
Towards a Utopia of Dataset Sharing: A Case Study on Machine
Learning-based Malware Detection Algorithms

Ping-Jui Chuang
m.c@nycu.edu.tw

National Yang Ming Chiao Tung
University

Hsinchu, Taiwan

Chih-Fan Hsu
hsuchihfan@gmail.com

National Yang Ming Chiao Tung
University

Hsinchu, Taiwan

Yun-Tien Chu
yungtien.cs09@nycu.edu.tw

National Yang Ming Chiao Tung
University

Hsinchu, Taiwan

Szu-Chun Huang
schuang.cs09g@nctu.edu.tw

National Yang Ming Chiao Tung
University

Hsinchu, Taiwan

Chun-Ying Huang
chuang@cs.nctu.edu.tw

National Yang Ming Chiao Tung
University

Hsinchu, Taiwan

ABSTRACT
Working with a high-quality (complete and up-to-date) dataset is
the key to building a good machine learning model, especially in
security research areas. However, it is not easy to collect a good
quality dataset for security research communities because of the
sensitive property of most security datasets. We believe that having
more contributors to share up-to-date samples would increase the
quality of datasets. Therefore, this study aims to increase security
dataset sharing for research communities by eliminating possible
information leakage. We propose a dataset sharing model and the
core algorithm, FeatureTransformer, which guarantees no sensitive
information leakage from a shared dataset. FeatureTransformer
transforms extracted raw features into intermediate features that
conceal sensitive information. Meanwhile, models built from trans-
formed features maintain similar performance compared to models
built from the original raw features. We show the effectiveness of
our model by evaluating FeatureTransformer with typical malware
classification problems using (1) traditional machine learning clas-
sifiers and (2) neural network-based classifiers. The experiment
results show that the models trained with transformed features
merely suffer from 2.56% and 1.48% accuracy degradation on the
investigated problems. It indicates that models validated by datasets
processed by FeatureTransformer work well with the original raw
(untransformed) datasets. We believe that our privacy-preserving
model can stimulate dataset sharing and advance the development
of machine learning approaches in solving security problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3497763

CCS CONCEPTS
• Security and privacy→ Domain-specific security and pri-
vacy architectures; Usability in security and privacy; Data
anonymization and sanitization; • Computing methodologies →
Machine learning approaches.

KEYWORDS
Dataset Sharing, Machine Learning, Malware Classification, Repro-
ducible Research

ACM Reference Format:
Ping-Jui Chuang, Chih-Fan Hsu, Yun-Tien Chu, Szu-ChunHuang, and Chun-
Ying Huang. 2022. Towards a Utopia of Dataset Sharing: A Case Study on
Machine Learning-based Malware Detection Algorithms. In Proceedings of
the 2022 ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3488932.3497763

1 INTRODUCTION
With the rapid development of machine learning (ML) techniques,
researchers have started to solve research problems by creating and
using modern ML models. Datasets are critical for researchers to
conduct ML research works. It is well-known that WordNet [36]
and ImageNet [15] datasets have successfully boosted the research
in natural language processing and image classification algorithms,
respectively. The wide use of the datasets mentioned above also
proves that the key to accelerating ML research and building suc-
cessfulMLmodels is the availability and completeness of the dataset.
Machine learning techniques have also been used in solving secu-
rity problems not only limited to fields such as signal process-
ing [42], natural language processing [40, 47], and image classifica-
tion [15, 27]. Therefore, it would be foreseen that working with a
high-quality (sufficient diversity, up-to-date, correct labeling, and
high availability) dataset is a critical step towards successful ma-
chine learning-based security research works.

Although working with a high-quality dataset is the key to suc-
cess, it is not easy to have it for research communities. The difficulty
is mainly because the nature of samples in security datasets is dif-
ferent from that of samples collected in the human world, such as
WordNet and ImageNet. Take the example of malware samples used

https://doi.org/10.1145/3488932.3497763
https://doi.org/10.1145/3488932.3497763

in malware detection and classification research works. First, the
sample sources are limited. While almost everyone can contribute
samples like sentences or pictures, malware samples can only be
provided by professionals. A contributor must confirm that a shared
sample is an actual malware and label its class (benign/malicious)
or family correctly. Second, it is not easy to perform augmentation
against existing samples. Sample augmentation is a common tech-
nique to increase the number of samples in a dataset. However, it
does not work for malware samples. An augmented sample could
be broken and therefore loses essential features that can be used for
malware detection and classification. Third, security datasets have to
be fresh. A well-trained model based on malware samples collected
three years ago could be useless for detecting malware samples
nowadays. Last and most importantly, there could be privacy issues
when sharing a malware sample. Some APT malware samples em-
bed sensitive information in their binary and could leak knowledge
about victims. For example, the ShadowHammer [29] APT malware
embeds encrypted MAC addresses of targets in the binary and can
be extracted and decrypted by skillful hackers. While the first three
differences already set up a high burden for building a high-quality
dataset, the last one could further lower the willingness of dataset
sharing.

Existing publicly available security datasets employ different
workarounds to avoid the difficulties mentioned above. For example,
the Ember dataset [8] selects only statistical features and printable
text-based features. Alternatively, the Microsoft malware classifica-
tion challenge (BIG 2015) [43] hosted on Kaggle shares analyzer-
generated metadata and most parts of binary content of malware
samples. However, it removes Portable Executable (PE) headers
from the binary content and performs proprietary anonymize op-
erations against the shared content. Although the approaches men-
tioned above are a good fit for the shared dataset, they cannot
be generalized for all datasets and algorithms and limit exploring
alternative features for malware detection and classification. For ex-
ample, a binary classification algorithm may consider working with
raw byte sequences extracted from malware samples [25, 41, 55].

In this study, we aim to increase the public willingness of dataset
sharing for security research communities. We believe a transfor-
mation approach to transform extracted raw features into inter-
mediate features that conceal sensitive information is required to
achieve this goal. In addition to sensitive information concealing,
a transformation approach cannot degrade an algorithm that per-
forms training and detection based on the transformed features. Our
contribution is three-fold. First, we describe our proposed dataset
sharing model that can be used for both research communities
and security industries. Second, we proposed FeatureTransformer,
which is the core algorithm used in the dataset sharing model.
Third, we perform in-depth evaluations against our proposed Fea-
tureTransformer to show its performance and effectiveness. To be
more specific, we answer the following research questions (RQs) to
validate our research.

• RQ1. Does FeatureTransformer Really Work? (Sec. 5.2)
• RQ2. Can we use the same approach for handling text-based
and numeric features? (Sec. 5.3)

• RQ3. What are the impacts of algorithm parameters for Fea-
tureTransformer? (Sec. 5.4)

• RQ4. Is that possible to have access control to limit the audi-
ences of shared samples? (Sec. 5.5)

• RQ5. What are the impacts of transformation algorithms for
FeatureTransformer? (Sec. 5.6)

• RQ6. What is the performance of FeatureTransformer when
applying it to existing malware detection algorithms?
(Sec. 5.7)

• RQ7. Can we apply FeatureTransformer to generic machine
learning algorithms? (Sec. 5.8)

The rest of this paper is organized as follows. We present es-
sential backgrounds and related works in Section 2. Our proposed
dataset sharing model is illustrated in Section 3. The core algorithm,
FeatureTransformer, is introduced in Section 4. Section 5 presents
how the proposed algorithms are evaluated and answer the research
questions. A concluding remark is given in Section 6. To simplify
the discussions, we use malware detection as the main scenario
throughout this paper. Nevertheless, the proposed dataset sharing
model and algorithms can be easily applied to other scenarios.

2 RELATEDWORKS
This section introduces the development of machine learning tech-
niques on malware detection, current publicly available malware
repositories, and privacy-preserving approaches.

2.1 Machine Learning-based on Malware
Detection

Using machine learning (ML) techniques to detect malware is con-
sidered practical [9, 35, 39] because ML algorithms can effectively
learn the behaviors or patterns from samples. A well-trained ML
algorithm would efficiently and automatically detect malware with
representative samples (or features obtained from static or dynamic
analysis from samples). Several research works have been done to
solve security problems with machine learning approaches. Zhao
et al. [60] extract specific sensitive Application Programming In-
terface (API) calls from malware to support detecting unknown
Android PacKages (APKs) based on the decision tree and k-nearest
neighbor algorithms. By transforming the API calls invoked during
execution into image-like sparse matrices, D’Angelo et al. [18] pro-
posed an ML-based method to detect malware on Android-based
devices. They extract representative features from the sparse matri-
ces and feed them to a Neural Network (NN)-based classifier. Gibert
et al. [20] detect malware based on an NN-based multi-model archi-
tecture that comprises three sub-models for obtaining information
from API calls, opcode characteristics, and raw byte, respectively.
Feng et al. [19] presented a method for classifying malicious An-
droid app based on the NN-based model. They target features in-
cluding manifest properties, API calls, and opcode sequences. Yin
et al. [56] use a structured Heterogeneous Information Network
(HIN) to detect malicious Portable Executable (PE) files. The input of
HIN covers the information of PE header, Dynamic-Link Libraries
(DLLs), API call sequences, and opcode sequences. Kapoor et al. [28]
extract features from app’s permissions. Then, they train several ML
algorithms based on the features for classifying malicious Android
applications. Surendran et al. [50] proposed a malware detection
method based on a Tree Augmented Naive Bayes (TAN)-based hy-
brid mechanism. Three logistic regression classifiers corresponding

to API calls, permission, and system calls are modeled. Then, the
TAN framework estimates the inter-dependency of the classifier
outputs to detect malware. Ajeena Beegom et al. [7] proposed a
method for detecting malware based on a Support Vector Machine
(SVM) classifier with integrated static features including permis-
sions, API calls, and opcodes. Nauman et al. [37] present several
NN-based models to detect Android malware based on multiple
features, including permissions usage, API calls, and intent-related
network activities.

Although the development of ML models on malware detection
achieves significant success, a representative malware dataset is
still required for reproducible research works to compare the per-
formance of different models. However, malware datasets are either
private or limited because of the difficulties of collecting samples.

2.2 Public Available Malware Repositories and
Datasets

Several malware datasets are available on the Internet. Generally,
the available datasets share either the original samples or extract fea-
tures from private samples. VirusTotal [1], a company that provides
malware scanning and searching services, maintains a malware
repository that contains more than 2.4B files of various types. The
online repository is widely used for numerous malware-related re-
searches from different perspectives, such as malware hunting [57],
packing [16, 34], and dynamic analysis [30]. Zhu et al. [61] sur-
veyed 115 publications that adopt anti-malware engines provided by
VirusTotal. Bymanually verifying and analyzing files collected from
the engines over a year, they validated the benefits of threshold-
based labeling methods. VirusShare [24], another online malware
repository, collects about 38M live malware. Users can upload mal-
ware samples onto the online repository. Afterward, VirusShare
reports virus scanning results for the uploaded file. Users can also
search and download scanned files for further research, such as
analyzing or detecting Personal Computer (PC) and Android mal-
ware [11, 52, 59]. Sharing live samples is helpful for researching but
is risky to the public. However, users would require professional
knowledge to handle the samples safely and prevent their devices
from being infected and damaged. Furthermore, shared malware
samples might carry sensitive information, such as IP address, MAC
address, or personal information. This sensitive information should
be well protected.

Other than sharing live malware, some repositories share repre-
sentative features extracted frommalware samples, for example, the
EMBER dataset [8] (1.1M samples) and the SoReL-20M dataset [21]
(20M samples). Although the shared features suffer from a certain
degree of information loss compared to raw samples, download-
ing extracted features avoids the risk of being infected. However,
the risk of leaking private information may still not be completely
avoided because adversaries may attempt to derive sensitive infor-
mation from features.

2.3 Privacy Preserving
To avoid accidentally leaking private information, making shar-
ers secure their samples without uploading them to the Internet
seems a solution. Several novel techniques are proposed to improve

model training without uploading samples or extracted features—
for example, differential privacy [17] and federated learning [10].
Hsu et al. [23] proposed an image transformation method, HE-SIFT
(homomorphic encryption-based secure SIFT), to transform raw
2D images to the corresponding ciphered images to preserve the
raw images’ privacy information. The ciphered images are visually
unrecognizable to humans. The experiment results show that the
detected SIFT features between the raw and corresponding ciphered
images achieve spatial consistency. Abadi et al. [4] propose an algo-
rithm that combines differential privacy and an NN-based algorithm
to improve the computational efficiency of network training. The
authors test their algorithm on the MNIST and CIFAR-10 datasets
and prove that the algorithm not only reduces the computational
cost and improves the training efficiency and but also improves
detection accuracy.

Nowadays, federated learning [58] has become increasingly pop-
ular. Federated learning is a set of methods that allows multiple
clients (or nodes) to collaborate to train machine learning models
without exchanging samples. In this case, data owners could keep
their data in the local, which significantly increases data privacy.
Several implementations [31, 33, 33, 44] have employed federated
learning in their research works. Among these works, Lin et al. [32]
use federated learning on the malware classification problem. The
authors integrate a federated learning method with LSTM (Long
short-term memory) model and compare its performance against a
traditional SVM (support vector machine) model. The results show
the superior of the federated learning approach on the detection
accuracy while the size of training samples is small (1,000 training
samples in their experiment). Although federated learning methods
are attractive, a few challenges should be further addressed, (i) the
current approaches suffer from inevitable performance degradation,
such as detection accuracy in the detection problem; (ii) federated
learning approaches generally require longer training time than
traditional centralized approaches because the clients have to ex-
change some temporary information during training, such as the
intermediate model weights or model outputs; and (iii) data own-
ers must be online and constantly spend additional computational
resources and network bandwidth to train and transmit the tem-
porary information. Federated learning is beneficial to deploying
distributed machine learning models, but it could be an overkill for
building centralized and reproducible experimental datasets.

3 MOTIVATION
3.1 Impacts of Dataset Quality
We first show how dataset quality affects the performance of a
machine learning model. Suppose the number of samples in a class
is limited or even not available. In that case, a classification model
trained from the samples may not achieve acceptable performance
to detect that class due to insufficient information about the missing
class. Researchers have attempted to propose few-shot learning [54]
and zero-shot learning [53] to augment samples or perform transfer
learning with limited information. The intuition of the few-shot
and zero-shot learning is improving the adaptation ability of the
models to adapt to the scarce classes rapidly. However, few-shot
and zero-shot learning work under the assumption that the model
builder has prior knowledge about the similarity of samples, the

0

25

50

75

100

All APT Groups Leave One Out
Training/Validation Set Setting

A
ve

ra
g

e
 R

e
c
a

ll
(%

) Classifier

LR

LSVC

AB

DT

RF

GB

Figure 1: The average detection recall under different settings
of training and validation sets.

distribution, and the properties. Although few-shot and zero-shot
learning approaches have obtained great success in areas of image
classification, these approaches inevitably suffer from a certain level
of accuracy degradation, which could not be acceptable for solving
security problems. For example, incorrectly classifying a variant of
a type of ransomware as benign is serious because it could bring
data and monetary loss to the users.

We conduct a pilot study to investigate the impact of the im-
balanced data in the malware detection problem. We attempted to
build a classification model for detecting APT malware based on
the samples from a publicly available APT dataset [3]. The APT
dataset contains 3,594 malware samples with twelve different mal-
ware groups. We compared the results from two experiments of
different settings to investigate the impacts when a model has no
information for a missing malware group. We randomly sample 70%
of malware in each group as the training set and use the remaining
30% as the validation set in the first setting. We then use the same ra-
tio for sample selection in the second setting but leave one malware
group out of the training set. The validation set remains the same.
For each setting, we also randomly select an equivalent number of
benign samples from the EMBER dataset [8]. We preprocess the
malware samples to the trainable feature by the method proposed
by Anderson and Roth [8]. We select six popular binary classifi-
cation algorithms to build classification models. The algorithms
include Linear Regression (LR), Linear Support Vector Classifier
(LSVC), AdaBoost (AB), Decision Tree (DT), Random Forest (RF),
and Gradient Boosting (GB). Figure 1 shows the average detection
result. We observe that the detection recall significantly decreased
when one APT group is entirely unseen by the classifiers. The re-
sults show the importance of sharing malware samples. Once a
detection model covers samples from an APT group (or a family),
the model is more likely to identify the malware that belongs to
the trained family. Users may only rely on a detection model to
protect their property if that model is built from sufficient sample
coverage.

3.2 Privacy-Preserved Dataset Sharing
We believe the first priority for building a healthy sample-sharing
community is to guarantee the privacy of shared samples. Our
observations have shown that existing research works reflect the

so-called isolated data island issue. Different research works ana-
lyze or evaluate their approaches with private datasets. Hence, the
results of these research works may not be reproducible by others.
The accumulation of non-reproducible methods could significantly
impede the development of a field because the experiment results
and conclusions cannot be effectively verified and improved. In
order to mitigate this situation, an open-sourced platform, Papers
With Code [2], is established to encourage researchers and devel-
opers to share their samples and codes. It is an excellent start to
encourage researchers to share and would lower the barrier for
followed researches.

However, the willingness to share malware samples could be
degraded because (i) the public may not know how to safely store
malware samples without taking the risk of being infected; (ii)
the samples are the private asset for certain facilities that takes a
tremendous effort for the sample collection; and (iii) shared samples
may leak sensitive data such as the information of victims. There-
fore, we propose a generalized privacy-preserved sample sharing
model to address the issues mentioned above and improve the will-
ingness for sample sharing. The principle of our proposed model is
to transform extracted original features into different characters or
vector spaces, depending on the type of the features. The objectives
of our proposed privacy-preserved sample sharing are as follows:

(1) Privacy-preserving: The shared features in a dataset cannot
leak sensitive information to the public, even if an entire
binary sample file is considered a feature.

(2) Consistent performance: The classification models built from
the transformed dataset should have a similar detection accu-
racy and recall rate to those built from original features.With
this property, a model built based on transformed features
can effectively detect other transformed samples. Further-
more, it can also faithfully reflect the performance if a model
is built and evaluated with untransformed samples.

(3) Access control: Our proposed model has two different access
privileges, namely complete and limited. A sample contrib-
utor can control who has complete access privileges to the
shared dataset. Users with a limited access privilege can only
use the shared dataset to build and test a built model against
only samples in the shared dataset. In contrast, users with
a complete access privilege can additionally add new sam-
ples to the shared dataset and use a built model to detect
any arbitrary samples, even if a sample is initially not in the
dataset.

Figure 2 shows the application scenario of our privacy-preserved
dataset sharing model. In the scenario, the samples 𝑠 and original
features 𝑓 are private data owned by the sample contributors and
the model users. The parameters 𝑝 (depicted as keys in the figure)
used for performing feature transformation are only accessible to
users who work on the same repository. The rest data and compo-
nents, including the algorithms and public repositories, are known
to the public in the figure. Wemention here that𝑋 (·),𝑇 (·), and𝑉 (·)
functions indicate the process of feature extraction, feature trans-
formation, and feature vectorization, respectively. The application
scenario can be divided into three phases, i.e., the sample-sharing
phase by sample contributors, the model-building phase by security

samples feature
extraction

feature
transformation

feature
vectorization

repository
#1

model
training

(optional)

samples feature
extraction

feature
transformation

feature
vectorization

s1 X(s1) T(p1, X(s1)) V(T(p1, X(s1)))

s2 X(s2) T(p1, X(s2)) V(T(p1, X(s2)))

samples feature
extraction

feature
transformation

feature
vectorization

s3 X(s3) T(p2, X(s3)) V(T(p2, X(s3)))

repository
#2

model
training

unknown
samples

feature
extraction

feature
transformation

feature
vectorization

u1 X(u1) T(p1, X(u1)) V(T(p1, X(u1)))

p1p2

unknown
samples

feature
extraction

feature
transformation

feature
vectorization

u2 X(u2) T(p2, X(u2)) V(T(p2, X(u2)))

Sa
m

pl
e

C
on

tri
bu

to
rs

M
od

el
 U

se
rs

classifer

classifer

Security Researchers

Reports

ReportsFeatureTransformer

features

features

features

features

original
features

fs1 = X(s1)

fs2 = X(s2)

fs3 = X(s3)

fu1 = X(u1)

fu2 = X(u2)

Private Data Algorithm

Alice

Bob

Charlie

Dave

Eve

Figure 2: The application scenario of our privacy-preserved dataset sharing model.

researchers, and the model-using phase by model users. A sam-
ple contributor collects some raw samples first and then extracts
features using feature extraction algorithms in the sample sharing
state. Extracted features are passed to FeatureTransformer to trans-
form the features into transformed features. FeatureTransformer is
composed of several one-way functions, and therefore, the trans-
formed features are not invertible. Transformed features may need
to be vectorized before they can be used for building a classification
model. Hence, there is an optional feature vectorization process
to ensure that the transformed features meet the requirement of
model-building algorithms. The resulted features can finally be
stored in the repository. It is worth noting that the parameters
of FeatureTransformer must be carefully selected and distributed
because it would significantly affect the performance of the system.
The impacts of the parameters are discussed in Section 5.

The sample-building phase follows the typical steps in building
a machine learning model. Feature samples are retrieved from a
repository. After finishing the training process, the resulted models
and parameters are stored for future use. In the model-using phase,
a user must use the same feature extraction algorithms and feature
transformation algorithms and parameters as the sample contribu-
tors. Once required features have been extracted and transformed
from unknown samples, a classifier can then perform classifications
against these transformed features and determine whether given
samples are benign or malicious.

4 FEATURE TRANSFORMATION
In this section, we investigate several common malware features
first.We then introduce the proposed feature transformationmethod,
FeatureTransformer, to prevent leaking sensitive information. Fi-
nally, we discuss the efficiency and the invertibility properties of
FeatureTransformer.

Table 1: Common Features for Malware Classification and
Detection.

Feature Sensitive Datatype Feature Dimension In Ember
Bytes Histogram [6, 8, 45] ✗ numerical 256; 257; 256 ✓

Entropy [6, 8, 45] ✗ numerical 256; 202; 256 ✓

N-gram [5, 6] ✗ numerical 256; 13,000 -
Operation Code Count [6] ✗ numerical 93 -

Register Count [6] ✗ numerical 26 -
Haralick Texture Feature [6] ✗ numerical 52 -
Local Binary Patterns [6] ✗ numerical 108 -

GIST Feature [38] ✗ numerical 320 -
PE Header Info. [5, 8, 45] ▲ numerical 62; 28; 256 ✓

Section Info. [5, 6, 8] ▲ numerical 255; 24; 570 ✓

Printable String [5, 8] ▲ text-based 104; 26,900 ✓

API Sequence [13] ▲ text-based 342 -
API Import [5] ▲ text-based 19,168 -

DLL Import [5, 8, 45] ▲ text-based 1,280; 4,305; 256 ✓

Export Function [8] ▲ text-based 128 ✓

Raw bytes [41] ✓ text-based 2,000,000 -
Gray Image [51] ✓ text-based depends on model -

4.1 Common Features for Malware Research
Table 1 shows the common features used in malware detection
studies. We classify listed features into two classes, namely statis-
tical and non-statistical features. Statistical features include byte
histogram, entropy, N-gram, opcode count, register count, Haralick
texture, and local binary patterns. Generally, statistical features
cannot be inverted to samples’ original form. Therefore, the risk
of leaking sensitive data embeds in malware samples from these
features is relatively low.

On the other hand, non-statistical features could be used for
information mining, and these features should be protected and
transformed. For example, we may extract sensitive information
such as the victim’s IP, email, or MAC addresses from features such
as raw bytes and printable strings. In addition, some features such
as API sequence, APP/DLL import, and Export information may not
leak sensitive data directly. However, these features still provide

sufficient hints for skillful hackers to learn tricks used in the sam-
ples or even identify the corresponding samples on the Internet. For
example, if a program calls the functions, RegCreateKeyExA and
CryptEncrypt, in ADVAPI32.dll, we can infer that the program tries
to modify registers and encrypt data, respectively. Similarly, if mal-
ware calls a rarely used function, such as VixDiskMount_RunServer,
hackers could directly find the malware sample on the Internet.

4.2 FeatureTransformer
We propose a feature transformation process, FeatureTransformer,
to transform features before distributing sample features to the
Internet. Generally, features can be classified into two types, text-
based and numerical features. We transform text-based features by
locality-sensitive hashing (LSH) based algorithms because these al-
gorithms run efficiently and cannot be inverted. Besides, the design
principle of LSH ensures that similar inputs have a high probability
of transforming to similar results. LSH has many implementations.
Among the implementations, we use the hash-based minimization
algorithm introduced in MinHash [12] approach to serve as the
major algorithm for transforming text-based features in Feature-
Transformer.

To differentiate from the original MinHash1 approach, we use the
name minHash to indicate our hash-based minimization algorithm
throughout the paper. The minHash algorithm reads a string 𝐷

and outputs an ℎ-dimension vector 𝑆 = 𝑠1, 𝑠2, ..., 𝑠ℎ , where ℎ is
the number of selected hash functions for minHash algorithm. To
obtain 𝑆 , we first extract a set containing𝑇 substrings 𝑑𝑖 , 1 ≤ 𝑖 ≤ 𝑇 ,
from 𝐷 and feed every 𝑑𝑖 to all the selected hash functions. The
hashed results from hash function 𝐻𝑘 , 1 ≤ 𝑘 ≤ ℎ, for substring 𝑑𝑖
is 𝐻𝑘 (𝑑𝑖). Then, the minimal result 𝑠𝑘 of all 𝐻𝑘 (𝑑𝑖), 1 ≤ 𝑖 ≤ 𝑇 with
respect to the 𝑘-th hash function can be obtained. The process can
be formulated with

𝑠𝑘 = min
𝑑𝑖 ∈𝐷

𝐻𝑘 (𝑑𝑖), 1 ≤ 𝑘 ≤ ℎ. (1)

For numerical features, we employ two transformation meth-
ods. One is to handle numerical features as strings and process the
numerical string by LSH-based algorithms. The other is a matrix-
based transformation algorithm inspired by the minHash algorithm.
The matrix-based transformation algorithm includes a matrix mul-
tiplication, a minimization process, and a modulo operation. A
transformed feature is in the same form as the original feature.
Thus, for example, a transformed text-based feature has the same
length as the original feature. Similarly, a transformed numerical
feature also has the same form (a single number or a matrix of
the same dimension) as the original feature. The details of how
to transform text-based and numerical features are discussed as
follows.

Text-based Features. We use the minHash algorithm as the
major component to handle text-based features. Figure 3 depicts
an example of the text-based feature transformation using the min-
Hash algorithm. We segment a string feature into non-overlapping
substrings of length𝑊 as the inputs to the minHash algorithm. For
each substring𝐷 , we then obtain𝑑𝑖 from𝐷 by using N-gram [26, 49]
1The original MinHash approach calculates the similarity of hashed-dataset via set
similarity measurement functions like Jaccard Similarity. Right here, our minhash
algorithm only converts the output hashed result into a string.

http

ht

tt

tp

W = 4

s:// www. exam ple. com/

N = 2
N-Gram

H1(tt) H2(tt) H3(tt) H4(tt)

H1(tp) H2(tt) H3(tp) H4(tp)

H1(ht) H2(ht) H3(ht) H4(ht)

s1 s2 s3 s4

min

mod 256

35(#) 65(A) 123({) 59(;)#A{;

d1

d2

d3

h = 4

D1 D2 D3 D4 D5 D6

Figure 3: An example of text-based feature transformation
using minHash.

approach. After feeding 𝑑𝑖 to hash functions of the minHash al-
gorithm, we can obtain the output result 𝑆 . We perform modulo
operations against each element in 𝑆 . Finally, we concatenate the
results in 𝑆 as the final output string, which is the transformed
results. Given that hash outputs are modules of 256, we set ℎ =𝑊

to ensure the length of a transformed string would be equivalent
to the length of the input 𝐷 . For example, in Figure 3, the string
“http” is transformed to the corresponding result “#A{;”. The char-
acteristic of the minHash algorithm ensures that similar inputs
would have a high probability of having similar results. Although
the transformed results may lose some information, it ensures that
similar strings can still be placed closely in the transformed do-
main. Moreover, since the transformed results cannot be inverted,
it successfully prevents sensitive information from being leaked.

Numerical Features. We propose two transformation methods
to handle the numerical features, (1) transforming by the minHash
algorithm and (2) transforming by numerical matrices. For the
first method, we transform the numerical data to string data. For
example, number 1 is transformed to string “\𝑥01”. We prepend
null bytes before the transformed string if the string is shorter
than𝑊 bytes. Then, the transformed numerical features can be
processed by the minHash algorithm. Once the transformed results
are obtained, we then transform the results back to integers. For
the matrix-based transformation method, we perform the following
steps to transform numerical features 𝐹 in the form of a 1 × 𝑉

matrix. First, we prepare a set 𝑀 containing 𝑅 two-dimensional
𝑉 × 𝑉 matrices, 𝑀 = {𝑚1,𝑚2, ...,𝑚𝑅} and assign random values
to elements of each of the 𝑅 matrices. We then perform 𝑅 matrix
multiplications to multiply the numerical feature matrix 𝐹 against
each of the 𝑅 matrices and obtain the results in a set 𝑍 , where
𝑍 = {𝑧1, 𝑧2, ..., 𝑧𝑅} = {𝐹 × 𝑚1, 𝐹 × 𝑚2, ..., 𝐹 × 𝑚𝑅}. Finally, we
output a transformed feature 𝐹 ′ by selecting a minimal element
from each column of matrices in 𝑍 . That is,

𝐹 ′ = [min
𝑖=1...𝑅

𝑧𝑖1,1 , min
𝑖=1...𝑅

𝑧𝑖1,2 , ..., min
𝑖=1...𝑅

𝑧𝑖1,𝑅] . (2)

An optional modulo operation can be applied to each element in 𝐹 ′

to produce the final transformed feature vector.

Table 2: The minHash Transformation Throughput
(bytes/sec) for Different𝑊 and 𝑁 Combinations.

N-gram W = 1 W = 2 W = 4 W = 6 W = 8
N = 1 113,904 139,840 131,410 111,275 92,278
N = 2 - 188,499 158,568 128,646 102,934
N = 3 - - 205,370 150,101 118,656
N = 4 - - 304,874 181,110 138,961
N = 5 - - - 247,361 166,284
N = 6 - - - 387,023 207,178
N = 7 - - - - 277,045
N = 8 - - - - 441,843

4.3 Properties of FeatureTransformer
We discuss two properties of FeatureTransformer and how involved
parameters affect these properties.

Efficiency. Table 2 shows the transformation throughput under
different combinations of𝑊 and 𝑁 values. All the measurements
are conducted on a server machine with an Intel® Xeon® Gold 5218
CPU running at 2.30GHz. Given a selected𝑊 value, we observe
that the transformation throughput and 𝑁 have a positive corre-
lation. The value 𝑁 decides the number of elements 𝑑𝑖 in each 𝐷

and would have a linear decrease in the number of required com-
putations. However, the throughputs presented in Table 2 may not
grow linearly with 𝑁 because we employ an LRU cache mecha-
nism to eliminate redundant hash operations on the same inputs.
In contrast, given a selected 𝑁 value, the total number of string
𝐷 derived from a string decreases when𝑊 increases. However,
the number of elements 𝑑𝑖 in each 𝐷 increases accordingly. Since
our text-based transformation approach is designed to produce
exactly the same output of length equivalent to the input string,
the number of hash functions ℎ increases with𝑊 . Therefore, it also
increases the required hash computations. We note here that (1)
a smaller 𝑁 could lose character sequence information from the
original input data. For example, when 𝑁 is equal to one, hash-
ing four characters independently from string “http" and “ptth"
would get the same results; (2) when 𝑁 is equal to𝑊 , the input 𝐷
is directly fed to the hash functions. The measured throughput for
all𝑊 and 𝑁 combinations achieves 200K bytes per second, which
shows the efficiency of FeatureTransformer for handling text-based
features. The transformation throughput is bounded by the length
of the numerical feature and the matrix multiplication for numer-
ical features. We conduct a simple experiment to investigate the
throughput. Specifically, we randomly generate 10,000 different nu-
merical feature vectors 𝐹 with a given length. Then, we multiply 𝐹

with the corresponding generated 𝑅 two-dimension matrices𝑀 and
record the total running time to estimate the throughput. Figure 4
shows the experiment result. We observe that the throughput has a
negative correlation to the value 𝑅 and the length of the numerical
features. The result is intuition because a larger 𝑅 or vector length
implies that more multiplication operations are involved.

Invertibility. FeatureTransformer employs multiple hash func-
tions, multiple matrix multiplications, and minimization processes

16

256

4096

65536

0 1000 2000
Length of the Numerical Feature Vector

T
h

ro
u

g
h

p
u

t
(v

e
c
to

r/
s
e

c
) Parameter

W=1

W=2

W=3

W=4

Figure 4: The transformation throughput (vector/sec) of nu-
merical features for different𝑊 .

to ensure that input 𝐷 cannot be inverted. We investigate the in-
vertibility of FeatureTransformer from the perspective of parame-
ter selection, e.g.,𝑊 and 𝑁 . In general, increasing hash collisions
would also increase the difficulties of inverting hashed outputs. For
example, suppose hashing 𝑇 inputs produces another 𝑇 distinct
outputs. In this case, it is evident that the outputs could be easily
mapped back to the original inputs if a sufficient number of inputs
and outputs are collected. Therefore, ensuring a certain amount of
collision would be the key to ensuring the invertibility property of
FeatureTransformer. We illustrate the invertibility property using
a simple case of setting𝑊 = 3 and altering the value of 𝑁 . As-
sume all hash functions do not produce collisions. When 𝑁 is set
to one, the number of possible transformed output strings from the
minHash algorithm is only 2,796,416, which is calculated by the
formula𝐶256

3 +𝐶256
2 +𝐶256

1 (given the modulus parameter of 256). It
is because feeding any permutation of three selected characters into
the minHash algorithm would produce the same result. Therefore,
we can simply count the possible number of mathematical combi-
nations for strings of length three. While the possible permutations
of input strings are 16,777,216 (224), the high collision rate makes it
challenging to invert output strings back to their original forms.

The minimization and modulus operation would further increase
the collision probabilities and hence increase the invertibility of
transformed features. Table 3 shows the simulated statistics for
minHash collisions under different settings of𝑊 and 𝑁 parameters.
The size of the input space is the number of possible inputs, which
can be obtained by 256𝑊 . The size of output-space is the number
of distinct minHash outputs from all possible inputs. The hash
functions selected for the minHash algorithm are MD5, SHA256,
and SHA384. For each (𝑊 , 𝑁) combination, we simulate ten rounds
and choose a randomly generated salt of length 6 in each round
to ensure the hash functions would not produce the same results
in different rounds. The results show that a lower 𝑁 value would
increase more collisions, and there are only at most 36% inputs
without collisions even if 𝑁 is equal to𝑊 . However, too many
collisions may lead to the loss of crucial information used to dif-
ferentiate inputs. Therefore, our experiments use 𝑁 = 2 if not
mentioned otherwise to balance the invertibility and the loss of
crucial information based on the observations.

One benefit of the invertible property used in FeatureTrans-
former is that it also provides the access control feature. Given

Table 3: Simulated Statistics for minHash Collisions.

(W,N) output-space/input-space no-collision
(1,1) 60% 35%
(2,1) 16% 0%
(2,2) 63% 36%
(3,1) 3% 0.00009%
(3,2) 43% 24%
(3,3) 63% 36%

that features transformed with different parameters, e.g., randomly
generated hash salts and matrix elements, would be pretty diverse.
These randomly generated parameters can be considered unique
keys to control dataset accessibility. Users without the key can still
use the transformed features to train models, but they cannot add
new samples to the shared dataset. They also cannot use trained
models to detect and classify samples out of the shared dataset.
Readers can imagine that the original sample features in vector
space 𝐹 are non-linearly transformed into another vector space 𝑇
using parameters in set 𝑃 . As a result, a model𝑀 built with features
in space𝑇 can only be used for classifying sample features in space
𝑇 . The invertibility property ensures that it is infeasible to obtain
features in 𝐹 from features in space 𝑇 . Therefore, the only way
to use model 𝑀 for classifying unknown samples is to transform
sample features to the same space𝑇 , which requires the knowledge
of 𝑃 . The effectiveness of access control feature is further discussed
in Section 5.5.

5 EVALUATION
This section validates our proposed FeatureTransformer by answer-
ing the research questions (RQ) mentioned above. We evaluate
FeatureTransformer by using a binary malware classification prob-
lem and answer RQ1 to RQ5. For RQ6, we evaluate FeatureTrans-
former by using a generic binary image classification problem. The
involved datasets are summarized as follows:

• We use the EMBER 2018 dataset [8] to experiment with the
malware classification problem. The EMBER dataset contains
1.1 million samples split into a training set (900K) and a
testing set (200K). The samples in the training set are labeled
as malware (300K), benign (300K), and unlabeled (300K). In
contrast, the samples in the testing set are only labeled as
malware (100K) and benign (100K).

• We use the Kaggle dataset, Dogs vs. Cats 2, to experiment
with the generic image classification problem. The dataset
contains 25,000 images, of which 12,500 and 12,500 images
are dogs and cats, respectively.

5.1 Experiment Setup
For the malware classification problem, FeatureTransformer trans-
forms extracted features (EFs) available in the EMBER dataset. There
are nine features in the dataset. Two of them are text-based fea-
tures (Imports Information (II) and Exports Information (EI)). The
rest seven are numerical features (Header File Information (HFI),
General File Information (GFI), String in the Raw Data (SRD), Byte
2https://www.kaggle.com/c/dogs-vs-cats/data

0

25

50

75

100

F2 F2T2 F9 F9T2 F9T9
Feature Combination

A
ve

ra
g
e
 A

c
c
u
ra

c
y
 (

%
)

Classifier

LR

LSVC

AB

DT

RF

GB

LGBM

Figure 5: The average accuracy of different feature combina-
tions.

Histogram (BH), Byte Entropy Histogram (BEH), Data Directories
(DD)), and Section Information (SI)). To train the classifiers, we ran-
domly sample 100,000 malware and 100,000 benign samples from
the EMBER dataset. We then split samples into a training set and a
validation set randomly in a ratio of 80:20, respectively. To investi-
gate the performance of on handling both text-based and numerical
features, we consider three different feature combinations, which
include (i) transforming only text-based features and training a
model with only transformed features (F2T2); (ii) transforming only
text-based features but training a model with both transformed
text-based features and original numerical features (F9T2); and
(iii) transforming all the features and training a module with all
the transformed features (F9T9). For each feature combination, we
employ several commonly used binary classifiers include Logistic
Regression (LR), Linear Support Vector Classifier (LSVC), AdaBoost
(AB), Decision Tree (DT), Random Forest (RF), Gradient Boosting
(GB), and LightGBM (LGBM).

For the image classification problem, we also split samples into
a training and a validation set in a ratio of 80:20, respectively. A
CNN model, ResNet50 [22], is employed to build the binary image
classifier. We follow the same settings used in the RestNet50 paper.
Note that FeatureTransformer performs transformation against
raw pixels directly because the ResNet50 model uses raw image
pixels as its input. All the experiments relevant to a built model
are evaluated with 5-fold cross-validation to ensure the model has
consistent experiment results.

5.2 RQ1: Does FeatureTransformer Really
Work?

We first show the performance of models built based on features
transformed by FeatureTransformer. Figure 5 shows the average
detection accuracy of different feature combinations. Due to space
limitations, we only show detection accuracy here. The results for
other performance metrics are similar to detection accuracy. Read-
ers may refer to the discussions in Section 5.3 for the results of
different performance metrics. Overall, the performance numbers
of a classifier are similar among different feature combinations.
Due to negligible performance differences for the two text-based

0

20

40

60

80

HFI GFI SRD BH BEH DD SI
Numerical Feature(s)

A
ve

ra
g

e
 A

c
c
u

ra
c
y
 (

%
)

Settings

Raw

minHash (mod None)

minHash (mod 256)

Matrix (mod 256)

(a)

0

20

40

60

80

BH+BEH DD+SI BBDS
Numerical Feature(s)

A
ve

ra
g
e
 A

c
c
u
ra

c
y
 (

%
)

Settings

Raw

minHash (mod None)

minHash (mod 256)

Matrix (mod 256)

(b)

Figure 6: The average accuracy of (a) numerical features and (b) the combinations of numerical features on different settings.

features (F2 vs. F2T2), another question is raised: what could be the
performance impacts of mixing transformed features with untrans-
formed features? Therefore, we further conduct F9, F9T2, and F9T9
experiments, which mixed the two transformed/untransformed
text-based features with seven numerical features. The outcome
also shows that the performance remains consistent no matter the
text-based features are transformed.

Readers may notice that the two linear classifiers, LR and LSVC,
get lower accuracy than other classifiers on the F9T2 combination.
However, the performance aligns with those working with the
original numerical features (see bars of group F9). The impact of
different parameters settings (𝑊 and 𝑁) are later discussed in Sec-
tion 5.4. Interestingly, the detection accuracy significantly increases
on the F9T9 combination, indicating that feature transformation
would benefit classifiers. We suspect that the lower detection ac-
curacy on original numerical features is because linear classifiers
cannot effectively classify involved features. As a result, it leads
to worse performance on LR and LSVC classifiers. Once numerical
features are transformed into new feature spaces, such as the F9T9
combination, the samples may be split linearly.

To validate our speculation, we perform malware classification
only with the untransformed or transformed numerical features
using LR and LSVC. Four transformation settings are tested in
this experiment, (i) no transformation (Raw), (ii) transformed by
minHash without a modulus, (iii) transformed by minHash with
a modulus of 256, and (iv) transformed by Matrix method with a
modulus of 256. While the results for the LR and LSVC classifiers
are similar, we only plot results for LR due to space limitations.
Figure 6(a) shows the average accuracy of the classified results
for each numerical feature. While we expect FeatureTransformer
would get a similar or slightly lower performance than those trained
with original features, we notice that the results are better than our
expectations. We observe that transformed numerical features can
have (i) no impact, (ii) positive impacts, and (iii) negative impacts on
the detection accuracy. Features such as HFI, GFI, and SRD have no
impact after feature transformation and get similar performance for
both raw features and transformed features. Features such as DD
and SI get much better performance after being transformed. The
only two transformed features that get lower performance are BH
and BEH. Both BH and BEH are histogram-based features, meaning
that numbers in the vectors are highly coupled with each other.

When applying hash and modulus operations to histograms, it
breaks the relationships between numbers in the vectors.We further
train classifiers based on the combinations of these numeric features,
including (i) BH+BEH, (ii) DD+SI, and (iii) BH+BEH+DD+SI (BBDS).
Figure 6(b) shows the result. While BH+BEH and DD+SI show
consistent performance to what we observed for histogram and
non-histogram features, respectively, we observe that BBDS get
much better performance. The result aligns with what we reported
in F9T9 in Figure 5.

5.3 RQ2: Performance of Text-based and
Numerical Feature Transformation

As we introduced in Section 4.2, text-based features are transformed
by LSH-based algorithms, and numerical features can be trans-
formed by either LSH-based algorithms or matrix operations. In
this section, we conduct experiments to show the performance
of employing different transformation methods. The LSH-based
algorithm used here is the minHash algorithm. The algorithm pa-
rameters are set to𝑊 = 4 and 𝑁 = 2.

Figure 7 shows the experimental results on the accuracy, recall,
precision, and F1-score. The error bar on top of each bar in the fig-
ures indicates the range of one standard deviation. The group of bars
labeledminHash indicates that all features are transformed by the
minHash algorithm, whether text-based or numerical. The group
of bars labeled minHash+Matrix indicates that text-based and
numerical features are transformed using the minHash algorithm
and matrix operations, respectively. Although the performance
trends on different feature combinations look similar, our results
show that working with matrix operations performs slightly bet-
ter than those only transformed by the minHash algorithms. The
minHash+Matrix setting outperforms the minHash-only setting
by 0.77%, 1.18%, 0.45%, and 1.07% on average for accuracy, recall,
precision, and F1-score, respectively. The discussion of the perfor-
mance of the individual classifier is out of the scope of this paper.
However, we can observe that a linear classifier, i.e., LR and LSVC,
generally performs worse than tree-based classifiers. Overall, Light-
GBM achieves the best performance in the experiments, aligning
with other research papers using the EMBER dataset [8, 21]. In
summary, we conclude that both text-based and numerical feature

0

25

50

75

100

minHash minHash+Matrix
Numerical Transformation Method

A
ve

ra
g
e

 A
c
c
u
ra

c
y
 (

%
)

Classifier

LR

LSVC

AB

DT

RF

GB

LGBM

(a) Accuracy

0

25

50

75

100

minHash minHash+Matrix
Numerical Transformation Method

A
ve

ra
g
e

 R
e

c
a

ll
(%

)

Classifier

LR

LSVC

AB

DT

RF

GB

LGBM

(b) Recall

0

25

50

75

100

minHash minHash+Matrix
Numerical Transformation Method

A
ve

ra
g
e

 P
re

c
is

io
n

 (
%

)

Classifier

LR

LSVC

AB

DT

RF

GB

LGBM

(c) Precision

0

25

50

75

100

minHash minHash+Matrix
Numerical Transformation Method

A
ve

ra
g
e

 F
1
−

s
c
o

re
 (

%
)

Classifier

LR

LSVC

AB

DT

RF

GB

LGBM

(d) F1-score

Figure 7: The evaluation results for the text-based and numerical feature transformations on the F9T9 feature combination.

0

25

50

75

100

256 512 1024 None
Modulus

A
ve

ra
g

e
 A

c
c
u

ra
c
y
 (

%
)

Classifier

LR

LSVC

AB

DT

RF

GB

LGBM

Figure 8: The average accuracy under different modulus pa-
rameters for numerical features on the F9T9 feature combi-
nation.

transformations work well. If detection performance is pretty de-
manding, it would be better to work with the minHash+Matrix
approach.

5.4 RQ3: Impacts of Algorithm Parameters
In this section, we investigate the impact of different parameter
values of FeatureTransformer. We compare the performance by
varying the algorithm parameters in FeatureTransformer, including
(i) the modulus for numerical features, (ii) the length𝑊 of the input
string for the minHash algorithm, and (iii) the parameter 𝑁 for the
N-gram algorithm to generate substrings from an input string.

Modulus for numerical features. For text-based features, we
always use a modulus of 256 to ensure the output string has ex-
actly the same length as the input string; for numerical features,
we attempt to seek the best arithmetic modulus. We explore the
impact of different modulus parameters, including 256, 512, 1024,
and no modulus (None). Figure 8 shows the result of the experi-
ment. We observe that the differences among the different modulus
parameters are not significant except for the LR and the LSVC clas-
sifier in setting “None." Nevertheless, when the numerical features
are transformed with an additional modulo operation, the detec-
tion accuracy generally increases, and the detection performance
is indifferent to modulus values. Therefore, we set the modulus
parameter to transform numerical features to 256 to report and
analyze the results in the following sections.

Parameters for minHash. To investigate the algorithm param-
eters of minHash, we jointly consider the different combinations
of𝑊 and 𝑁 parameters. Because the minHash algorithm is mainly

70

75

80

85

90

95

1 2 3 4
N−gram (W=4)

A
ve

ra
g
e
 A

c
c
u
ra

c
y
 (

%
)

Classifier
LR

LSVC

AB

DT

RF

GB

LGBM

(a)

70

75

80

85

90

95

1 2 3 4 5 6 7 8
N−gram (W=8)

A
ve

ra
g
e
 A

c
c
u
ra

c
y
 (

%
)

Classifier
LR

LSVC

AB

DT

RF

GB

LGBM

(b)

Figure 9: The average accuracy for different minHash param-
eters,𝑊 and 𝑁 , on the F2T2 feature combination.

designed for text-based features, we experiment on the F2T2 feature
combination to avoid performance impacts caused by numerical fea-
tures. Figure 9 shows the experiment results for different 𝑁 values
given𝑊 = 4 or𝑊 = 8. Although there is a noticeable performance
difference among classifiers, varying W and N does not affect a clas-
sifier’s performance. Among different algorithm parameters, the
detection accuracy is indifferent to the values. Specifically, in the
𝑊 = 4 and𝑊 = 8 experiments, the performance differences are less
than 0.6% and 1%, respectively, for a measured classifier on different
𝑁 values. Although we have already zoomed in on the Y-axis to
highlight the performance difference, a few lines still overlap with
others. For example, the LR/LSVC classifiers in the W=4 experiment
and the RF/LGBM classifiers in both the W=4 andW=8 experiments.
Based on the experiment results, we conclude that the algorithm
parameters of minHash have a limited impact on the detection
performance, which shows the robustness of FeatureTransformer.

5.5 RQ4: Access Control
As we introduced in Section 3.2, our proposed FeatureTransformer
provides two different access privileges: complete and limited. We
achieve this goal by using the transformation parameters as the
key to granting access privileges. A user has the complete access
privilege if and only if the user knows all the parameters to perform
the transformation. In contrast, a user only has a limited access
privilege if the user does not know the parameters. Note that a
user with a limited access privilege can still use the transformed
feature dataset to train and evaluate the models. However, she/he
cannot add new samples into the dataset nor use a built model to
detect untransformed samples. We conduct experiments to verify

0

25

50

75

100

Accuracy Precision Recall F1−score
Metric

P
e

rc
e

n
ta

g
e

 (
%

)

Settings

At Least One

Hash Salts

Untrans. Dataset

None

Figure 10: The detection performance for the four experi-
ment settings: (i) at least one parameter is unknown, (ii) the
hash salts for minHash algorithms are unknown, (iii) the
untransformed dataset, and (iv) no parameter is unknown.

our design. The involved parameters include𝑊 , 𝑁 , transformation
methods, and hash functions. In this section, we compare the per-
formance of four settings, (i) at least one parameter is unknown,
(ii) the hash salts for minHash algorithms are unknown, (iii) the
untransformed dataset, and (iv) no parameter is unknown. The
experiments are conducted as follows. Note that while settings (i),
(ii), and (iv) are relevant to parameter selections, we add an addi-
tional experimental setting (iii) to show that a transformed model
can fully eliminate possibly information leakage from the origi-
nal (untransformed) dataset. First, we prepare 50,000 samples from
the EMBER dataset and use 80% and 20% of the samples to train
and validate a model. Second, we select a set of parameters 𝑆 and
transform the features of the 80% samples and use the transformed
features to train a model. Third, we substitute unknown param-
eters in 𝑆 and transform the features of the rest 20% of samples.
Transformed features are then classified by using the model built
in the second step. Note that if a parameter is unknown depending
on the experiment settings, we use a randomly generated value to
substitute the unknown one when transforming the features. We
use LightGBM as the classifier to conduct the experiments because
it has the best performance among all the classifiers. We employ
F2T2 feature combination, which considers only text-based features.
We run 5-fold cross-validation for all the experiment settings.

Figure 10 shows the experiment results. We can observe that
if any one of the parameters is unknown, the performance would
significantly decrease. The result is intuition because the features
transformed by different parameters are placed in a different space
and have a different distribution. Therefore, the models trained
from a given set of transformed features cannot effectively classify
samples transformedwith different parameters.We can also observe
that the performance are similar in experiment settings (i), (ii), and
(iii), which means that any minor change in the parameters would
lead to massive performance degradation. Based on the experiment
results, we conclude that using transformation parameters as the
key is effective for access control.

5.6 RQ5: Impacts of Transformation Algorithms
We compare different transformation methods for both text-based
and numerical features to test the flexibility of FeatureTransformer.
We replace the default text feature transformation algorithm (min-
Hash) of FeatureTransformer with one of the follows:

0

25

50

75

100

Hash simHash minHash minHash+Matrix Raw
Transformation Algorithm

A
ve

ra
g

e
 A

c
c
u

ra
c
y
 (

%
)

Classifier

LR

LSVC

AB

DT

RF

GB

LGBM

Figure 11: The average accuracy under different transforma-
tion approaches on F9T9 feature combination.

• Hash. We directly hash the raw bytes of length𝑊 from a
malware sample with a SHA3-512 hash function and extract
the last𝑊 bytes of the hashed result as the classifier inputs.

• simHash. We replace the minHash algorithm with the
SimHash algorithm [14], which is also an LSH-based algo-
rithm.

• minHash. We use the minHash algorithm to transform both
text-based and numerical features.

• minHash+Matrix. We use the minHash algorithm and the
matrix transformation approach to transform the text-based
and numerical features, respectively.

• Raw. We use the untransformed features to train the classi-
fier.

The experiment is conducted with the F9T9 feature combina-
tion to investigate the transformation algorithms’ performance
impacts thoroughly. Figure 11 shows the experiment result. The no
transformation setting (Raw) achieves the best detection accuracy,
except for the LR and LSVC algorithms. The result is not surprising
because the raw samples contain information without any transfor-
mation loss. The lower detection accuracy for LR/LSVC classifiers
is because of the capability limitation of linear classifiers, as we
discussed in Section 5.2. Among the transformation algorithms,
the minHash+Matrix transformation achieves the best detection
accuracy for all classifiers. The performance is pretty close to those
performed on untransformed features. Specifically, the difference
in detection accuracy between minHash+Matrix and Raw are -
4.27%, -2.81%, -2.53%, -3.36%, and 0.19% for classifier AB, DT, RF, GB,
and LGBM, respectively. Nevertheless, the performance difference
among the algorithms is insignificant. This experiment shows the
flexibility, robustness, and stability of FeatureTransformer. Users
can select different transformation algorithms to meet their de-
mands.

5.7 RQ6: Adopting FeatureTransformer on
CNN-based Malware Detection Classifiers

We further evaluate the performance of FeatureTransformer with
neural-network-based models. Inspired by Nataraj et al. [38], we
consider an extreme case that converts an entire binary file as an im-
age and feeds the image to an image classification model. However,
instead of feeding the original image, we transform image pixels
using the minHash algorithm, feed transformed images into the
network, and measure and compare the classification performance.

(a) Raw (b) minHash

Figure 12: A sample Grad-CAM results of the fifth hidden
convolutional layer for different inputs (a) untransformed
(Raw) and (b) transformed by the minHash algorithm.

In the experiments, we first convert the first 2MB of each mal-
ware sample to a two-dimension (2D) image based on the approach
proposed by Nataraj et al. [38]. We then use a modern 2D-CNN im-
age classification network VGG-16 [48] to serve as the classifier to
classify untransformed and transformed images. To further explore
what the classifier learns, we adopt Grad-CAM [46] to visualize the
responses of the last hidden convolutional layer right before the
output layer. Figure 12 shows a sample Grad-CAM results of the
fifth hidden convolutional layer for untransformed and transformed
inputs. We can observe that the highlighted parts in the figures are
spatially similar to each other. Figure 13(a) shows the classification
accuracy for untransformed and transformed features. It shows
that working with untransformed features (Raw) achieves 86.23%
(95.31%) validation (training) accuracy. In contrast, working with
transformed features (minHash) achieves 79.97% (93.40%) validation
(training) accuracy. We first observe that the training and detection
accuracy is similar between the untransformed and transformed
features. Second, the obtained models look overfitting to the train-
ing data when the training steps exceed 1,500. We can see that
the validation accuracy stops increasing and maintains accuracy at
about 86% and 80%, respectively, for the Raw and minHash settings.
Third, we notice that the validation samples get a lower detection
performance. We suspect that the lower validation accuracy could
be mainly caused by converting a binary file to a 2D image, in
addition to the possible overfitting. Two-dimension convolution
operations integrate spatial information from nearby pixels assum-
ing that pixels within a small region should be highly relevant.
However, the assumption may not apply to images converted from
malware sample files. If we incorrectly perform convolution against
irrelevant pixel data, it could be harmful to the detection accuracy.

To validate our speculation, we convert samples to a 1D feature
based on the approach proposed by Raff et al. [41]. Specifically, we
convert the first 2MB of file content byte-by-byte to a vector of
2M dimensions. We then feed the 1D vector to a 1D-CNN classifier.
Figure 14 shows two samples and their corresponding transformed
results. We can observe that the patterns are similar between an
original sample and its transformed form. The learning curve for
the 1D-CNN classifier is depicted in Figure 13(b). We can observe
that the 1D-CNN classifier gets similar performance for both un-
transformed and transformed features. The performance of the

0

25

50

75

100

0 1000 2000
Training Step

A
c
c
u
ra

c
y
 (

%
)

Experiment

minHash (Training)

minHash (Validation)

Raw (Training)

Raw (Validation)

(a) 2D-CNN

0

25

50

75

100

0 250 500 750 1000
Training Step

A
c
c
u
ra

c
y
 (

%
)

Experiment

minHash (Training)

minHash (Validation)

Raw (Training)

Raw (Validation)

(b) 1D-CNN

Figure 13: The learning curves for the training and validation
sets in the (a) 2D-CNN and (b) 1D-CNN experiments.

(a) Sample 1 (b) Transformed Sample 1

(c) Sample 2 (d) Transformed Sample 2

Figure 14: We transform the first 2M bytes of a sample to a
1D vector by using the minHash algorithm. The vectors are
rendered as 2D images for readability.

0

25

50

75

100

0 10000 20000
Training Step

A
ve

ra
g

e
 A

c
c
u

ra
c
y
 (

%
)

Experiment

minHash (Color)

minHash (Gray)

Raw (Color)

Raw (Gray)

Figure 15: The learning curves for the training and validation
sets used in the generic image classification problem.

validation dataset is also close to that of the training dataset. In
summary, we conclude that FeatureTransformer generally works
for neural-network-based classifiers. The neural network design
may affect the performance of the classifier, but the performance
trends remain similar for both untransformed and transformed
features.

(a) Sample #3505 (1.00/0.98/1.00/0.10)

(b) Sample 3615 (1.00/1.00/1.00/0.09)

(c) Sample 8154 (1.00/0.99/1.00/0.67)

(d) Sample 8188 (0.99/0.23/0.15/0.93)

Figure 16: Selected samples and their corresponding Grad-CAM results for classifiers built based on the different datasets. The
values in the parentheses are the confidence values reported from the corresponding classifiers (RGB image/Transformed RGB
image/Gray-scale image/Transformed gray-scale image).

5.8 RQ7: FeatureTransformer for a Generic
Image Classification Problem

We also apply FeatureTransformer to a generic image classification
problem to test the generality of our proposed approach. This exper-
iment uses the Dogs and Cats classification dataset from Kaggle [27]
by FeatureTransformer. Animal images are transformed by Feature-
Transformer and then classified using the classifier proposed by
ResNet50 [22] . We design two different scenarios to conduct the
experiments. One is conducted based on the untransformed images,
and the other is conducted based on the transformed images. In the
first scenario, we use RGB values of a pixel as the input and trans-
form the input using the minHash algorithm with𝑊 =3 and 𝑁=1.
The setting is under the assumption that RGB colors are i.i.d. In
the second scenario, we convert RGB images to gray-scale images
and then perform the transformation with𝑊 =1 and 𝑁=1. Figure 15
shows the learning curve of the experiments. In the experiments,
the classifiers trained by the RGB or gray-scale images both achieve
above 95% of detection accuracy. For the classifiers trained by the
transformed RGB and gray-scale images, the detection accuracy is
about 82% and 70%, respectively.

We further look into some examples from the detection results.
For each experiment, we use Grad-CAM to highlight the hot areas
learned by the classifier. Figure 16 shows samples of the raw images,
transformed images, and their corresponding Grad-CAM results
on the fourth hidden layer (the last hidden layer right before the
output layer). There are four rows in the figure. Each row contains

four sample images from the two experimental scenarios, including
the original RGB image, the transformed RGB image, the gray-
scale image, and the transformed gray-scale image. There is also a
corresponding Grad-CAM result right next to each sample image.
We can observe that the transformed images preserve some outlines
in the raw images. Although the outlines may be unrecognizable
to humans, the classifier can still handle transformed images. Note
that the values enclosed in the parentheses of sub-figure captions
are the confidence values reported from the classifiers built based
on the corresponding datasets. The four numbers from left to right
are values for the RGB images, the transformed RGB images, the
gray-scale images, and the transformed gray-scale images.

In Figure 16, the samples rendered in the first three rows are the
correctly classified cases, and the samples in the last row (except
the original RGB sample) are the failure cases. Note that the bot-
tom right transformed gray image can be correctly classified, but
the reported hot area looks irrelevant to the identified dog. Since
transformed images would drop critical features used to classify the
images, it is expected that the detection accuracy would be lower
than working with the original images. However, our experiments
show that although transformed images could be broken, classifiers
can still correctly classify most images. In the correctly classified
cases, we can see that the identified hot areas by the classifiers are
similar given different training and validation datasets. We also
placed a few incorrectly classified cases in Figure 16. The classifiers
select incorrect areas (the grass fields in the corners) to decide in

the transformed images. Similar failure also happens on the gray-
scale image. Although the confidence value for the transformed
gray-scale image is pretty high, we believe that it was just lucky
based on hot areas reported from Grad-CAM.

Overall, although the transformation process inevitably loses
some information of the original images and drops the detection
accuracy, the detection accuracy is still significantly better than
random guesses for a binary classification problem, namely, 50%.
Meaningful patterns are preserved after feature transformation and
can still be recognized by the classifier.

6 CONCLUSION
A representative dataset is essential for research works using ma-
chine learning approaches. It would help researchers to evaluate
proposed solutions fairly and conduct reproducible experiments.
However, the possible leakage of private information from security
datasets impedes the sharing of samples. We proposed a privacy-
preserved dataset sharing model to eliminate the possible leakage of
sensitive information to increase sharing. Our proposed approach,
FeatureTransformer, handles both text-based and numerical fea-
tures with a specially designed transformation algorithm based on
locality-sensitive hashing algorithms and matrix-based operations.
We conduct a series of experiments to validate the effectiveness
of FeatureTransformer. The experiment results show that Feature-
Transformer is a practical solution without significant performance
degradation. We believe that our privacy-preserved dataset sharing
model sheds light on building a Utopia of security dataset shar-
ing. By stimulating dataset sharing, more reproducible machine-
learning-based security works can be fairly evaluated and further
deployed for solving real-world problems.

ACKNOWLEDGMENT
This study is supported in part by the Ministry of Science and Tech-
nology under grants numberMOST 110-2628-E-A49-011, andMOST
110-2218-E-A49-011-MBK, and in part by the Center for Open In-
telligent Connectivity from The Featured Areas Research Center
Program within the framework of the Higher Education Sprout
Project by the Ministry of Education (MoE) in Taiwan. We would
also like to thank the anonymous reviewers for their constructive
and insightful comments.

REFERENCES
[1] [n.d.]. VirusTotal. https://www.virustotal.com/
[2] 2018. A free resource for researchers and practitioners to find and follow the

latest state-of-the-art ML papers and code. Online. https://paperswithcode.com/.
[3] 2019. APT Malware Dataset. Online. https://github.com/cyber-research/

APTMalware.
[4] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy.
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Oct 2016). https://doi.org/10.1145/2976749.2978318

[5] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano
Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. [n.d.].
When Malware is Packin’ Heat; Limits of Machine Learning Classifiers Based
on Static Analysis Features. Network and Distributed Systems Security (NDSS)
Symposium 2020 ([n. d.]). https://doi.org/10.14722/ndss.2020.24310

[6] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and
Giorgio Giacinto. 2016. Novel Feature Extraction, Selection and Fusion for
Effective Malware Family Classification. In Proceedings of the Sixth ACM on
Conference on Data and Application Security and Privacy (New Orleans, Louisiana,
USA) (CODASPY ’16). ACM, New York, NY, USA, 183–194. https://doi.org/10.
1145/2857705.2857713

[7] A. S. Ajeena Beegom and Gayatri Ashok. 2020. Malware Detection in Android
Applications Using Integrated Static Features. In Security in Computing and Com-
munications, Sabu M. Thampi, Gregorio Martinez Perez, Ryan Ko, and Danda B.
Rawat (Eds.). Springer Singapore, Singapore, 1–10.

[8] H. S. Anderson and P. Roth. 2018. EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models. ArXiv e-prints (April 2018).
arXiv:1804.04637 [cs.CR]

[9] Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh.
2013. A survey on heuristic malware detection techniques. In The 5th Conference
on Information and Knowledge Technology. 113–120. https://doi.org/10.1109/IKT.
2013.6620049

[10] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi,
H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design.
http://arxiv.org/abs/1902.01046 cite arxiv:1902.01046.

[11] Michael Brengel and Christian Rossow. 2021. YARIX: Scalable YARA-based
Malware Intelligence. In USENIX Security Symposium.

[12] A. Z. Broder. 1997. On the resemblance and containment of documents. In Pro-
ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).
21–29. https://doi.org/10.1109/SEQUEN.1997.666900

[13] Ferhat Ozgur Catak, Ahmet Faruk Yazı, Ogerta Elezaj, and Javed Ahmed. 2020.
Deep learning based Sequential model for malware analysis using Windows exe
API Calls. PeerJ Computer Science 6 (July 2020), e285. https://doi.org/10.7717/
peerj-cs.285

[14] Moses S. Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing (Montreal, Quebec, Canada) (STOC ’02). Association for Computing
Machinery, New York, NY, USA, 380–388. https://doi.org/10.1145/509907.509965

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

[16] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, XueqiangWang, and XiaoFengWang. 2018. Things You May Not Know About
Android (Un) Packers: A Systematic Study based on Whole-System Emulation..
In NDSS.

[17] Cynthia Dwork. 2008. Differential Privacy: A Survey of Results. In Theory and
Applications of Models of Computation, Manindra Agrawal, Dingzhu Du, Zhenhua
Duan, and Angsheng Li (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
1–19.

[18] Gianni D’Angelo, Massimo Ficco, and Francesco Palmieri. 2020. Malware detec-
tion in mobile environments based on Autoencoders and API-images. J. Parallel
and Distrib. Comput. 137 (2020), 26–33. https://doi.org/10.1016/j.jpdc.2019.11.001

[19] Ruitao Feng, Sen Chen, Xiaofei Xie, Lei Ma, Guozhu Meng, Yang Liu, and Shang-
Wei Lin. 2019. MobiDroid: A Performance-SensitiveMalware Detection System on
Mobile Platform. In 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS). 61–70. https://doi.org/10.1109/ICECCS.2019.00014

[20] Daniel Gibert, Carles Mateu, and Jordi Planes. 2020. HYDRA: A multimodal deep
learning framework for malware classification. Computers & Security 95 (2020),
101873. https://doi.org/10.1016/j.cose.2020.101873

[21] Richard Harang and Ethan M. Rudd. 2020. SOREL-20M: A Large Scale Benchmark
Dataset for Malicious PE Detection. arXiv:2012.07634 [cs.CR]

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[23] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei. 2011. Homomorphic
encryption-based secure SIFT for privacy-preserving feature extraction. In Me-
dia Watermarking, Security, and Forensics III, Nasir D. Memon, Jana Dittmann,
Adnan M. Alattar, and Edward J. Delp III (Eds.), Vol. 7880. International Society
for Optics and Photonics, SPIE, 32 – 48. https://doi.org/10.1117/12.873325

[24] Cylance Inc. 2012. VirusShare.com - Because Sharing is Caring. Online. https:
//virusshare.com/.

[25] Young-Seob Jeong, Jiyoung Woo, and Ah Reum Kang. 2019. Malware Detection
on Byte Streams of PDF Files Using Convolutional Neural Networks. Big Data
Analytics for Cyber Security 2019 (2019), AID 8485365.

[26] Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2nd
Edition). Prentice-Hall, Inc., USA.

[27] Kaggle. 2013. Dogs vs. Cats. Online. https://www.kaggle.com/c/dogs-vs-cats.
[28] Aditya Kapoor, Himanshu Kushwaha, and Ekta Gandotra. 2019. Permission

based Android Malicious Application Detection using Machine Learning. In 2019
International Conference on Signal Processing and Communication (ICSC). 103–108.
https://doi.org/10.1109/ICSC45622.2019.8938236

[29] Kaspersky. 2019. Check if your device has been targeted by the ShadowHammer
cyberattack. Online. https://shadowhammer.kaspersky.com/.

[30] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and Davide
Balzarotti. 2021. Does Every Second Count? Time-based Evolution of Malware

https://www.virustotal.com/
https://paperswithcode.com/
https://github.com/cyber-research/APTMalware
https://github.com/cyber-research/APTMalware
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.14722/ndss.2020.24310
https://doi.org/10.1145/2857705.2857713
https://doi.org/10.1145/2857705.2857713
https://arxiv.org/abs/1804.04637
https://doi.org/10.1109/IKT.2013.6620049
https://doi.org/10.1109/IKT.2013.6620049
http://arxiv.org/abs/1902.01046
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.7717/peerj-cs.285
https://doi.org/10.7717/peerj-cs.285
https://doi.org/10.1145/509907.509965
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.jpdc.2019.11.001
https://doi.org/10.1109/ICECCS.2019.00014
https://doi.org/10.1016/j.cose.2020.101873
https://arxiv.org/abs/2012.07634
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1117/12.873325
https://virusshare.com/
https://virusshare.com/
https://www.kaggle.com/c/dogs-vs-cats
https://doi.org/10.1109/ICSC45622.2019.8938236
https://shadowhammer.kaspersky.com/

Behavior in Sandboxes. In Proceedings of the Network and Distributed System
Security Symposium, NDSS. The Internet Society.

[31] Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe
Morency. 2020. Think locally, act globally: Federated learning with local and
global representations. arXiv preprint arXiv:2001.01523 (2020).

[32] Kuang-Yao Lin and Wei-Ren Huang. 2020. Using Federated Learning on Malware
Classification. In 2020 22nd International Conference on Advanced Communica-
tion Technology (ICACT). 585–589. https://doi.org/10.23919/ICACT48636.2020.
9061261

[33] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble
Distillation for Robust Model Fusion in Federated Learning. CoRR abs/2006.07242
(2020). arXiv:2006.07242 https://arxiv.org/abs/2006.07242

[34] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero, Alessio Merlo,
and Davide Balzarotti. 2020. Prevalence and Impact of Low-Entropy Packing
Schemes in the Malware Ecosystem. In Network and Distributed System Security
(NDSS) Symposium, NDSS, Vol. 20.

[35] Hoda El Merabet and Abderrahmane Hajraoui. 2019. A Survey of Malware
Detection Techniques based on Machine Learning. International Journal of
Advanced Computer Science and Applications 10, 1 (2019). https://doi.org/10.
14569/IJACSA.2019.0100148

[36] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (Nov. 1995), 39–41. https://doi.org/10.1145/219717.219748

[37] Nauman Mohammad, Tanveer Tamleek Ali, Khan Sohail, and Syed Toqeer Ali.
2018. Deep neural architectures for large scale android malware analysis. Cluster
Computing 21 (2018), 569–588. https://doi.org/10.1007/s10586-017-0944-y

[38] Lakshmanan Nataraj, S. Karthikeyan, Gregoire Jacob, and B.S. Manjunath. 2011.
Malware Images: Visualization and Automatic Classification. In International
Symposium on Visualization for Cyber Security (VizSec). https://vision.ece.ucsb.
edu/sites/default/files/publications/nataraj_vizsec_2011_paper.pdf

[39] Modupe Odusami, Olusola Abayomi-Alli, Sanjay Misra, Olamilekan Shobayo,
Robertas Damasevicius, and RytisMaskeliunas. 2018. AndroidMalware Detection:
A Survey. InApplied Informatics, Hector Florez, Cesar Diaz, and JaimeChavarriaga
(Eds.). Springer International Publishing, Cham, 255–266.

[40] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. 2021. A Survey of the
Usages of Deep Learning for Natural Language Processing. IEEE Transactions on
Neural Networks and Learning Systems 32, 2 (2021), 604–624. https://doi.org/10.
1109/TNNLS.2020.2979670

[41] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro,
and Charles Nicholas. 2017. Malware Detection by Eating a Whole EXE.
arXiv:1710.09435 [stat.ML]

[42] José Luis Rojo-Álvarez, Manel Martínez-Ramón, Jordi Muñoz-Marí, and Gustau
Camps-Valls. 2018. From Signal Processing to Machine Learning. 1–11. https:
//doi.org/10.1002/9781118705810.ch1

[43] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ah-
madi. 2018. Microsoft Malware Classification Challenge. CoRR abs/1802.10135
(2018). arXiv:1802.10135 http://arxiv.org/abs/1802.10135

[44] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar,
and Virginia Smith. 2018. On the Convergence of Federated Optimization in
Heterogeneous Networks. CoRR abs/1812.06127 (2018). arXiv:1812.06127 http:
//arxiv.org/abs/1812.06127

[45] Joshua Saxe and Konstantin Berlin. 2015. Deep neural network based malware
detection using two dimensional binary program features. In 2015 10th Inter-
national Conference on Malicious and Unwanted Software (MALWARE). 11–20.
https://doi.org/10.1109/MALWARE.2015.7413680

[46] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from

Deep Networks via Gradient-Based Localization. In 2017 IEEE International Con-
ference on Computer Vision (ICCV). 618–626. https://doi.org/10.1109/ICCV.2017.74

[47] Akanksha Rai Sharma and Pranav Kaushik. 2017. Literature survey of statis-
tical, deep and reinforcement learning in natural language processing. In 2017
International Conference on Computing, Communication and Automation (ICCCA).
350–354. https://doi.org/10.1109/CCAA.2017.8229841

[48] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations.

[49] Ching Y. Suen. 1979. n-Gram Statistics for Natural Language Understanding and
Text Processing. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-1, 2 (1979), 164–172. https://doi.org/10.1109/TPAMI.1979.4766902

[50] Roopak Surendran, Tony Thomas, and Sabu Emmanuel. 2020. A TAN based
hybrid model for android malware detection. Journal of Information Security and
Applications 54 (2020), 102483. https://doi.org/10.1016/j.jisa.2020.102483

[51] Duc-Ly Vu, Trong-Kha Nguyen, Tam V. Nguyen, Tu N. Nguyen, Fabio Massacci,
and Phu H. Phung. 2019. A Convolutional Transformation Network for Malware
Classification. arXiv:1909.07227 [cs.CR]

[52] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, Carl A. Gunter, and Haifeng Chen.
2020. You are what you do: Hunting stealthy malware via data provenance
analysis. In Symposium on Network and Distributed System Security (NDSS).

[53] Wei Wang, Vincent W. Zheng, Han Yu, and Chunyan Miao. 2019. A Survey of
Zero-Shot Learning: Settings, Methods, and Applications. ACM Trans. Intell. Syst.
Technol. 10, 2, Article 13 (2019), 37 pages. https://doi.org/10.1145/3293318

[54] YaqingWang, Quanming Yao, James T. Kwok, and LionelM. Ni. 2020. Generalizing
from a Few Examples: A Survey on Few-Shot Learning. ACM Comput. Surv. 53,
3, Article 63 (2020), 34 pages. https://doi.org/10.1145/3386252

[55] Li Yang and Junlin Liu. 2020. TuningMalconv: Malware Detection With Not
Just Raw Bytes. IEEE Access 8 (2020), 140915–140922. https://doi.org/10.1109/
ACCESS.2020.3014245

[56] Shang-Nan Yin, Ho-Seok Kang, Zhi-Guo Chen, and Sung-Ryul Kim. 2018. A
Malware Detection System Based on Heterogeneous Information Network. In
Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems
(Honolulu, Hawaii) (RACS ’18). Association for Computing Machinery, New York,
NY, USA, 154–159. https://doi.org/10.1145/3264746.3264784

[57] Lun-Pin Yuan, Wenjun Hu, Ting Yu, Peng Liu, and Sencun Zhu. 2019. Towards
large-scale hunting for Android negative-day malware. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019). 533–
545.

[58] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. 2021. A
survey on federated learning. Knowledge-Based Systems 216 (2021), 106775.
https://doi.org/10.1016/j.knosys.2021.106775

[59] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing State-of-the-art Classifiers
with API Semantics to Detect Evolved AndroidMalware. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 757–770.

[60] Chunlei Zhao, Wenbai Zheng, Liangyi Gong, Mengzhe Zhang, and Chundong
Wang. 2018. Quick and Accurate Android Malware Detection Based on Sensitive
APIs. In 2018 IEEE International Conference on Smart Internet of Things (SmartIoT).
143–148. https://doi.org/10.1109/SmartIoT.2018.00034

[61] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and modeling the label dynamics of online anti-
malware engines. In 29th {USENIX} Security Symposium ({USENIX} Security 20).
2361–2378.

https://doi.org/10.23919/ICACT48636.2020.9061261
https://doi.org/10.23919/ICACT48636.2020.9061261
https://arxiv.org/abs/2006.07242
https://arxiv.org/abs/2006.07242
https://doi.org/10.14569/IJACSA.2019.0100148
https://doi.org/10.14569/IJACSA.2019.0100148
https://doi.org/10.1145/219717.219748
https://doi.org/10.1007/s10586-017-0944-y
https://vision.ece.ucsb.edu/sites/default/files/publications/nataraj_vizsec_2011_paper.pdf
https://vision.ece.ucsb.edu/sites/default/files/publications/nataraj_vizsec_2011_paper.pdf
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1109/TNNLS.2020.2979670
https://arxiv.org/abs/1710.09435
https://doi.org/10.1002/9781118705810.ch1
https://doi.org/10.1002/9781118705810.ch1
https://arxiv.org/abs/1802.10135
http://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/CCAA.2017.8229841
https://doi.org/10.1109/TPAMI.1979.4766902
https://doi.org/10.1016/j.jisa.2020.102483
https://arxiv.org/abs/1909.07227
https://doi.org/10.1145/3293318
https://doi.org/10.1145/3386252
https://doi.org/10.1109/ACCESS.2020.3014245
https://doi.org/10.1109/ACCESS.2020.3014245
https://doi.org/10.1145/3264746.3264784
https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1109/SmartIoT.2018.00034

	Abstract
	1 Introduction
	2 Related Works
	2.1 Machine Learning-based on Malware Detection
	2.2 Public Available Malware Repositories and Datasets
	2.3 Privacy Preserving

	3 Motivation
	3.1 Impacts of Dataset Quality
	3.2 Privacy-Preserved Dataset Sharing

	4 Feature Transformation
	4.1 Common Features for Malware Research
	4.2 FeatureTransformer
	4.3 Properties of FeatureTransformer

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: Does FeatureTransformer Really Work?
	5.3 RQ2: Performance of Text-based and Numerical Feature Transformation
	5.4 RQ3: Impacts of Algorithm Parameters
	5.5 RQ4: Access Control
	5.6 RQ5: Impacts of Transformation Algorithms
	5.7 RQ6: Adopting FeatureTransformer on CNN-based Malware Detection Classifiers
	5.8 RQ7: FeatureTransformer for a Generic Image Classification Problem

	6 Conclusion
	References

