
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3151550, IEEE Internet of
Things Journal

1

DPView: Differentially Private Data Synthesis
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Abstract—The use of differentially private synthetic data has
been adopted as a common security measure for the public release
of sensitive data. However, the existing solutions either suffer
from serious privacy budget splitting or fail to fully automate the
generation procedures. In this study, we propose an automated
system for synthesizing differentially private synthetic tabular
data, called DPView. Our key insight is that high-dimensional
data synthesis can be accomplished by utilizing the domain sizes
of attributes, which are public information, whereas identifying
the correlation among attributes is necessary but leads to severe
privacy budget splitting. In addition, we analytically optimize
both the privacy budget allocation and consistency procedures
of the proposed method through mathematical programming.
We further propose two novel methods, including iterative non-
negativity and consistency-aware normalization, to post-process
the synthetic data. An extensive set of experimental results
demonstrates the superior utility of DPView.

Index Terms—Differential Privacy, Synthetic Dataset.

I. INTRODUCTION

Differential privacy (DP) [17], [22], [38] has been accepted
as the de facto standard for data privacy. Companies and
government agencies commonly conduct privacy-preserving
data analysis using DP. For example, Google publishes an
early release of their COVID-19 Community Mobility Reports
with DP. Uber and LinkedIn apply DP to their in-house data
warehouse, while startups such as LeapYear and Privitar offer
DP approaches for regulatory compliance, de-identification,
and anti-money laundering compliance. The US Census Bu-
reau has also released the 2020 census statistics with DP.

Most of the previous work on DP has focused on the design
of algorithms for specific data analysis tasks. However, this
narrow view may involve three limitations, which are labeled
as follows. (L1) The data owner should be assumed to be
aware of the specific data analysis task to be performed by
an analyst. Otherwise, the resulting DP dataset may involve a
potential privacy violation. (L2) The design and deployment
of DP algorithms requires expert knowledge of the specific
task to be performed. For example, the SQL engine requires
patching to perform DP-SQL queries, while stochastic gradient
descent (SGD) methods must be modified to train a deep
neural network in a DP manner. (L3) Thus, a data analyst
might be required to change their operating procedures to
adopt DP. While data analysts commonly train to apply
conventional analysis tools, this additional complexity may
present a challenge to DP adoption.
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Differentially Private Synthetic Dataset. One promising
solution to address the above limitations is to generate a
differentially private synthetic dataset (DPSD). As the DPSD
is statistically similar to the original dataset, all analytical
conclusions derived from DPSD will be similar to those
from the original dataset, overcoming (L1). As the analyst’s
operations can be understood as post-processing and therefore
do not violate the privacy of the data, analysts can apply their
conventional data analysis algorithms to DPSDs, overcoming
(L2) and (L3).

The current solutions for DPSD generation can largely be
categorized into two types, including parametric and non-
parametric [9]. The former (e.g., PrivBayes [59], and PATE-
GAN [36]) use Bayesian networks, generative adversarial
networks (GAN), or other generative models to learn a data
generating distribution and then create a synthetic dataset
from the distribution through the sampling. The latter (e.g.,
DPSyn [41] and PrivSyn [62]) work mainly on the empirical
distribution by decomposing a high-dimensional dataset into
a number of noisy marginals and generating the synthetic
dataset from these noisy marginals. Parametric approaches are
difficult to train and often do not have a clear privacy-utility
trade-off [9]. In contrast, non-parametric approaches tend to
be more efficient and their utility increases with increasing
privacy budget.

Design Challenge. However, most of the current DPSD
generation algorithms face the following three challenges.
• (C1) As all of the non-parametric approaches approximate
a high-dimensional joint data distribution through a number
of low-dimensional marginals, a data-dependent algorithm is
required to choose the highly correlated attributes. Due to
the high number of dimensions in the underlying dataset, the
above data-dependency incurs severe privacy budget splitting,
with a negative effect on utility.
• (C2) Although metrics such as mutual information are
popular for measuring the correlation between attributes, they
have high sensitivity, magnifying the scale of noise in the data.
Moreover, it is difficult to determine a clear threshold sepa-
rating high and low correlation. Many independent attributes
might be included in the case of a low threshold, leading to
a more severe data sparsity. In the case of a high threshold,
correlation information from the data distribution might be
lost. Both problems greatly diminish the utility of schemes
that employ them.
• (C3) Lastly, most of the current DPSD generation algorithms
require extensive manual effort [9] and cannot automatically
generate a DPSD. For example, despite winning an award in an
NIST Challenge, PGM [44] required the manual construction
of graph networks. Similarly, the data utility of DP-GAN
[60], [3], [11] has been shown to be sensitive to the settings
of parameters and hyper-parameters, which are left to be
determined by the user.

Contributions. We propose DPView as a non-parametric
DPSD generation algorithm. DPView achieves pure DP, as
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opposed to the approximate DP of most prior works. Our key
contributions can be summarized as follows. First, we propose
a novel domain size-aware marginal selection method that does
not consume the privacy budget. In contrast to prior view-
based approaches that split the privacy budget to select proper
marginals, our proposed method performs data-independent
marginal selection by taking advantage of domain sizes of
attributes’ public information. Compared with the existing
work, our unique feature of data independence significantly
alleviates the budget splitting problem, overcoming (C1) and
(C2). Moreover, the configuration of system parameters can
also be guided by the domain size information, enabling
automated DPSD generation and overcoming (C3).

Second, as the marginal with a larger domain size may lead
to a higher sparsity resulting in lower noise tolerance, room
for improvement remains in terms of utility if the privacy
budget is evenly allocated to all marginals. Here, we formulate
the privacy budget allocation as an optimization problem. We
then analytically derive the optimum privacy budget alloca-
tion among marginals. Third, we propose three novel post-
processing techniques to improve utility. In particular, we for-
mulate a consistency constraint as an optimization to achieve
the optimum weight distribution. Our proposed iterative non-
negativity, compared to the prior non-negativity which is not
guaranteed to stop with an indeterminate threshold, has greater
efficiency and retains the noise scale better. Our proposed
consistency-aware normalization also applies and propagates
a normalization from a carefully selected view to all the other
views without destroying the consistency of the data.

II. RELATED WORK

Differential privacy (DP) [17], [22], [38] has widely been
considered a gold standard in data privacy. Many DP algo-
rithms have been proposed for specific tasks such as mining
frequent graph patterns [47], mining frequent itemsets [39],
and training neural networks [2]. However, a number of
researchers have sought to generate general-purpose differ-
entially private synthetic datasets (DPSD); i.e., although the
optimal utility would not be expected for a given specific task,
it should be possible to perform any algorithm on a DPSD and
still obtains an analytical result with a reasonable utility. Many
DPSD generation algorithms may be found in the literature.
These can be divided into two categories, including parametric
and non-parametric. Some theoretical treatments have also
been devoted to DPSD generation. These are summarized
below.

Parametric Approaches. Parametric approaches are de-
signed to learn a data distribution from the original dataset
in a DP manner, and then perform the sampling from the
distribution to synthesize the data. PrivBayes [59] and BSG
[10] approximated the data distribution using a Bayesian
network. They suffered from the high sensitivity of their
correlation functions, which reduces the accuracy of their
network structure. KAMINO [29] follows a similar strategy by
decomposing the joint probability of the original dataset into
a chain of conditional probabilities, and estimates a privacy-
preserving data distribution using tuple embedding [54] and
an attention mechanism [6].

In contrast, JTree [16] and PGM [44] approximated the data
distribution using a Markov Random Field (MRF). JTree was
proposed to construct a dependency graph using the sparse
vector technique (SVT); however, Lyu et al. [40] found that
JTree applied SVT in a problematic way. From a set of

manually chosen low-dimensional marginals, PGM estimated
an MRF that best fit the marginals.

As a result of recent advance of deep learning, deep
generative models have also been used in DPSD generation.
Driven by the success of generative adversarial networks
(GAN), the majority of such efforts [60], [3], [11], [24],
[52], [49], [55], [5] have been devoted to the development
of DP-GANs. Using a training phase that may access the
original dataset, the DP-SGD strategy [2] is a popular choice to
obfuscate gradients in DP-GANs. On the basis of DP-SGD,
Zhang et al. [60] proposed clustering the weights of neural
networks and warm starting to reduce the noise scale. The
PATE-GAN [36] framework performed private aggregation of
teacher ensembles (PATE) to tightly bound the influence of
any individual sample on the model. Despite the popularity of
DP-GANs, variational autoencoders (VAEs), used by P3GM
[50] and DP-VAE [15], have also been alternatively used for
DPSD generation.

Non-Parametric Approaches. Non-parametric approaches
differ from parametric methods in that the former functions
mainly on the empirical distribution of the original dataset.
However, they still share the aim of reducing the noise scale by
approximating a high-dimensional distribution using a number
of low-dimensional distributions. To further mitigate noise
accumulation, non-parametric approaches can further reduce
the number of cell counts using methods such as maintaining
only highly correlated marginals and applying the privacy
budget asymmetrically across cells.

The publication of differentially private histograms was an
early non-parametric approach [58], [57]. However, it only
applied to low-dimensional datasets. For high-dimensional
datasets, PriView [46] partitioned a full-dimensional marginal
into a number of low-dimensional marginals by leveraging
covering design, reducing the data sparsity. While PriView
performed better for binary data, DPSyn [41] extended a
similar idea, enabling the corresponding DPSD generation
of high-utility non-binary data. Very recently, PrivSyn [62]
proposed a surrogate function with much lower sensitivity for
measuring dependency, resulting in a much lower noise scale
and thereby improving the overall utility.

Theoretical Results. Some DPSD algorithms have been
proposed that do not fall into either category. Based on a
combination of the multiplicative weights update rule [33],
[28] with an exponential mechanism [45], MWEM [32] initial-
ized and refined a random dataset, ensuring that its statistical
properties were consistent with those of the original dataset.
Based on the multiplicative weights update method as an
algorithmic technique used in game theory, Dual Query [27]
modeled data synthesis as a query release game. Thaler et al.
[51] sanitized and released a dataset by leveraging Chebyshev
polynomials.

Negative results on the DPSD have been reported [7] [21].
However, their query sets were much broader than the natural
set of queries in which a database user or maintainer would
be interested. Moreover, their results were all derived in an
asymptotic sense. Hence, these negative results do not rule
out DPSD algorithms in practice.

III. PRELIMINARIES

A. Problem Statement
We consider the problem as follows. A data owner has

an original dataset 𝑂 with sensitive information. Instead of
releasing 𝑂, the data owner generates a corresponding DPSD
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�̂�. �̂� and 𝑂 share similar statistical information; however, the
release of �̂� will not leak the individual information of 𝑂 due
to DP. Here, we assume that both 𝑂 and �̂� have 𝑛 independent
records, each of which has 𝑚 attributes. Each cell of 𝑂 and
�̂� can be either numeric or categorical. We also use partial
record to refer to a 𝑘-dimensional record with 𝑘 < 𝑚 from
a dataset. For example, both [3, 5] and [5, 7, 9] are partial
records if the record [3, 5, 7, 9] exists in a dataset with 𝑚 = 4.

More specifically, consider a dataset 𝑂 with attributes A =

{𝑎1, 𝑎2, . . . , 𝑎𝑚}. [𝑚] denotes an interval of integers from 1 to
𝑚. The function 𝑑𝑜𝑚(𝑎𝑖) = 𝑠𝑖 calculates that the domain size
of 𝑎𝑖 is 𝑠𝑖 . In other words, 𝑑𝑜𝑚(𝑎𝑖) = 𝑠𝑖 means that attribute
𝑎𝑖 has 𝑠𝑖 value possibilities after bucketization (See Section
4).

Contingency tables can be seen as histograms, in which
each cell counts the number of occurrences for each tuple.
Depending on context, 𝑘-way marginal either represents a
probability distribution of 𝑘 attributes or serves the same
role as contingency table. View 𝑣 is a (sub)set of attributes,
and view size, |𝑣 |, is the corresponding number of attributes.
When there are multiple views 𝑣𝑖 , we use 𝑣𝑖-marginal to
refer to the marginal with attributes in 𝑣𝑖 . The domain size
of a view/contingency table/marginal refers to the total num-
ber of value possibilities after bucketization. For example,
the domain size of a view 𝑣 consisting of 𝑎1 and 𝑎3, is
𝑑𝑜𝑚(𝑣) = 𝑑𝑜𝑚(𝑎1) × 𝑑𝑜𝑚(𝑎3) = 𝑠1 × 𝑠3. For notational
brevity, we use 𝑇𝑣𝑖 (𝑐) to retrieve the count of the cell 𝑐 from
the 𝑣𝑖-marginal. Moreover, we can also calculate the count
𝑇𝑣 ((𝛽1, 𝛽3)) =

∑
𝑖∈𝑎2 𝑇𝑣 ((𝛽1, 𝑖, 𝛽3)) for the cell (𝛽1, 𝛽3) of

the 𝑣-marginal with 𝑣 = {𝑎1, 𝑎2, 𝑎3}, where the term 𝑖 ∈ 𝑎2
indicates that 𝑖 is a candidate value of the attribute 𝑎2.

Privacy and utility are frequently used general metrics for
evaluating the quality of DPSD. In particular, for privacy,
we use 𝜀 (see Section III-B) as the standard. In contrast, as
the analytical results on 𝑂 are supposed to be identical to
those on �̂� in the ideal case, utility measures the similarity
between 𝑓 (𝑂) and 𝑓 (�̂�) for all functions 𝑓 . However, in
practice, we cannot enumerate all 𝑓 ’s; in this study, we
use the classification, 𝑘-way marginals, and range query as
representatives for 𝑓 (see Section V-A2).

B. Differential Privacy
Differential privacy (DP) [17], [22], [38] is defined as

mathematical privacy notion for statistical datasets. DP can
be achieved by injecting noise to the query result. We provide
the formal definition below.

Definition 1 (Differential Privacy): A randomized mecha-
nism M satisfies (𝜀, 𝛿)-DP, 𝜀 > 0, 𝛿 ≥ 0, if and only if

∀𝛼 ⊆ Range(M), Pr[M(D) = 𝛼] ≤ e𝜀 · Pr[M(D′) = 𝛼] + 𝛿,
(1)

where 𝐷 and 𝐷 ′ are two neighboring datasets.
In Definition 1, two datasets 𝐷 and 𝐷 ′ are neighboring if
they differ in at most one record. Lower privacy budget 𝜀
implies higher privacy, while 𝛿 corresponds to the probability
of failing to fulfill the DP definition. (𝜀, 0)-DP (abbreviated
as 𝜀-DP) is also called pure DP and (𝜀, 𝛿)-DP is approximate
DP. In this study, we consider pure DP only, unless stated
otherwise. Given a 𝑓 (𝐷) and a zero-mean Laplace distribution
Pr[Lap(𝛽) = x] = 1

2𝛽 e−|x |/𝛽 , one can derive its 𝜀-DP version
M𝜀 (𝐷) through the Laplace mechanism, defined as follows.

Definition 2 (Laplace Mechanism): M𝜀 (𝐷) = 𝑓 (𝐷) +
Lap( Δf

𝜀
) achieves 𝜀-DP, where Δ 𝑓 = 𝑚𝑎𝑥𝐷,𝐷′ | 𝑓 (𝐷) − 𝑓 (𝐷 ′) |.

DP also satisfies sequential composition and post-processing
conditions. The former states that greater accesses to the data
leads to greater privacy loss, while the latter states that any
data-independent operations on the DP data do not harm the
DP guarantee.

Definition 3 (Sequential Composition): Given 𝑀𝜀1 (𝐷) sat-
isfying 𝜀1-DP and 𝑀 ′𝜀2 (𝐷) satisfying 𝜀2-DP, 𝑀 ′𝜀2 (𝑀𝜀1 (𝐷))
satisfies (𝜀1 + 𝜀2)-DP.

Definition 4 (Post-Processing): Given 𝑀𝜀 (𝐷) satisfying 𝜀-
DP, for any data-independent algorithm 𝑀 ′, the composition
of 𝑀 and 𝑀 ′, i.e., 𝑀 ′(𝑀 (𝐷)), satisfies 𝜀-DP.

In DP algorithm design, the privacy budget splitting prob-
lem should be avoided. It may be observed from Definition
3 that given 𝜀, compared to an algorithm “touching” the data
only once, if the algorithm makes 𝑘 accesses to 𝑂, each access
only has a privacy budget 𝜀/𝑘 and will be perturbed by a
heavier noise 𝐿𝑎𝑝( Δ 𝑓

𝜀/𝑘 ).
Three relaxed versions of DP, known as Concentrated DP

(CDP) [23], zero CDP (zCDP) [8], Rényi DP (RDP) [42],
have been proposed to achieve a tighter analysis of cumulative
privacy loss. However, recently Jayaraman and Evans [35]
found that relaxed definitions of DP reducing the amount of
noise needed to improve utility also increased the measured
privacy leakage. As a result, in this study, we focus solely on
pure DP.

IV. DPVIEW

After introducing the general framework of DPSD genera-
tion, this section describes DPView, followed by its variant
DPView+.

A. A General Framework
A general framework is commonly used in non-parametric

DPSD generation, consisting of five steps, including data pre-
processing (S1), view list generation (S2), noisy marginal
construction (S3), post-processing (S4), and data synthesis
(S5). More specifically, the objective of (S1) is to modify,
transform, and clean the input dataset, ensuring that it is
in a correct format for further operations. (S2) decomposes
the high-dimensional dataset as a number of low-dimensional
datasets, usually according to its attributes. Thus, this step can
be considered as generating a list of proper views. After (S3)
injects noise into the data, (S4) attempts to reduce the impact
of noise by leveraging the inherent constraints of the dataset.
Lastly, (S5) creates the DPSD, mainly by using a sampling-
based technique.

DPView, the workflow of which is shown in Figure 1,
follows the above framework and therefore also consists of
five steps, which are detailed below.

Fig. 1: Workflow of DPView. BVG and CVG denote base
view generation and cross view generation, respectively, which
are described in Section IV-C. CON, NEG, NORM denote
consistency, non-negativity, and normalization, respectively,
which are described in Section IV-E.
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B. Data Pre-Processing (S1)
DPView can handle only categorical data. Thus, this step

performs bucketization, discretizing the numeric data. In par-
ticular, a numeric attribute is be partitioned into pre-defined
buckets representing a numeric interval, and a bucket id re-
places each numeric value. Thus, we can transform a numeric
attribute into a categorical attribute. In this study, we use equal-
size buckets, and therefore the number of buckers is the only
parameter to be determined.

C. View List Generation (S2)
In contrast to the existing DPSD algorithms which find

highly-correlated views, DPView aims to construct views less
impacted by noise by using the public information of domain
size. In particular, DPView includes base and cross view types,
which are formally defined below.

Definition 5: Given the view size 𝑑, the set 𝐵 of base views
in DPView is defined as 𝐵 = {𝑏1, . . . , 𝑏 d𝑚

𝑑
e |𝑏𝑖 ∩ 𝑏 𝑗 = 𝜙, 𝑖, 𝑗 =

1, 2, . . . , d𝑚
𝑑
e, 𝑖 ≠ 𝑗 , |𝑏1 | = · · · = |𝑏 d𝑚

𝑑
e−1 | = 𝑑, |𝑏 d𝑚

𝑑
e | ≤ 𝑑}.

Definition 6: Given 𝑑 and 𝐵, the set 𝐶 of cross views is
defined as 𝐶 = {𝑐1, . . . , 𝑐 d𝑚

𝑑
e−1 |𝑐𝑟 ⊆ 𝑏𝑟 ∪ 𝑏𝑟+1, 𝑐𝑟 ∩ 𝑏𝑟 ≠

∅, 𝑐𝑟 ∩ 𝑏𝑟+1 ≠ ∅, 𝑟 = 1, . . . , (d𝑚
𝑑
e − 1), |𝑐1 | = · · · = |𝑐 d𝑚

𝑑
e−2 | =

𝑑, |𝑐 d𝑚
𝑑
e−1 | ≤ 𝑑}.

1) Base View: Base views aim to cover all the attributes
in 𝑂 with the minimum number of views for a given view
size 𝑑. From Definition 5, it may be observed that more base
views imply a lower memory overhead and less sparsity for
marginals due to the decreased domain size of each view. How-
ever, more base views indicate less correlation information
among attributes preserved and more severe privacy budget
splitting. To attain our objective, we need to balance the above
two contradicting requirements; thus, we provide a guideline to
assist in choosing a proper 𝑑 in Section IV-C7, which directly
leads to an adequate number of base views.

Given the number 𝑚 of attributes in 𝑂 and a fixed view size
𝑑, there are two cases for base view construction. In the case
of 𝑑 |𝑚, we can generate 𝑚/𝑑 base views, each having view
size 𝑑. In contrast, in the case of 𝑑 6 |𝑚, the last base view
𝑏 d𝑚

𝑑
e will have a view size less than 𝑑. This affects how we

determine the cross views, as described below.
2) Cross View: Cross views are used to bridge base views

to compensate for the correlation information missing among
base views. Given 𝑚, 𝑑, and 𝐵, there are three cases for cross
views.
• Type-I (𝑑 |𝑚) For every pair of base views 𝑏𝑖 and 𝑏𝑖+1, we
generate a cross view according to Definition 6. For example,
in the Type-I of Figure 2, given base views 𝑏1 = {𝑎1, 𝑎2, 𝑎3},
𝑏2 = {𝑎4, 𝑎5, 𝑎6} and 𝑏3 = {𝑎7, 𝑎8, 𝑎9}, 𝑐1 = {𝑎2, 𝑎3, 𝑎4} and
𝑐2 = {𝑎5, 𝑎7, 𝑎8} may be possible cross views.
• Type-II (𝑑6 |𝑚 and |𝑏 d𝑚

𝑑
e | > 𝑑/2) We still generate a cross

view directly according to Definition 6. For example, in the
Type-II of Figure 2, given base views 𝑏1 = {𝑎1, 𝑎2, 𝑎3}, 𝑏2 =

{𝑎4, 𝑎5, 𝑎6} and 𝑏3 = {𝑎7, 𝑎8}, 𝑐1 = {𝑎2, 𝑎3, 𝑎4} and 𝑐2 =

{𝑎5, 𝑎6, 𝑎7} may be possible cross views.
• Type-III (𝑑 6 |𝑚 and |𝑏 d𝑚

𝑑
e | ≤ 𝑑/2) In this case, we select

𝑑 − |𝑏 d𝑚
𝑑
e | random attributes from 𝑏 d𝑚

𝑑
e−1 and include them

in 𝑏 d𝑚
𝑑
e first. However, we do not generate a cross view for

𝑏 d𝑚
𝑑
e−1 and 𝑏 d𝑚

𝑑
e because the above compensation behavior

for 𝑏 d𝑚
𝑑
e already bridges 𝑏 d𝑚

𝑑
e−1 and 𝑏 d𝑚

𝑑
e . Thus, to generate

an additional cross view would be superfluous and aggravate
privacy budget splitting.

Two potential questions may arise during Type-III cross
view construction. The first concerns the reason for only

Fig. 2: Three types of cross views.

selecting attributes from 𝑏 d𝑚
𝑑
e−1, instead of from all the

previous base views 𝑏1, 𝑏2, . . . , 𝑏 d𝑚
𝑑
e−1, to compensate 𝑏 d𝑚

𝑑
e .

This can be attributed to the fact that, in this case, the attributes
with much smaller domain size compared to all the previous
attributes are highly likely to be selected due to our algorithm
design (Algorithm 3, see Section IV-C). At first glance, 𝑏 d𝑚

𝑑
e

will have a smaller domain size, which seems beneficial
in terms of sparsity. However, it also leads to the loss of
correlation information between 𝑏 d𝑚

𝑑
e−1 and 𝑏 d𝑚

𝑑
e . Instead,

after the compensation 𝑏 d𝑚
𝑑
e may have attributes from each

previous base view, which may reduce the utility of the DPSD.
The second question concerns the reason for the necessity

of compensating 𝑏 d𝑚
𝑑
e , rather than interpreting the original

𝑏 d𝑚
𝑑
e as an individual base view and constructing a cross view

between 𝑏 d𝑚
𝑑
e−1 and 𝑏 d𝑚

𝑑
e . Without the compensation, |𝐵|+|𝐶 |

views are required in total, whereas only |𝐵| + |𝐶 | − 1 views
are required when applying the compensation. This slightly
alleviates the privacy budget splitting. Moreover, since there
are only few attributes in the original 𝑏 d𝑚

𝑑
e , if no compensation

applies to 𝑏 d𝑚
𝑑
e and the attributes in 𝑏 d𝑚

𝑑
e happen to have

large domain size, the attributes with larger domain size may
be included in the cross view, worsening the data sparsity.

3) Formulation of Base View and Cross View Construction:
Based on our observation that views with proper domain sizes
may be expected to balance memory overhead, sparsity, and
data synthesis accuracy, DPView aims to find base and cross
views allowing the summation of domain sizes of both views
to be minimized. More formally, we formulate the problem of
constructing base views and cross views as an optimization as
follows.

Definition 7: Given a set 𝑆 of 𝑛 numbers (domain sizes) and
a positive integer d𝑚/𝑑e, the objective of the base view-cross
view construction (BVCVC) problem is to find the optimum
base and cross views satisfying Definitions 5 and 6 such that
the summation of domain sizes of both views is minimized.
In particular, we refer to a balanced multi-way number parti-
tioning (BMNP) problem, whose input is a set 𝑆 of 𝑛 numbers
and a positive integer 𝑘 . The objective of BMNP is to partition
𝑆 into 𝑘 subsets such that each subset is either d𝑛/𝑘e or
b𝑛/𝑘c numbers and the difference between the maximum and
minimum subset sum is minimized. Due to the similarity
between BMNP and BVCVC, BVCVC can be easily proved to
be NP-Hard (formal proof omitted) because BMNP has been
proved NP-Hard [20].

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on August 05,2022 at 02:09:26 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3151550, IEEE Internet of
Things Journal

5

Algorithm 1: Base View Generation (BVG)
1 Input: 𝑑, A = {𝑎1, . . . , 𝑎𝑚}
2 randomly partition {𝑎1, . . . , 𝑎𝑚} into a set 𝐵 of d𝑚

𝑑
e

base views according to Definition 5
3 sort and number views in 𝐵 by top-b 𝑑2 c largest domain

sizes in a descending order
4 return B

Using approximation or heuristic algorithms for BMNP
[43], [61] to find base views first could serve as an approach
to a solution of BVCVC. However, after determining base
views, we still have no information to determine cross views.
Worse, as BVCVC requires a joint consideration of base and
cross views, the deterministic nature of its approximation and
heuristic algorithms may hinder the search for base and cross
views with smaller domain sizes.

4) Algorithm for Base View Generation (BVG): Despite the
definition of base views, we need an algorithm for explicitly
constructing base views. Here, we first present BVG (Algo-
rithm 1) as a subroutine of VLG (Algorithm 3; see Section
IV-C6). BVG can be understood largely as a simple algorithm
generating random base views. However, it is featured by its
ordering of base views. In particular, originally, the base views
generated lack explicit order. Therefore, once base views are
generated, BVG sorts and numbers them according to their
respective top-b 𝑑2 c largest domain size in descending order,
where the top-b 𝑑2 c largest domain size of 𝑏𝑖 is defined as
𝑠 𝑗1 · · · 𝑠 𝑗b 𝑑2 c

with 𝑎 𝑗1 , . . . , 𝑎 𝑗b 𝑑2 c
denoting the attributes having

the largest domain sizes in 𝑏𝑖 , 𝑗1, . . . , 𝑗 b 𝑑2 c
∈ [𝑚].

For a list [𝛽1, . . . , 𝛽2𝑘 ] of the sorted numbers, the
summation of products of the elements in the list
[[𝛽1, 𝛽2𝑘 ], . . . , [𝛽𝑘 , 𝛽𝑘+1]] of 2-partitions,

∑𝑘
𝑖=1 𝛽𝑖𝛽2𝑘−𝑖+1, can

be minimized. Unfortunately, the scenario of base view con-
struction is more complex, e.g., view size is not limited to
two. Thus, the algorithm sorts and numbers the base views
according to their respective top-b 𝑑2 c largest domain sizes
in a descending order in an attempt to perform a similar
minimization. For example, the upper part of Figure 3 includes
four base views. After the sorting and numbering, as the largest
among the top-b 𝑑2 c largest domain sizes of base views is 42,
the corresponding view is numbered as 𝑏1.

After the execution of BVG, we can make two observations.
(O1) First, each base view is usually composed of b 𝑑2 c (or
d 𝑑2 e) attributes with larger domain sizes, and d 𝑑2 e (or b 𝑑2 c)
attributes with smaller domain sizes. (O2) Second, cross view
generation is very likely to find a set of attributes, despite the
lack of a formal guarantee; half are from 𝑏𝑖 , another half are
from 𝑏𝑖+1, and the domain size of the half from 𝑏𝑖 is greater
than that of the half from 𝑏𝑖+1. These relations are useful in
determining cross views, and are further clarified in Section
IV-C5.

5) Algorithm for Cross View Generation (CVG): After
calculating and numbering base views through BVG, we move
to the construction of cross views. As mentioned previously,
for every pair of base views 𝑏𝑖 and 𝑏𝑖+1, we generate a cross
view according to Definition 6. Depending on the domain sizes
of the attributes in the two base views 𝑏𝑖 and 𝑏𝑖+1, there are
four cases for cross view construction.
• (low-to-low) Attributes with small domain size in 𝑏𝑖 may be
paired with the attributes with small domain size in 𝑏𝑖+1 (e.g.,
Figure 4a), so as to minimize the domain size of the generated

Fig. 3: An illustration of invoking BVG and CVG once.

cross view. At first glance, this may reduce the impact of noise.
Nonetheless, due to the unnecessary flexibility in combining
two marginals during the data synthesis (see Section IV-F), this
technique may also increase the erroneous pairing of partial
records, degrading the data utility of �̂�. Thus, it is necessary
to avoid the low-to-low strategy.
• (high-to-high) Figure 4b shows the high-to-high case, where
the attributes with large domain size in 𝑏𝑖 are paired to the
attributes with large domain size in 𝑏𝑖+1. This seems to imply
a fine-grained record mapping, resulting in data synthesis with
a better utility. Nevertheless, this technique still suffers from
the problems of memory overhead and data sparsity. We often
could not find a matching attribute in data synthesis, and the
synthetic data generation failed as a result. Hence, we also
prefer to avoid high-to-high.
• (high-to-low and low-to-high) Either high-to-low (Figure
4c) or low-to-high (Figure 4d) approaches can be used a com-
promise. Because the base views are combined sequentially
to generate cross views, there is a subtle difference between
high-to-low and low-to-high. As will be shown in the data
synthesis (S5) (See Section IV-F), because partial records are
combined from 𝑏1 to 𝑐1, 𝑏2 and so on sequentially, compared
to low-to-high which may be more likely to have erroneous
pairings, high-to-low generation performs pairing with a more
abundant amount of information on the correct linking and
therefore may be more likely to generate a synthetic dataset
with a better utility. In summary, we prefer using high-to-low
in cross view generation.

Fig. 4: Four cases for cross view generation: (a) low-to-low,
(b) high-to-high, (c) high-to-low, (d) low-to-high.

As mentioned above, DPView adopts the high-to-low strat-
egy to compose cross views. CVG (Algorithm 2) shows our
algorithm for cross view construction. Here, we point out some
details in implementing a high-to-low strategy.
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Algorithm 2: Cross View Generation (CVG)
1 Input: 𝑑, A = {𝑎1, . . . , 𝑎𝑚}, 𝐵 = {𝑏1, . . . , 𝑏 d𝑚

𝑑
e}

2 𝐶 ← ∅
3 if 𝑑 is even then
4 for 𝑖 = 1 ∼ d𝑚

𝑑
e − 1 do

5 𝑠𝑒𝑡1 ← select the largest 𝑑
2 attributes from 𝑏𝑖

6 𝑠𝑒𝑡2 ← select the lowest 𝑑
2 attributes from 𝑏𝑖+1

7 𝑐𝑖 ← 𝑠𝑒𝑡1 ∪ 𝑠𝑒𝑡2 and 𝐶 ← 𝐶 ∪ 𝑐𝑖

8 else
9 if |𝑏𝑖 | > b 𝑑2 c then 𝑥 = d𝑚

𝑑
e − 1

10 else 𝑥 = d𝑚
𝑑
e − 2

11 for 𝑖 = 1 ∼ 𝑥 do
12 𝑠𝑒𝑡1 ← select the largest b 𝑑2 c attributes from 𝑏𝑖
13 𝑠𝑒𝑡2 ← select the lowest b 𝑑2 c attributes from

𝑏𝑖+1
14 𝑐𝑖 ← 𝑠𝑒𝑡1 ∪ 𝑠𝑒𝑡2
15 𝑝 ← select the attribute with min domain size

from 𝑏𝑖+1 \ 𝑠𝑒𝑡2
16 if 𝑑𝑜𝑚(𝑠𝑒𝑡1) ≤ 𝑑𝑜𝑚(𝑠𝑒𝑡2) × 𝑑𝑜𝑚(𝑝) then
17 𝑝 ← select the attribute with min domain

size from 𝑏𝑖 \ 𝑠𝑒𝑡1
18 𝑐𝑖 ← 𝑐𝑖 ∪ 𝑝 and 𝐶 ← 𝐶 ∪ 𝑐𝑖

19 return 𝐶

• For base views 𝑏𝑖 and 𝑏𝑖+1, one can naïvely satisfy the
high-to-low strategy by selecting, for example, 𝑑−1 attributes
from 𝑏𝑖 and one attribute from 𝑏𝑖+1. However, this imbalance
may lead to poor utility of �̂� because a partial record from 𝑏𝑖
will be matched against another partial record from 𝑏𝑖+1 by
considering only one matched attribute, which is very likely
to have an erroneous pairing during (S5). Thus, choosing an
equal number of attributes from two base views is preferrable.
• The existence of such a cross view with an equal number
of attributes from two base views can be guaranteed by the
sorting of base views mentioned in (O2).
• Now it becomes clearer why we setup a magic number, b 𝑑2 c,
in the sorting of BVG (Algorithm 1). Due to the use of high-
to-low matching, a guarantee that we can find an attribute 𝑎 𝑗1
from 𝑏𝑖 and an attribute 𝑎 𝑗2 from 𝑏𝑖+1 satisfying 𝑠 𝑗1 ≥ 𝑠 𝑗2 ,
where 𝑗1, 𝑗2 ∈ [𝑚] is necessary. In this sense, sorting and
numbering the base views according to their respective top-
b 𝑑2 c largest domain size in a descending order attempts to
ensure such a requirement. Furthermore, as each base view
contributes either b 𝑑2 c or d 𝑑2 e attributes during the cross view
construction, it is more stable to ensure the above requirement
according to their respective top-b 𝑑2 c largest domain size,
rather than top-1 or top-𝑑 largest domain size.
• If an equal number of attributes cannot naturally be chosen
from both base views (e.g., view size is odd), then we include
an extra attribute from 𝑏𝑖+1 in 𝑐𝑖 (lines 13𝑠𝑖𝑚15 in Algorithm
2) to determine whether the high-to-low strategy can be
fulfilled. We accept such an arrangement if so, and change
to select an extra attribute from 𝑏𝑖 otherwise. Such a design
choice can be attributed to (O1); for the cross view from a
pair of 𝑏𝑖 and 𝑏𝑖+1, if we instead select an extra attribute from
𝑏𝑖 , this extra attribute has a small domain size. Similar to the
low-to-low, our experience shows that this leads to a worse
utility due to the unnecessary flexibility during data synthesis.

6) Algorithm for View List Generation (VLG): We propose
an iterative algorithm VLG (Algorithm 3), invoking BVG and

Algorithm 3: View List Generation (VLG)
1 Input: 𝑑, A = {𝑎1, . . . , 𝑎𝑚}
2 Input: 𝑥: number of iterations that VLG executes
3 𝐷best ←∞, 𝐵best ← ∅, 𝐶best ← ∅
4 for 𝑟𝑢𝑛 = 1 ∼ 𝑥 do
5 B ← BVG(A, 𝑑)
6 C ← CVG(A, 𝑑, 𝐵)
7 for 𝑣 in C do
8 if 𝑑𝑜𝑚(𝑣) > largest view in 𝐵 then
9 𝑝𝑎𝑠𝑠← True

10 if pass then continue
11 𝐷 ← ∑ |𝐵 |

𝑗=1(
∏

𝑎𝑖 ∈𝑏 𝑗
𝑠𝑖) +

∑ |𝐶 |
𝑗=1(

∏
𝑎𝑖 ∈𝑐 𝑗

𝑠𝑖)
12 if 𝐷 < 𝐷𝑏𝑒𝑠𝑡 then 𝐷best ← 𝐷, 𝐵best ← 𝐵,

𝐶best ← 𝐶

13 return 𝐵best and 𝐶best

CVG as subroutines, to generate the optimal base and cross
views. In particular, VLG iterates a given number of times
(e.g., 𝑥 times in Algorithm 3) and returns the optimal base and
cross views. On the other hand, VLG can choose to iterate
an uncertain number of times with an early stop policy to
find an optimal solution instead of adopting a brute force
search, as prohibitively many possibilities exist for different
combinations of views. For example, for a dataset with 25
attributes, to find the optimum views with 𝑑 = 5 requires
(𝑚 · 𝑑 − 1)!/(𝑑 − 1)! ≈ 2.585 · 1022 checks in a brute force
manner. We note that the largest 𝑑𝑜𝑚(𝑏𝑖) naturally serves
as an upper bound of the domain sizes of cross views (lines
7 ∼ 10 of Algorithm 3).

7) Guideline for Choosing View Size 𝑑: With the observa-
tion that larger view size in a marginal implies fewer views
and less splitting of privacy budget, but more severe sparsity,
we know that determining the view size using only domain
size information is by no means trivial. Here, we provide a
guideline on how to evaluate the goodness of a specific 𝑑 using
only domain size information.

The total domain size 𝐷 for 𝑂 can be calculated as 𝐷 =

𝑠1 · · · 𝑠𝑚. On average, each view has domain size 𝐷 ·𝑑
𝑚

. Here,
we assume that each hypothetical marginal with 𝑑 attributes is
a standard Gaussian distribution whose peak probability occurs
at the center area of the marginal. It may be derived that when
applying a query count, a zero-mean Laplace noise will fall
into [−𝜌, 𝜌] with probability 𝛾, where 𝜌 = 1

𝜀
ln(1− 𝛾). Given

a fixed 𝛾, any 𝑑 such that the size of the area within ( 𝐷 ·𝑑
𝑚
)-

dimensional standard Gaussian distribution above 𝜌

𝑛
is larger

than a threshold could be a candidate for the view size 𝑑.

D. Noisy Marginal Table Construction (S3)
In the previous step, we constructed base and cross views

by taking advantage of public knowledge on domain sizes of
attributes. In this step, we apply the Laplace mechanism on
the corresponding marginals to ensure 𝜀-DP. This is the only
step in DPView accessing 𝑂, which should be perturbed by
noise.

The corresponding marginals may be easily derived given
the views. Apply the Laplace mechanism to all the marginals,
each of which shares the same portion of 𝜀, is a straightforward
method to ensure DP. Most of the existing DPSD generation
algorithms such as DPSyn [41], PriView [46], and PrivBayes
[59] followed this strategy; i.e., 𝜀 is evenly allocated to
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marginals. We note that though PriView proposed a notion
of Expected Squared Error (ESE) to analyze noise scale, its
main purpose is to simplify the view update with common
attributes in the post-processing (particularly, consistency).
DPSyn also follows a similar policy. However, to the best of
our knowledge, DPView is the first to utilize ESE to derive
an optimum budget allocation.

We begin with a brief review of ESE. Consider the construc-
tion of a DPSD from a dataset with 𝑚 attributes using the flat
vector approach [46], [59]. As there is only a single view, there
is no need to split the privacy budget in this case. Therefore,
the ESE can be calculated as 2

𝜀2
∏𝑚

𝑖=1 𝑠𝑖 by summarizing the
variances of all cells introduced by noises. In other words,
assuming 𝑘 views are used to create marginals and inject noise,
the ESE of view 𝑣𝑖 is 2

(𝜀/𝑘)2
∏

𝑎𝑖 ∈𝑣𝑖 𝑠𝑖 if the privacy budget is
evenly allocated.

However, equally allocating the privacy budget to all the
views may not be an optimal strategy in terms of data
utility. In particular, this could be beneficial for the marginal
with smaller domain size. However, the marginal with larger
domain size may be expected to be severely affected by the
noise in this approach. Though there would be a more accurate
data synthesis for the marginals with smaller domain size,
the overall data synthesis still implies a likelihood of poor
data utility due to the heavily perturbed marginals with larger
domain size.

To remedy this problem, DPView calculates the proportion
𝑃𝑖 of privacy budget that is to be allocated to the view 𝑣𝑖 .
Suppose there are 𝑘 views {𝑣1, 𝑣2, . . . , 𝑣𝑘 } with corresponding
domain sizes {𝑠1, 𝑠2, . . . , 𝑠𝑘 }. Privacy budget allocation can be
formulated as an optimization problem as follows.

min
𝑠1

𝑃2
1
+ 𝑠2

𝑃2
2
+ · · · + 𝑠𝑘

𝑃2
𝑘

(2)

s.t. 𝑃1 + 𝑃2 + · · · + 𝑃𝑘 = 1 and 0 ≤ 𝑃𝑖 , for 𝑖 = 1, 2, . . . , 𝑘 .
(3)

We describe the rationale behind the above optimization
problem as follows. As Laplace noise needs to be added to
each cell, all of the noise in a given view will be accumulated
and the accumulated noise will be proportional to the number
of cells. In other words, all of the noise in a given view will be
accumulated and the accumulated noise will be proportional
to the domain size. Thus, given 𝑘 views with the same scale of
noise added to each cell, to minimize the noise, we minimize
𝑠1 + · · · + 𝑠𝑘 . However, the noise scale is controlled by Laplace
noise Lap( Δf

𝜀
). Here, Δ 𝑓 = 1 in DPView because Laplace

noise is added to each bar (i.e., count) in the contingency
table. Given privacy budget 𝜀, the view 𝑣𝑖 has 𝜀

𝑃𝑖
. Moreover,

as the variance of Lap( 1
𝜀/Pi
) is 2

𝑃2
𝑖

, we need to minimize the

total variance 𝑠1
2
𝑃2

1
+· · ·+𝑠𝑘 2

𝑃2
𝑘

. As the constant 2 does not have
impact on the result of the minimization, the above equation
can be rewritten as 𝑠1

𝑃2
1
+ 𝑠2

𝑃2
2
+ · · · + 𝑠𝑘

𝑃2
𝑘

.

The above optimization problem can easily find the opti-
mum solution through the Karush-Kuhn-Tucker (KKT) condi-
tion. In particular, let 𝐿 =

𝑠1
𝑃2

1
+ 𝑠2

𝑃2
2
+ · · · + 𝑠𝑘

𝑃2
𝑘

+ 𝜆(𝑃1 + 𝑃2 +
· · · + 𝑃𝑘 − 1), and for 𝑖 = 1, 2, . . . , 𝑘 , let 𝜕𝐿

𝜕𝑃𝑖
=
−2𝑠𝑖
𝑃3
𝑖

+ 𝜆 = 0.

Then, we have 𝑃𝑖 = ( 2𝑠𝑖𝜆 )
1
3 > 0, and 𝑃1 + 𝑃2 + · · · + 𝑃𝑘 − 1 =

( 1
𝜆
) 1

3 ·∑𝑘
𝑖=1 (2𝑠𝑖)

1
3 − 1 = 0. Thus, we can derive

𝜆 = 2 ·
(

𝑘∑︁
𝑖=1

𝑠
1
3
𝑖

)3

> 0, and thus 𝑃𝑖 =

©«
𝑠𝑖(∑𝑘

𝑖=1 𝑠
1
3
𝑖

)3

ª®®®®¬
1
3

> 0.

(4)

Hence, the budget allocated to each view 𝑣𝑖 would be 𝑃𝑖𝜀.
This optimum allocation can avoid using an excessive portion
of the privacy budget on the marginals with smaller domain
sizes to enable a strong but useless tolerance to noise, and
also allows the marginals with larger domain sizes to gain
more budget to reduce the negative impact of noise.

E. Post-Processing (S4)
A post-processing step is commonly used to refine DPSDs

to improve their utility. The post-processing step in DPView
includes consistency, non-negativity, and normalization. We
describe these in further detail below.

1) Consistency: Hay et al. [34] introduces consistency as a
post-processing step. Consistency aims to reach a “consensus”
of attribute values by updating attribute values through the
common attributes among different views. For example, in
PriView (DPSyn), if the views have common attributes, the
corresponding cells are updated using the (weighted) average
values. However, the consistency of PriView cannot handle
non-binary data well. Simultaneously, DPSyn considers only
even privacy budget allocation, which is not compatible with
our configuration of the optimum privacy budget allocation in
(S3). Hence, based on our optimum privacy budget allocation,
we formulate the process of deriving proper weights 𝑤𝑖 in the
above weighted consistency as an optimization problem. Then,
we analytically calculate the optimum weights in the weighted
consistency to improve the utility.

Weighted Consistency. Before delving into the details,
we briefly overview the mechanism of weighted consistency.
Let 𝑣1, . . . , 𝑣𝑥 be 𝑥 views and 𝑣 = 𝑣1 ∩ · · · ∩ 𝑣𝑥 =

{𝑎 𝑗1 , . . . , 𝑎 𝑗𝑦 }, 𝑗1, . . . , 𝑗𝑦 ∈ [𝑚], be a view consisting of
𝑦 common attributes. 𝑇𝑣 ((𝑎 𝑗1 , . . . , 𝑎 𝑗𝑦 )) will be updated as
𝑇𝑣 ((𝑎 𝑗1 , . . . , 𝑎 𝑗𝑦 )) =

∑
𝑖 𝑤𝑖 · 𝑇𝑣𝑖 ((𝑎 𝑗1 , . . . , 𝑎 𝑗𝑦 )) with weights

𝑤1, . . . , 𝑤𝑥 in the weighted consistency. The weighted con-
sistency degrades roughly to the standard consistency if 𝑤1 =

· · · = 𝑤𝑥 = 1. Our goal is to find an optimal set of weights such
that the data can be maximized by the weighted consistency.

Formulation of Weighted Consistency. With ESE, the
noise scale over 𝑣 is

∑
𝐶∈𝑣 Var[𝑇𝑣 (𝐶)] =

∑
𝐶∈𝑣

∑
𝑖 𝑤

2
𝑖
·

Var[𝑇𝑣𝑖 (𝐶)] = 𝑑𝑜𝑚(𝑣) · ∑𝑖 𝑤
2
𝑖
· 𝜉𝑖 · Var𝑣𝑖 = 𝑑𝑜𝑚(𝑣) · ∑𝑖 𝑤

2
𝑖
·

𝜉𝑖 · ( 1
𝑃𝑖
)2 ·Var𝜀 , where 𝜉𝑖 denotes 𝑑𝑜𝑚(𝑣𝑖 \ 𝑣), 𝑃𝑖 denotes the

proportion derived from Equation (4), Var𝜀 is the variance
introduced by the Laplace noise Lap( 1

𝜀
) and Var𝑣𝑖 is the

variance introduced from 𝑣𝑖 . Formally, the problem of finding
the maximum weights can be formulated as

min
∑︁
𝑖

(𝑤𝑖

𝑃𝑖

)2 · 𝜉𝑖 subject to
∑︁
𝑖

𝑤𝑖 = 1. (5)

With the KKT condition, let 𝐿 =
∑

𝑖 ( 𝑤𝑖

𝑃𝑖
)2 ·𝜉𝑖+𝜆 · (

∑
𝑖 𝑤𝑖−1).

For 𝑖 = 1, 2, . . . , 𝑘 , let 𝜕𝐿
𝜕𝑤𝑖

=
2𝜉𝑖 ·𝑤𝑖

𝑃2
𝑖

+ 𝜆 = 0. We have 𝑤𝑖 =

−𝜆𝑃2
𝑖

2𝜉𝑖 , and
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∑︁
𝑖

𝑤𝑖 =
−𝜆
2
·
∑︁
𝑖

𝑃2
𝑖

𝜉𝑖
= 1⇒ 𝜆 =

−2∑
𝑖

𝑃2
𝑖

𝜉𝑖

. (6)

Hence, we derive 𝑤𝑖 =
−𝑃2

𝑖

2𝜉𝑖 · (−2)/
(∑

𝑗

𝑃2
𝑗

𝜉 𝑗

)
=

(𝑃2
𝑖
)/

(
𝜉𝑖 ·

∑
𝑗

𝑃2
𝑗

𝜉 𝑗

)
, and for each 𝐶 (the tuple

(𝑎 𝑗1 , . . . , 𝑎 𝑗𝑦 )) from 𝑣-marginal, 𝑇𝑣 (𝐶) =
∑

𝑖 𝑤𝑖 · 𝑇𝑣𝑖 (𝐶) =(∑
𝑖 [

𝑃2
𝑖

𝜉𝑖
· 𝑇𝑣𝑖 (𝐶)]

) / (∑
𝑗

𝑃2
𝑗

𝜉 𝑗

)
.

Finally, each view can update its counts by 𝑇𝑣 (𝐶) as
follows. For each 𝐶 ′ (without the loss of generality, the tuple
(𝑎 𝑗1 , . . . , 𝑎 𝑗𝑦 , . . . , 𝑎 𝑗𝑑 ), 𝑦 ≤ 𝑑, 𝑗1, . . . , 𝑗𝑑 ∈ [𝑚]) from 𝑣𝑖-
marginal,

𝑇𝑣𝑖 (𝐶 ′) ← 𝑇𝑣𝑖 (𝐶 ′) +
1
𝜉𝑖
(𝑇𝑣 (𝐶) − 𝑇𝑣𝑖 (𝐶)), (7)

where 𝐶 denotes the tuple (𝑎 𝑗1 , . . . , 𝑎 𝑗𝑦 ) from 𝑣 = 𝑣1∩· · ·∩𝑣𝑥
defined as above.

In summary, consistency can not only reduce the impact
of noise by leveraging multiple noisy marginals, but also
effectively reduce the possibility of erroneous pairing between
views in the data synthesis (see Sections IV-E3 and IV-F).

2) Non-Negativity: Based on the observation that the count
of each cell in the (noisy) marginal must be greater than
or equal to 0, the cells whose counts are negative can be
corrected to improve utility. Straightforward methods such as
directly replacing the negative values with 0 or adding −𝜇 to
all other counts, where −𝜇 denotes the smallest count in the
marginal, do not work well because the noise scale cannot
be retained. To retain the noise scale, collection of negative
counts and canceling the positive counts in ascending order
until depleting the negative counts has been proposed. PriView
proposed ripple non-negativity, where the negative counts less
than a pre-defined threshold −𝜃, are distributed to neighboring
cells.

In the present work, we propose an iterative non-negativity
approach, shown in Figure 5. In particular, we calculate the
summation 𝑞 of all the negative counts and add 𝑞

𝑜
to each

of the positive counts, where 𝑜 is the number of positive
counts. This leads to a new collection of positive and negative
counts (if any). The non-negativity stops if only positive counts
remain and otherwise iterates the above process based on the
collection of counts from the end of the previous iteration. Our
iterative non-negativity technique retains not only the noise
scale but also the shape of the distribution of the marginal.

The non-negativity techniques will destroy the consistency
of the data. Therefore, after performing the non-negativity
operation, we perform consistency again until the noisy
marginals converge (as shown in (S4) in Figure 1).

3) Normalization: The total marginals may also be refined
by the observation that the total counts of the noisy marginals
should be 𝑛. Once the total counts of the noisy marginals are
corrected to be 𝑛 in a certain manner, the corrected counts
could be non-integers. Each count in the contingency table
should be an integer; an integralization is used to further fine-
tune the noisy marginals. However, the above two corrections
interfere with consistency. Thus, to better retain the noise scale
and consistency, we propose consistency-aware normalization
as follows.

Fig. 5: Iterative non-negativity in DPView.

Concretely, our proposed normalization technique divides
each count into its integer and decimal parts. Extra counts are
added to the corresponding cells in the integer part according
to the descending order of the decimal part. This procedure
simultaneously ensures the corrected marginals have only
integer counts, and they sum to 𝑛. For example, consider the
case that 𝑛 = 5 and we have counts [0.4, 3.3, 1.3]. The integer
part is [0, 3, 1], which sums to 4 only, and the decimal part is
[0.4, 0.3, 0.3]. As the first element has the largest value, we
add 1 to the first element to obtain [1, 3, 1]1, which sums to
5 and can be used to substitute [0.4, 3.3, 1.3] thereafter.

Eliminating Negative Impact on Consistency. The above
normalization also destroys the consistency among views. To
eliminate the negative impact on consistency, our strategy is
to choose a specific marginal to start the normalization. Given
this normalized marginal, due to our design of base and cross
views, we may find its adjacent views sharing common at-
tributes. After fixing attribute values of the common attributes,
we perform the normalization on adjacent views. We iterate
the above process until all views are corrected. For example,
we start from a base view 𝑏1. On the basis of the normalization
result of 𝑏1, we fix the attribute values for the attributes from
𝑏1 ∩ 𝑐1 and then perform the normalization on the marginal
with attributes from 𝑐1. By doing so, we can accomplish the
normalization without compromising consistency (as shown
in (S4) in Figure 1). We describe our method of selecting an
initial view to begin and normalizing a view from a given view
below.

Choosing Initial View for Normalization. The choice of
the view to start the normalization has a considerable impact
on utility, as its normalization result will be propagated to
the other views by design. The proposed method selects the
marginal with a higher degree of concentration. In other
words, we skip the marginals with low counts in most cells.
This can be attributed to the fact that such marginals are nat-
urally more resilient to noise. Superficially, the marginal with
the smallest domain size seems to act as the marginal with the
highest degree of concentration. However, this is not always
the case because the degree of concentration is also dependent
on the data distribution. Here, similar to the case in Section
IV-C7, it may be observed that a zero-mean Laplace noise will
fall into [−𝜌, 𝜌] with probability 𝛾, where 𝜌 = −Δ𝐹

𝜀
ln(1−𝛾).

We argue that, given a confidence probability 𝛾, the presence
of many counts above 𝜌 is an indicator of a higher degree of

1In the case of 𝑛 = 5 and the counts [0.3, 3.3, 1.3], we select a random
position and add one to it to break a tie. For example, if we pick the second
element, the result is [0, 4, 1].
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concentration. We then use the summation of the counts above
𝜌 as the degree of concentration for the marginal.

Propagating Normalization to Adjacent Views. Here,
we describe our proposed method to normalize 𝑣2 given the
normalized 𝑣1 without compromising the consistency between
𝑣1 and 𝑣2. The counts in 𝑣2 after the consistency-aware nor-
malization will inevitably be modified. This count modification
also guarantees that we can always generate 𝑛 records during
data synthesis.

Consider two adjacent views with 𝑘 common attributes;
without loss of generality, we consider 𝑣1 = {𝑎1, . . . , 𝑎𝑑}
and 𝑣2 = {𝑎𝑑−𝑘+1, . . . , 𝑎2𝑑−𝑘 }. For each possible value
(𝛼1, . . . , 𝛼𝑘 ) of attributes 𝑎𝑑−𝑘+1, . . . , 𝑎𝑑 , we have ℎtarget =

𝑇𝑣1 ((𝑎𝑑−𝑘+1, . . . , 𝑎𝑑) = (𝛼1, . . . , 𝛼𝑘 )). Given (𝛼1, . . . , 𝛼𝑘 ), for
every value (𝛽1, . . . , 𝛽𝑑−𝑘 ) of 𝑎𝑑+1, . . . , 𝑎2𝑑−𝑘 , we calculate
ℎ𝑖 = 𝑇𝑣2 ((𝑎𝑑−𝑘+1, . . . , 𝑎2𝑑−𝑘 ) = (𝛼1, . . . , 𝛼𝑘 , 𝛽1, . . . , 𝛽𝑑−𝑘 )),
1 ≤ 𝑖 ≤ 𝑐𝑑+1 · · · 𝑐2𝑑−𝑘 . Then, ℎ𝑖 is updated as ℎ𝑖

ℎ𝑐𝑑+1 · · ·ℎ𝑐2𝑑−𝑘
·

ℎtarget. Consider an extreme case that ℎtarget is non-zero but
there is no partial record in 𝑣2 with (𝑎𝑑−𝑘+1, . . . , 𝑎𝑑) =

(𝛼1, . . . , 𝛼𝑘 ); i.e., 𝑇𝑣2 ((𝑎𝑑−𝑘+1, . . . , 𝑎𝑑) = (𝛼1, . . . , 𝛼𝑘 )) = 0.
In such case, we generate ℎtarget partial records in 𝑣2 whose
values in attributes 𝑎𝑑−𝑘+1, . . . , 𝑎𝑑 are all 𝛼1, . . . , 𝛼𝑘 and
whose values in attributes 𝑎𝑑+1, . . . , 𝑎2𝑑−𝑘 are randomly se-
lected. Note that ℎ𝑐𝑑+1 · · · ℎ𝑐2𝑑−𝑘 will not be large, since most
of them will be zero, due to the sparsity of the underlying
marginal. As the updated ℎ𝑖s could be floating numbers, the
previous integralization is used to correct them.

F. Data Synthesis (S5)
After post-processing, we perform data synthesis to generate

a DPSD. In other words, given base and cross views, the
objective of data synthesis is to generate 𝑛 𝑚-dimensional
records by linking proper partial records from different views.
In contrast to most of the existing DPSD generation algorithms
relying on sampling-based data synthesis, we particularly note
that DPView takes a fundamentally different linking-based
approach. We also note that data synthesis (S5) is guaranteed
to generate 𝑛 records because the normalization in Section
IV-E3 synchronized the counts of views.

view combination is a critical subroutine for data synthesis.
Concretely, view combination takes as input two adjacent
views 𝑣1 and 𝑣2 sharing a set 𝐴 of common attributes, and
returns the |𝑣1 |+|𝑣2 |−|𝐴|-dimensional records sharing common
attribute values. In general, our data synthesis starts with 𝑏1.
More specifically, we perform view combination of 𝑏𝑖 and 𝑐𝑖 ,
and of 𝑐𝑖 and 𝑏𝑖+1 alternately for 𝑖 = 1, . . . , 𝑑 − 1.

1) Maximum Cardinality Matching Problem for View Com-
bination: View combination is, in fact, an optimization prob-
lem. As a motivating example, consider the case that 𝑣1 =

{𝑎1, 𝑎2, 𝑎3} and 𝑣2 = {𝑎2, 𝑎3, 𝑎4}. Assume that 𝑣1 has only
single one partial record [𝑎2 = 0, 𝑎3 = 0] that can be linked to
the partial records, [𝑎4 = 3] and [𝑎4 = 4]. Also assume that 𝑣1
has two partial records, [𝑎2 = 0, 𝑎3 = 1] and [𝑎2 = 0, 𝑎3 = 1]
that can be linked to a partial record [𝑎4 = 3]. In such a case,
if [𝑎2 = 0, 𝑎3 = 0] is linked to [𝑎4 = 3], then [𝑎2 = 0, 𝑎3 = 1]
can link to nothing. Thus, view combination of two views can
be modeled as a problem of finding a maximum cardinality
matching in a bipartite graph, the left side consisting of partial
records from 𝑣1 and the right side of partial records from 𝑣2.
The edge exists if two partial records share the same attribute
value for the common attributes. As the maximum cardinality
matching problem aims to find a matching containing as many
edges as possible, the maximum cardinality matching of such

a bipartite graph provides an optimum view combination result
for two views.

2) Heuristic for View Combination: For a massive dataset,
the state-of-the-art Hopcroft–Karp algorithm for the maximum
cardinality matching problem [31] remains inefficient. Here,
we propose an efficient heuristic alternative to handle the
problem. Consider two adjacent views, 𝑣1 and 𝑣2, sharing
a set 𝐴 = {𝑎1, . . . , 𝑎𝑘 } of common attributes. Note that 𝑣1
could be a view from the combination of the other views and
the |𝑣1 | ≥ 𝑑. We sort the partial records in 𝑣1 according to
the corresponding counts in descending order. Subsequently,
higher priorities are assigned to the partial records with more
counts. Eventually, starting from the highest priority, each
partial record in 𝑣1 is paired with a partial record in 𝑣2; i.e.,
some partial records in 𝑣1 are prioritized to find a match in 𝑣2
according to their counts. Consider the example in Section
IV-F1. Compared to the partial record [𝑎2 = 0, 𝑎3 = 0]
appearing only once, [𝑎2 = 0, 𝑎3 = 1] is assigned a higher
more priority, because there are two [𝑎2 = 0, 𝑎3 = 1]s. As
a consequence, one [𝑎2 = 0, 𝑎3 = 1] will be paired with
[𝑎4 = 3], another [𝑎2 = 0, 𝑎3 = 1] will be paired with none,
and [𝑎2 = 0, 𝑎3 = 0] will be paired with [𝑎4 = 4]. Eventually,
the above generates two three-dimensional records. In the case
that a partial record in 𝑣1 has more than one choice in 𝑣2, it is
paired with a random record. This randomness incurs utility
loss, but we reduce such uncertainty in Section IV-G.

G. DPView+

In this section, we propose DPView+ as a variant of
DPView. DPView+ and DPView share the same general
approach, with the difference being that more views are
created in DPView+. In particular, in (S2), the extra views,
upper cross views, are defined and generated as follows.

Definition 8: Given 𝑑, two base views 𝑏𝑖 and 𝑏𝑖+1, and the
corresponding cross view 𝑐𝑖 , the upper cross view 𝑢𝑖 consists
of the attributes from 𝑏𝑖 ∪ 𝑏𝑖+1 \ 𝑐𝑖 .

Similar to the three different cases in Section IV-C2, the
construction of upper cross views also has three cases. Figure
6 shows an example, where the last cross view has a smaller
size of Type-II, and there will be a vacant upper cross view
ofType-III.

Then, Laplace noise is applied to marginals with base,
cross, and upper cross views in (S3), despite the increased
budget splitting. In (S4), the consistency and non-negativity
procedures remain the same. However, to avoid the contra-
dicting updates from two other views, upper cross views do
not participate in the normalization.

As described in Section IV-F2, the upper cross views help
the view combination reduce the possibility of erroneous
pairings in (S5). This can be attributed to the reference use
of upper cross views. In particular, when performing the view
combination, the existence of 𝑢𝑖 provides extra information
on which combination of partial records can be eliminated.
As a concrete example, consider the views 𝑏1 = {𝑎1, 𝑎2, 𝑎3},
𝑏2 = {𝑎4, 𝑎5, 𝑎6}, 𝑐1 = {𝑎2, 𝑎3, 𝑎4}, and 𝑢1 = {𝑎1, 𝑎5, 𝑎6}, as
illustrated in Type-I of Figure 6. Consider the view combina-
tion of the view {𝑎1, 𝑎2, 𝑎3, 𝑎4} (the resultant view from the
view combination of 𝑏1 and 𝑐1) and 𝑏2. Despite the heuristic
in Section IV-F2, erroneous pairings are often obtained. For
example, consider 𝑇{𝑎1 ,𝑎2 ,𝑎3 ,𝑎4 } ((𝑎4 = 0)) = 2 with 2 partial
records with 𝑎4 = 0 in 𝑏2. No information is available on
how to pair a specific partial record from {𝑎1, 𝑎2, 𝑎3, 𝑎4} with
another partial record from 𝑏2 in a correct way. Nonetheless,
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Fig. 6: Three cases of upper cross view generation.

with upper cross view 𝑢1 = {𝑎1, 𝑎5, 𝑎6}, the possibilities
can be reduced from 𝑏2 for a specific partial record from
{𝑎1, 𝑎2, 𝑎3, 𝑎4} to pair. For example, for a partial record
(𝑎1 = 4, 𝑎2 = 9, 𝑎3 = 4, 𝑎4 = 0), if there are two partial records
(𝑎4 = 0, 𝑎5 = 5, 𝑎6 = 3) and (𝑎4 = 0, 𝑎5 = 2, 𝑎6 = 1) in 𝑏2 and
a partial record (𝑎1 = 4, 𝑎5 = 5, 𝑎6 = 3) in 𝑢1, then we can be
confident in combining (𝑎1 = 4, 𝑎2 = 9, 𝑎3 = 4, 𝑎4 = 0) and
(𝑎4 = 0, 𝑎5 = 5, 𝑎6 = 3).

V. EVALUATION

A. Experiment Setup
1) Dataset Description: We use the following three datasets

to evaluate the data utility of DPView.
• Adult [1]: This is a dataset widely used by machine learning
practitioners to test their binary classification accuracy. In
particular, Adult consists of 48842 records, each of which
has six numeric attributes, eight categorical attributes, and one
binary class label.
• Census-Income [12]: This dataset reports weighted census
data extracted from the 1994 and 1995 current population
surveys. Census-Income consists of 299285 records, each of
which has 33 numeric attributes, 7 categorical attributes, and
one binary class label.
• KDDCup99 [37]: This dataset, used by KDD Cup 1999,
includes a wide variety of intrusions simulated in a mili-
tary network environment. Census-Income consists of 494021
records, each of which has 34 numeric attributes, 8 categorical
attributes, and one binary class label.

2) Tasks and Evaluation Metrics: Due to the popularity of
data mining and machine applications, we evaluate the data
utility of DPView according to the following data analysis
tasks.
• (Classification) As classification is the most popular machine
learning task, it is necessary to evaluate the data utility of
DPSD in terms of classification accuracy. In particular, we
use the DPSD to train the classification models and derive
the accuracy as a measure of the data utility. We use 12
classification models, including AdaBoost, bagging, Bernoulli
Naive Bayes, decision tree, Gaussian Naive Bayes, Linear Dis-
criminant Analysis (LDA), Light Gradient Boosted Machine
(LightGBM), logistic regression (LR), multi-layer perceptron
(MLP), random forest, support vector machine (SVM), and
XGBoost, to examine the data utility.
• (𝑘-Way Marginals) 𝑘-way marginals are “the workhorse
of data analysis” [4]. Thus, we compute 1-, 2-, and 3-way

marginals from the DPSD and derive the average ℓ1 error to
measure data utility.
• (Range Query) Range query is the most natural type of
query to retrieve the dataset. We generate 1000 random range
queries, each containing 3 random attributes. We calculate

1
|𝑄 |

∑
𝑞𝑖 ∈𝑄 |𝑐𝑖 − 𝑐𝑖 |, where 𝑄 is the set of queries and 𝑐𝑖 (𝑐𝑖)

is the ratio of records that fall in the range of query 𝑞𝑖 in 𝑂

(�̂�), as a measure of the data utility.
3) Competitors: We consider the following competitors for

the DPSD generation.
• (PGM [44]) PGM is a parametric approach and is the 1st
place winner of the NIST 2018 Differential Privacy Synthetic
Data Challenge. Given a set of pre-defined marginals, PGM
estimates an MRF that best fits the marginals. Our implemen-
tation of PGM is adapted from the official implementation
[13] and third party implementation [14], because the official
implementation is customized to the NIST Challenge and thus
cannot be used in our evaluation.
• (PATE-GAN [36]) PATE-GAN can be thought of as a
special type of DP-GAN. Due to the lack of the official
implementation, our PATE-GAN implementation is adapted
from [14].
• (PrivBayes [59]) PrivBayes is a parametric approach; it
approximates the high-dimensional data distribution using a
number of low-dimensional marginal distributions, which will
be determined by highly correlated attributes. PrivBayes is
the 3rd place winner of the NIST Challenge. We implement
PrivBayes from scratch.
• (PrivSyn [62]) PrivSyn is a non-parametric approach and
is an extension of DPSyn, the 2nd place winner of the NIST
Challenge. We implement PrivSyn from scratch.

4) Miscellaneous Setting: We carry out all the experiments
on a desktop with Intel i7-6700HQ CPU 2.60GHz and 16
GB memory. All algorithms are implemented in Python 3.7.
In our experiments, the view sizes for Adult and KDDCup99
are fixed to be 5 and the view size for Census-Income is fixed
to be 6. Depending on the datasets under the consideration,
the number of views varies. In particular, DPView has 5 views
for Adult, 13 views for Census-Income, and 15 views for
KDDCup99. DPView+ has 7 views for Adult, 19 views for
Census-Income, and 22 views for KDDCup99.

Similar to PrivSyn [62], DPView considers unbound DP
[38] and has no clue on the exact number 𝑛 of records in 𝑂.
We thus use the average of the total counts of marginals as an
approximation of 𝑛.

We implement machine learning algorithms by using scikit-
learn in our experiments, where the default parameter settings
are used. Each experiment result shown in the plots later is an
average of three independent experiments.

B. End-to-End Comparison
1) Classification: As mentioned in Section V-A2, we test

twelve classification algorithms. Due to the space limitation,
we explicitly show the individual results for the decision tree,
logistic regression, and SVM in the second, third, and fourth
columns of Figure 7, respectively. However, we show the
accuracy derived by averaging the classification accuracy for
all the twelve classification results in the first column of Figure
7.

From the experimental results in Figure 7, we can make
some observations below. First, PATE-GAN leads to an awful
accuracy. According to our experience, the DP-GAN ap-
proaches can well synthesize image data, but for the tabu-
lar data, their performance degrades substantially. This can
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Fig. 7: Classification accuracy for different machine learning algorithms on three datasets.

be attributed to the fact that GANs may erroneously learn
unnecessary or noisy correlations. Second, PrivSyn also has a
pessimistic accuracy. As we already follow their suggestion
on the parameter setting in PrivSyn (e.g., the parameters
𝛼 = 2, 𝛽 = 0.5, 𝑒𝑡𝑐.), we conjecture that their parameters
are not universally suitable for arbitrary data. Third, DPView+
outperforms DPView in nearly all cases. This can be attributed
to the fact that upper cross views whose purpose is to reduce
the probability of the erroneous pairings exhibit a consistency-
like behavior, compensating the utility loss due to the worse
splitting of the budget. Fourth, the accuracy of DPView+,
PGM, and PrivBayes is higher than that of non-private data
in Figure 7j. An explanation is that though decision trees are
prone to overfitting, DP can alleviate overfitting [18], [19].
This enables these DPSDs to gain better accuracy.

2) 𝑘-Way Marginals and Range Query: As the 𝑘-way
marginals reflect the quality of low-dimensional correlation
preserved in the DPSD, the range query reflects the quality of
high-dimensional correlation preserved in the DPSD. Figure 8
shows that DPView effectively captures the low-dimensional
correlations. This is due to the design of DPView, in which
base views and cross views, despite their low dimensionality,
naturally preserve the low-dimensional correlations. Figure

9 shows that DPView also captures the high-dimensional
correlations. In addition to the reduced noise scale thanks to
the data-independent view generation, This can partially be
attributed to our design of consistency-aware normalization,
which “correct” from one view to another, ensuring the capture
of high-dimensional correlation.

VI. DISCUSSION

Here, we pay attention only to the automatic DPSD gener-
ation. PGM does not propose a marginal selection algorithm,
and consequently, one either has to pick marginals manually
or considers the other data-dependent marginal selection meth-
ods. S. Takagi et al. [50] evenly partition 𝑂 into two parts
and derive the necessary parameters from one part directly.
However, in such a case, the privacy of half records will
be compromised. PrivSyn claims to be an automatic DPSD
generation system. It indeed can generate the DPSD automat-
ically, but the resultant data utility can hardly be ensured (see
Section V-B). Bowen and Snoke [9] argue that PrivBayes is
an easy-to-use algorithm because it strikes a balance between
the data utility and the hardness of using it. In this sense,
DPView can also reach a similar level of balance compared to
PrivBayes. In particular, despite the necessary parameters such

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on August 05,2022 at 02:09:26 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3151550, IEEE Internet of
Things Journal

12

0.5 1 1.5 2
Privacy Budget

0

0.02

0.04

0.06

0.08

0.1
L1

-d
is

ta
nc

e
Adult 1-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(a) 1-way marginals on Adult.

0.5 1 1.5 2
Privacy Budget

0

0.002

0.004

0.006

0.008

0.01

L1
-d

is
ta

nc
e

Adult 2-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(b) 2-way marginals on Adult.

0.5 1 1.5 2
Privacy Budget

0

0.5

1

1.5

2

L1
-d

is
ta

nc
e

#10-3 Asult 3-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(c) 3-way marginals on Adult.

0.5 1 1.5 2
Privacy Budget

0

0.01

0.02

0.03

0.04

L1
-d

is
ta

nc
e

Census-income 1-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(d) 1-way marginals on Income.

0.5 1 1.5 2
Privacy Budget

0

0.5

1

1.5
L1

-d
is

ta
nc

e

#10-3 Census-income 2-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(e) 2-way marginals on Income.

0.5 1 1.5 2
Privacy Budget

2

4

6

8

10

L1
-d

is
ta

nc
e

#10-5 Census-income 3-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(f) 3-way marginals on Income.

0.5 1 1.5 2
Privacy Budget

0

0.01

0.02

0.03

0.04

L1
-d

is
ta

nc
e

KDDCup99 1-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(g) 1-way marginals on KDDCup.

0.5 1 1.5 2
Privacy Budget

0.4

0.6

0.8

1

1.2

1.4

1.6

L1
-d

is
ta

nc
e

#10-3 KDDCup99 2-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(h) 2-way marginals on KDDCup.

0.5 1 1.5 2
Privacy Budget

5

6

7

8

9

10

L1
-d

is
ta

nc
e

#10-5 KDDCup99 3-way marginals

Pate-GAN
PrivSyn

PGM
PrivBayes

DPView+
DPView

(i) 3-way marginals on KDDCup.

Fig. 8: 𝑘-way marginals on three datasets.
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Fig. 9: Range query on three datasets.

as the stopping criteria in the view generation and confidence
probability in the view size determination, they do not lead

to a fluctuation of data utility. As a result, DPView can be
regarded as an automatic DPSD generation system.
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For the design challenge (C1), data-independent algorithms,
Algorithms 1∼3, are proposed to preserve the correlation
among attributes by taking advantage of public domain infor-
mation. Thus, DPView alleviates the privacy budget problem
because there is no need to spend budget on preserving at-
tribute correlation in view list generation. DPView is concep-
tually similar to works [46], [41], [62], the characteristic of its
data-independent view list generation in DPView contributes
to the main novelty. On the other hand, the problem of (C2)
exists mainly due to the use of data-dependant algorithms
for view list generation. Therefore, DPView avoids (C2). For
(C3), because DPView uses equal-size buckets, the number
of buckets is the only parameter to be determined. In other
words, the data synthesis can be nearly fully automated in
DPView.

VII. CONCLUSION

In this paper, we present DPView as an algorithm for differ-
entially private data synthesis. The proposed data-independent
view generation algorithm significantly alleviates the problem
of privacy budget splitting. We perform the budget allocation
and weighted consistency in an analytically optimal man-
ner. The proposed iterative non-negativity and consistency-
aware normalization reconcile the discrepancy among noisy
marginals. All of the above results in the utility improvement
of the DPSD from DPView.
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