and stability.

15,000 samples from benign and virus datasets, respectively,
and split the collected samples with an 8:2 ratio for training
and testing purposes.

The evaluated function embedding models are derived as
follows. We consider the pre-trained SAFE5 model and the
self-trained Asm2Vec and SAFE embedding models in the
evaluation. The Asm2Vec embedding model is trained using
the same training data to train the SAFE embedding model for
the fair performance comparison of the two embeddings. The
i2v blocks used in the pre-trained and self-trained SAFE model
are the same. It is derived from about 1.3 million functions
from UNIX executables and libraries compiled for different
CPU architectures, including ARM and AMD64. The self-
attentive network pre-trained by the authors is then trained
with 548 thousand of functions from UNIX libraries compiled
for ARM and AMD64 CPU architectures. All the binaries
are compiled using three compilers and four optimization
levels. For our self-trained Asm2Vec and SAFE embeddings,
we compile 209 thousand functions from three open-source
UNIX tools (binutils, curl, and openssl) using GCC with four
optimization levels.

Table VI shows the model performance of using different
function embeddings. With null embeddings, the average accu-
racy, precision, recall, and F1 score are 67%, 77%, 59%, and
63%, respectively. Compared to the results against graphs with
modern function embeddings, the null embeddings lead to a
worse result than the model trained with Asm2Vec and SAFE
embeddings under the same setting. The monotonic structure
of function call graphs leads to the dropped performance,
but having embeddings from nodes (functions) would help
compensate for the weakness.

F. RQ5: Performance of Explainers

We evaluate the performance of the proposed model explain-
ers (node pruning, edge pruning, and GNN explainer) from
two aspects in this section: efficiency and stability. We measure
the required time for different model explanation approaches.
Moreover, we confirm that the last method’s explanation result
can obtain stable results.

For this experiment, we randomly select different numbers
(ranging from 100 to 600) of samples from the sample pool
and redo the experiment several times for each sample set.

5https://github.com/gadiluna/SAFE

All of the experiments get consistent results. The node and
edge pruning always take predictable and identical running
times, and the GNN explainer consumes varying calculation
times for each run. The difference between the former two
methods and the last method is that node and edge pruning
use step-by-step commands to rebuild the new graph, and the
GNN explainer trains a new neural network every time to
approximate the critical subgraph structure in a sample and
thus receives various and unpredictable running time. Due to
the giant time difference between node/edge pruning and GNN
explaining, we select a small scale of 100 random samples for
plotting. Also, this is to avoid the result dots of the previous
two methods condensing in an unrecognizable cluster.

Figure 9(a) shows the scatter plot of how the scale of
samples impacts the required time to perform an explanation.
The Y-axis indicates the scale of the samples in terms of
the number of edges. The X-axis shows the required time to
process a sample. The figure shows that the more edges in a
sample, the longer the time required to perform the explana-
tion. The edge pruning approach is generally faster than the
node pruning approach. Nevertheless, the two approaches are
way faster than the GNN explainer-based approach.

Since the GNN explainer trains a new neural network
model each time to explain a sample, we further investigate
the explanation stability of the GNN explainer. We use the
AZORult malware, which contains 1645 edges, to perform the
evaluation. We use the GNN explainer to explain the model
prediction 100 times for the same malware and observe the
weights of edges assigned by the explainer to the sample. For
each edge in the sample, we present the scatter plot of its
average weight and the variance in Figure 9(b). The cumula-
tive distribution function (CDF) of the variances is plotted
in Figure 9(c). The two figures show that the explanation
results from the GNN explainer are stable. Most edges are
assigned with the same or similar weights, indicating that the
explanations are consistent and stable between different runs.

G. RQ6: Quantitative Analysis of Explainability

In this section, we attempt to quantify the quality of our
generated explanations. We use the functions annotated in
Lumina as expert-annotated explanations and measure the
distance from the top explainer-ranked edges toward these
targets. Lumina is a service hosted by IDA Pro (available
since version 7.2 was released in 2018) to collect and share



12

metadata from reverse engineers. It holds metadata (function
names, prototypes, comments, operand types, and other info)
about investigated functions. Any IDA users can send or
receive metadata from the Lumina service if they are willing
to share. For the annotated functions retrieved from Lumina,
we remove the standard library APIs and drop functions that
have no relationship with other functions in a sample. A
reverse engineer would prefer to annotate functions they think
are engaging in the reversing process. Therefore, to validate
the explanation quality of our proposed explainers, we are
interested in how many steps are required to trace from the
explainer-ranked edges to the expert-annotated functions.

We use the three ransomware samples, Lockbit, Phobos, and
WannaCry, for evaluation due to the samples and annotations
in the Lumina server. We only use a limited number of
samples for the following reasons. First, having quantitative
measurement means we need ground truth from experts. The
Lumina service is a good source of ground truth based on the
assumption that users would annotate their interested function
in a reverse engineering process. Second, although there are
many samples, only a limited number of them have been
annotated in the Lumina service. Since the Lumina service
has been available since 2018 (IDA Pro 7.2), we choose
samples available near 2018 or after 2018. Third, we choose
ransomware because they are popular, and its availability in the
Lumina database would be better than other types of samples
in the Lumina service.

Note that the GNN model used to perform the detection is
trained without any ransomware samples. Lockbit, Phobos, and
WannaCry have 468, 291, and 132 nodes and 783, 807, and
174 edges, respectively. We retrieved 43, 30, and 16 annotated
functions for the three samples, respectively, from the Lumina
server as of the time of conducting the experiments. Since
the explainers output the rank of essential edges, we expect
the explainer-selected top-ranked edges would “cover” all
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Fig. 10. Quantitative analysis results for explanation quality based on the
annotated metadata from Lumina.

expert-annotated functions. The definition of coverage is that
tracing from either one of the two nodes associated with a
selected edge can reach the expert-selected function within t
steps (forward or backward). Figure 10 shows the explanation
quality evaluation results based on annotations from Lumina.
The X-axis is the trace step limit t, and the Y-axis indicates the
ratio of top-ranked edges required (lower is better) to cover all
expert-annotated functions. The experiment results show that
all the explainers perform well with a trace step limit of three.
The GNN explainer is generally better than the edge-pruning
and node-pruning explainers. In the best case, we only need
2% of selected edges to cover all expert-annotated functions
in Phobos.

Readers may notice that the explainers perform poorly
for the WannaCry sample presented in Figure 10(c). This
is because the model may have learned some malicious
features from typical malicious software and then recognizes
ransomware samples based on these features. However, due to
the limited amount of ransomware samples in the training data,
the model could only partially discover some features held by
them, thus creating unsatisfied explanations for unknown or
unique ransomware.

Training a “good detector” and a “good explainer” are
two different stories. We use a simple example to illustrate
the difference. Typical ransomware often contains several
features, including (1) compromising a user, (2) making itself
persistent, (3) scanning for interesting files, and (4) performing
encryption. While features relevant to (1) and (2) can be
observed in regular malicious software, they are not unique
to ransomware and are not interesting to a reverse engineer.
Since the unique behavior of ransomware (such as (3) and
(4) in the example) are not learned in the model, the model
may still detect that the sample is malicious based on features
learned from (1) and (2). However, we would require features
like (3) and (4) to explain the sample well. To validate our
assumption, we add a small number of ransomware samples
(200 samples) from VirusTotal and retrain the GNN detection
model using the sample settings in RQ V-C. We then evaluate
the explanation quality between the models trained with and
without ransomware samples.

With the updated model, Phobos and Lockbit achieve sim-
ilar explanation performance compared to previous results,
but the explanation output quality of WannaCry encounters
massive growth, especially on the GNN explainer. The im-
provements in the explanation quality can be clearly observed
by comparing Figures 10(c) and 10(d). Though the two detec-
tion models obtain similar detection performance, the GNN
explainer receives a significant drop in the ratio of required
top-ranked edges (from 90% down to 15%) when the trace
step limit is three. To conclude, the evaluation results show
that all three explanation approaches can capture essential
subgraph structures in the call graphs of unknown samples.
Moreover, training models with target-similar samples may
boost the explanation quality for targeted samples.

H. RQ7: Explainable Behavior
This section performs qualitative analyses of the explained

results by discussing the clues reported from the model. We
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Fig. 11. Case studies for selected sample predictions explained by discussed
model explainer.

select four real-world samples, Phobos, AZORult, Equation
(APT), and WannaCry, and compare the essential parts recog-
nized by our model against our reversing engineering analysis
results and external experts’ analysis reports [70]–[73]. In
conclusion, the explainer provides highly relevant hints for
program behavior analysis. Note that the recognized edges and
subgraphs can be connected or disconnected, depending on the
implementation of critical functions and the selection ratio for
critical edges. We briefly summarize the results of the GNN
explainer as follows.

1) The Phobos Sample: Figure 11(a) shows the recognized
edges for Phobos ransomware. The explainer approach reports
the functions used for file enumeration and data encryption,
which is closely relevant to the major functionalities reported
for the sample.

2) The AZORult Sample: Figure 11(b) shows the recog-
nized edges for AZORult info stealer. The explainer success-
fully finds the entry functions that collect Internet Explorer’s
sensitive data. By tracing two steps from the entry functions,
it reaches info-stealing functions, including collecting cookies
and passwords from browsers and stealing crypto wallet data.

3) The Equation Sample: Figure 11(c) shows the recog-
nized edges for Equation APT. The explainer identifies the
DLL installer functions, which are highly relevant to the
dropper implementation. The observations align with multiple
security vendors reported on the VirusTotal website, which
indicates the sample is a dropper for APT installation.

4) The WannaCry Sample: Figure 11(d) shows the recog-
nized edges for WannaCry ransomware. We can see that the
explainer identifies several critical edges highly relevant to the
attacks presented in CVE-2017-0143. It indicates the function
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Fig. 12. GNN explainer result for WastedLocker (stage 1)

used to scan internal networks, recognize SMB services, and
create socket connections to victims.

I. RQ8: Deal with Packed Samples

Although we removed samples packed by well-known pack-
ers from the training set, we want to know if our model
can still find critical parts from packed binaries. There are
indeed samples packed by customized or unknown packers
or obfuscators. Nevertheless, it works well with our proposed
solution because reverse engineering is a progressive process,
and identifying essential parts that perform unpacking and
deobfuscating is also one important process to realize the
implementation of a malicious sample.

In the case of analyzing a packed sample, the objective of
our approach is to identify the routines used to perform un-
packing. This section uses real-world ransomware called Wast-
edLocker to perform the evaluation. We choose it because it
is two-stage ransomware, where the first stage is a customized
self-made encryption-based packer. We explain the prediction
using the GNN explainer and plot the results in Figure 12.
The figure marks the top 10 essential edges, including the
decryption and payload loading functions. Moreover, it also
discovers the function to check the runtime environment and
points out the APIs that the function uses. The result indicates
that our proposed approach works well on packed binaries.

J. RQ9: Observation of Reverse Engineering Tools

Readers may wonder why we choose the open-sourced
Radare2 (r2) to perform the experiments. We choose Radare2
for the following reasons. First, a tool must support automated
analysis. Although IDA supports Python script integration, it
is not available in the free version but only in the Pro version.
Second, a tool must be efficient. Our experiment results show
that Radare2 is about one point five to two times faster than
IDA Pro in most cases. Third, it would benefit the community
if the experiments were easier to reproduce, and working with
an open-sourced tool would make it easier for the community.

We conduct performance measurements against our choice
(Radare2) against the well-known commercial reverse engi-
neering tool IDA Pro to validate our choice. We use samples
from our collected datasets containing 45,611 benign samples
and 75,276 malicious samples to measure the performance of
the two tools. For Windows portable executable (PE) files,
we skip files implemented in .Net frameworks because they
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1 # Python script for Radare2
2 for s in samples:
3 t0 = time.time()
4 r = r2pipe.open(s)
5 r.cmd(’aaa’)
6 aflj = r.cmd(’aflj’)
7 r.quit()
8 t1 = time.time()
9 # store results into database

Fig. 13. Automated analysis script for Radare2.

1 # shell script for invoking IDA Pro
2 for s in $samples; do
3 $IDA -A -Sscript.py "-$s"
4 done

1 # script.py for IDA Pro
2 funcs = []
3 t0 = time.time()
4 auto_wait()
5 for seg in Segments():
6 for func in Functions(seg, get_segm_end(seg)):
7 funcname = get_func_name(func)
8 for (begin, end) in Chunks(func):
9 funcs.append({

10 ’offset’: begin,
11 ’name’: funcname,
12 ’size’: end-begin})
13 t1 = time.time()
14 # store results into database

Fig. 14. Automated analysis script for IDA Pro.

are bytecode-based executables and cannot be completely
decoded by the selected tools. The final datasets contain
20,778 benign samples and 72,894 malicious samples, which
are 45.55% and 96.94% of the benign and malicious samples,
respectively. We sort the files in the benign and malicious
datasets independently in ascendant order based on the file
sizes and group every 2000 files into subgroups based on the
sorted result. As a result, there are 11 groups (from G0 to
G10) for benign samples and 37 groups (from G0 to G36) for
malicious samples. We finally randomly select 10% of samples
from each group for performance evaluation.

We use Radare2 version 5.4 and IDA Pro version 8.2 to
conduct the experiments. We implement scripts to automate
the analysis process with default settings and record the re-
quired processing time and the functions they discovered. The
scripts implemented for the compared two tools are illustrated
in Figures 13 and 14, respectively. For Radare2, the Python
script iterates through all sample files. For each sample file, it
invokes Radare2 through the pipeline interface and then uses
the “aaa” command and the “aflj” command to analyze the files
and store analyzed information in JSON format. For IDA Pro,
we use a batch script to iteratively command the IDA Pro to
analyze a sample and invoke a given Python script. The script
waits until IDA Pro finishes analyzing a sample and retrieves
the required function information, including offsets, names,
and sizes. The results are also stored in a JSON-compatible
format.

We use box plots to present the measured processing time
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Fig. 15. Sample processing time for Radare2 and IDA Pro.

in Figure 15. The following observations can be made in the
presented result. First, both Radare2 and IDA Pro have several
outliers having much longer analysis time than others. Because
of these outliers, we set a Y-axis limit at 20s to avoid squashed
plots. Second, we see that both Radare2 and IDA Pro have
similar processing time trends in analyzing the samples. The
observation is based on the median values presented in the
figures. Third, based on the measured running time, Radare2
runs one point five to two times faster than IDA Pro.

We further evaluate the identified functions reported from
the two compared tools. We only compare the functions
reported from the tools because once we have recognized the
functions, we can use the same disassembly tools to recognize
call instructions and build the call graphs. Figure 16 shows
the percentage of functions discovered by Radare2 and IDA
Pro. The percentage is measured by the equation

p =
# of functions recognized by Radare2 (or IDA Pro)
# of all distinct functions recognized by both tools

.

IDA Pro generally reports much more functions than Radare2.
However, if we take a closer look at the differences, we find
that the heuristics employed by the tools cause the differences.
We summarize several findings as follows. First, we notice
that the two tools interpret exception handlers differently.
If a program invokes an exception handler using the call
instruction, Radare2 considers the exception handler as a
function, but IDA Pro does not. Second, IDA Pro sometimes
considers a jumping target as a function, but Radare2 does not.
However, it is interesting that this phenomenon is only visible
in the automation script invoked within IDA Pro but is invisible
in the GUI. Third, IDA Pro employs an intelligent heuristic to
guess possible indirect call targets in a program. The heuristic
detects whether addresses within the text segment are stored
in the data segment. Although there could be false positives,
i.e., incorrectly considering a constant value as a text segment
address, detected addresses are reported as functions.
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Fig. 16. Percentage of recognized functions for Radare2 and IDA Pro.

Based on our experiment results presented in this section,
we see that the compared tools have their strengths and
weaknesses. Reverse engineering tools could have different
interpretations for the same sample. However, it might be
challenging to tell which one is better than the other due to
the design choices employed by the tools. Although different
interpretations may lead to different results, the differences
are not because of inaccurate but inconsistent interpretations
of different tools. The more important thing is that we should
use the same tool to perform the interpretation and generate
the datasets instead of mixing the usage of tools to ensure that
the system has a consistent view of program structures.

VI. CONCLUSION AND FUTURE WORK

In this study, we develop the MalwareExpert system, which
is composed of our proposed graph neural network-based
malware classification model (the MalwareExpert model) and
several model explainers. The system converts input samples
into graph embeddings for detection and model explanation.
In addition to achieving a high detection performance (97.3%
accuracy and 96.5% recall rate), the model explainers rec-
ognize critical graph structures for classified samples. Our
qualitative and quantitative analyses have shown that the
identified functions provide accurate directions for accelerating
malware binary analyses. In the best case, the top 2% of
functions reported from the system can cover all expert-
annotated functions in three steps. We believe that the Malwa-
reExpert system has shed light on automated program behavior
analysis. Our proposed architecture that combines a high-
performance graph-based model and well-designed explainers
is sufficiently generic to perform various automated program
analysis purposes.
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