On the Performance Comparisons of Native and Clientless
Real-Time Screen Sharing Technologies

CHUN-YING HUANG", YUN-CHEN CHENG, and GUAN-ZHANG HUANG, National Chiao
Tung University, Taiwan

CHING-LING FAN and CHENG-HSIN HSU", National Tsing Hua University, Taiwan

Real-time screen sharing provides users with ubiquitous access to remote applications, such as computer
games, movie players, and desktop applications (apps), anywhere and anytime. In this paper, we study the
performance of different screen sharing technologies, which can be classified into native and clientless ones.
The native ones dictate that users install special-purpose software, while the clientless ones directly run in
web browsers. In particular, we conduct extensive experiments in three steps. First, we identify a suite of
the most representative native and clientless screen sharing technologies. Second, we propose a systematic
measurement methodology for comparing screen sharing technologies under diverse and dynamic network
conditions using different performance metrics. Last, we conduct extensive experiments and perform in-depth
analysis to quantify the performance gap between clientless and native screen sharing technologies. We found
that our WebRTC-based implementation achieves the best overall performance. More precisely, it consumes
a maximum of 3 Mbps bandwidth while reaching a high decoding ratio and delivering good video quality.
Moreover, it leads to a steadily high decoding ratio and video quality under dynamic network conditions. By
presenting the very first rigorous comparisons of the native and clientless screen sharing technologies, this
article will stimulate more exciting studies on the emerging clientless screen sharing technologies.

CCS Concepts: » Information systems — Multimedia streaming; Web applications;

Additional Key Words and Phrases: Live video streaming, real-time encoding, measurements, performance
evaluations, performance optimization

ACM Reference Format:

Chun-Ying Huang, Yun-Chen Cheng, Guan-Zhang Huang, Ching-Ling Fan, and Cheng-Hsin Hsu. 2020. On
the Performance Comparisons of Native and Clientless Real-Time Screen Sharing Technologies. ACM Trans.
Multimedia Comput. Commun. Appl. 1, 1, Article 1 (January 2020), 26 pages. https://doi.org/10.1145/3437881

ACKNOWLEDGMENTS

This work was partially supported by the Ministry of Science and Technology of Taiwan (#107-
2221-E-009-028-MY3 and #107-2221-E-007-091-MY3) and by a NOVATEK Fellowship.

“Chun-Ying Huang and Cheng-Hsin Hsu are co-corresponding authors.

Authors’ addresses: Chun-Ying Huang, chuang@cs.nctu.edu.tw; Yun-Chen Cheng, emmas191@gmail.com; Guan-
Zhang Huang, National Chiao Tung University, Computer Science, 1001 University Road, Hsinchu, 30010, Taiwan,
johnhuang30834@gmail.com; Ching-Ling Fan, ch.ling.fan@gmail.com; Cheng-Hsin Hsu, National Tsing Hua University,
No. 101 Sec. 2 Kuang-Fu Road, Hsin-Chu, 300, Taiwan, chsu@cs.nthu.edu.tw.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1551-6857/2020/1-ART1 $15.00

https://doi.org/10.1145/3437881

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

https://doi.org/10.1145/3437881
https://doi.org/10.1145/3437881

1:2 Huang, C. et al.

1 INTRODUCTION

Market research reports show the Internet’s increasing penetration rate, e.g., there were 4.3 billion
worldwide Internet users in March 2019 [27]. Besides, consumer-graded computers come in various
forms, including workstations, desktops, laptops, tablets, smartphones, and smartwatches, which
are connected to the Internet through heterogeneous networks. These computers have diverse
resources in different aspects, such as computing power, storage space, network speed, battery
capacity, and display dimensions. Oftentimes, users may want to access the resources of a remote
server from a local client through the Internet, as illustrated in Fig. 1. Particularly, users can run
their applications on relatively powerful servers, capture the screen and sound, and transfer the
compressed video and audio streams to relatively thin clients. Upon receiving the streams, the
clients decode and render the applications to the users. In addition, the users interact with the
applications through different input devices, such as keyboards, mouses, and inertial sensors. The
inputs are then streamed back to the servers and replayed to the applications. Through remotely
sharing applications from the servers to the clients, users gain access to rich resources via the
Internet. This is referred to as real-time screen sharing, which is also known as remote rendering [36],
remote desktops [41], and screencast [1, 16].

Video and Audio of Applications,

Powerful Server e.g., Captured Screen and Sound Weak Clients
e N 895
3 —
=] h —> g Internet \) @ AN
S ———
Applications Inputs from, e.g., Mouse, Users

Keyboard, Sensor

Fig. 1. An overview of screen sharing technologies.

Screen sharing has been applied to many applications, including teleconferences, distance
education, live audio/video streaming, and cloud gaming. The existing screen sharing technologies
run the applications on desktop computers or cloud servers. For instance, on desktop computers,
remote assistance [25] is offered by Windows OS, and Virtual Network Computing (VNC) [32]
is available across many OSes. Another popular application is cloud gaming, e.g., PS4 Remote
Play [37] and Steam’s In-Home Streaming [39] allow users to play PS4 and PC games, respectively.
More precisely, Google announced their cloud gaming platform called Stadia [14], while GeForce
Now from NVidia allows OSX, Windows, and SHIELD users to play remote games [31]. In addition
to the tremendous interest from the industry, there are also cloud gaming platforms, which have
been developed in academia [5, 18, 42].

The quality of screen sharing may be quantified in several performance metrics, as users of
different applications have diverse quality requirements. For example, users who use video players
through screen sharing demand good video quality, but pay less attention to latency. In contrast,
cloud gaming users have higher and more diverse (depending on the game genres) requirements
regarding latency [6, 8], because users of fast-paced games (such as First Person Shooter, or FPS
games) focus more on the quality of hand-eye coordination [7]. Therefore, depending on the target
applications, we have to carefully choose the most suitable screen sharing technologies for a sweet
spot in the tradeoff of user experience and resource consumption [36].

In this article, we carry out the very first measurement study on the performance comparisons of
native and clientless screen sharing technologies. We achieve this in three steps. First, we survey
representative screen sharing technologies, which can be roughly classified into two groups: (i)
native and (ii) clientless. The native technologies require users to install dedicated software on
the clients; representative examples include Remote Desktop Protocol (RDP) [24], VNC [32], and

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:3

GamingAnywhere (GA) [18]. The clientless technologies utilize web browsers in order to avoid
software installation and achieve better portability; representative examples include FFmpeg [10],
noVNC [24], and WebRTC [40]. Second, we design and build a measurement testbed to conduct
real experiments for fair performance comparisons. The testbed consists of carefully designed tools
for measuring key performance metrics, such as bandwidth consumption, latency, decoding ratio,
and video quality [20, 30, 33]. Furthermore, our testbed allows users to adjust several key network
parameters, including network bandwidth, delay, and packet loss rate. Third, we systematically
conduct extensive experiments using our testbed to compare the performance of different screen
sharing technologies. To the best of our knowledge: (i) the detailed performance measurements of
clientless screen sharing technologies and (ii) the comparisons of clientless and native technologies
have not been done in the literature.
Our measurement results reveal that:

e VNC, noVNC, and RDP are vulnerable to imperfect network conditions and result in longer
latency, degraded video quality, and lower decoding ratios.

o GA suffers from lower video quality and decoding ratios when the packet loss rate is nontrivial.

e WebRTC is the most robust technology under bad network conditions, which can be attributed
to its built-in error resilience mechanisms. Under the most challenging network conditions,
WebRTC outperforms all other considered technologies: it achieves a lower bandwidth
consumption (< 3 Mbps), higher video quality (> 27 dB in Peak Signal-to-Noise Ratio, or
PSNR), and a higher decoding ratio (> 86%). Similar merits are also observed in the dynamic
network conditions.

In summary, we found that WebRTC works as well as, if not better than, other screen sharing
technologies, including the native technologies, most of the time. Hence we recommend the clientless
WebRTC [40] for the majority of applications and usage scenarios. The only exceptions are when: (i)
the network bandwidth is abundant, or (ii) extremely low latency is required. For the former case,
existing WebRTC implementations in Chrome and Firefox are not aggressive enough in consuming
more network bandwidth for even higher video quality, which may be addressed by augmenting
their rate control algorithms. For the latter case, the additional latency due to web browsers was
still too high at the time of writing. Thus, we recommend GA [18], which is a native screen sharing
technology tailored for cloud gaming and other highly interactive applications,when extremely low
latency is a must.

The rest of this article is organized as follows. In Section 2, we survey the literature. We discuss
the architecture of screen sharing technologies in Section 3. Section 4 details the representative
screen sharing technologies, which span over both native and clientless technologies. Section 5
presents our proposed measurement methodology, and Section 6 analyzes the measurement results.
We conclude the article in Section 7. Appendix A provides some detailed analysis results that cannot
be included in Section 6 due to space limitations.

2 RELATED WORK

Clientless Screen Sharing Technologies. Web browsers have been used as screen sharing clients
in the literature. For example, Ganiji et al. [11] investigate the possibility of using HTML5 virtual-
ization to support screen sharing on resource-constrained mobile devices. They build a testbed that
converts RDP content into HTML5 canvas, which is then streamed to mobile devices. The testbed
runs several applications, including MS Word, Internet Explorer, and DICOM Viewer. Besides,
multiple performance metrics, such as bandwidth consumption, CPU usage, and video quality, are
considered. Mufali et al. [29] study how to allow disabled users to remotely access their specialized
software tools installed and configured on cloud servers using public personal computers. This

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:4 Huang, C. et al.

is an important problem, because installing and configuring such specialized software tools is
time-consuming, tedious, and error-prone. They propose to employ the opensource noVNC [23]
to allow disabled people to access their cloud servers via HTML5 in web browsers. Ueberheide
et al. [38] present a real-time streaming framework for free-viewpoint rendering, which relies on
open standards and software. To enable interactions via web browsers, user inputs are captured
with JavaScript and sent via WebSockets. The rendered video is streamed with HTML5 video tag
over HTML/TCP using FFmpeg [10]. Mochida et al. [28] propose a web-based remote collabora-
tion system, which consists of three entities: a relay server, an overlay manager, and a timecode
server. The real-time interactions are sent through the relay server using UDP packets for short
latency. The overlay manager links the web browser with applications. The timecode server embeds
timecodes in video packets, which allow web browsers to synchronize remote widget movements.
Their system enables users to share texts, images, and screens. Users can remotely move mouse
cursors, draw annotations on images, and control shared screens. Similar to the abovementioned
papers [11, 28, 29, 38], we also design, implement, and evaluate several clientless screen sharing tech-
nologies based on opensource projects, such as WebRTC [40] and FFmpeg [10]. Differing from the above
works, we quantitatively measure and compare the performance of multiple clientless screen sharing
technologies under the same controlled network conditions.

Performance Measurement of Screen Sharing Technologies. The performance of some
screen sharing technologies has been measured in the literature. For instance, Ammar et al. [2]
employ Google Chrome’s built-in tool to measure the performance of a video communication
application built on WebRTC. They found that the built-in tool helps diagnose the inferior video
quality (mainly due to video freezes). Although their work demonstrates the potential of the built-in
tool, this tool is not applicable to native screen sharing technologies. Similarly, Garcia et al. [12]
adopt the opensource Kurento [22], which is a high-level testing framework which measures the
performance of WebRTC applications. Some measurement techniques of Kurento can be improved,
e.g., Kurento embeds a new timecode every five seconds, while our testbed does that for every
single frame to obtain finer-grained latency measurements. These two studies [2, 12] only consider a
single screen sharing technology: WebRTC. The performance comparisons among different native
screen sharing technologies have also been considered in the literature. For example, Lin et al. [21]
evaluate bandwidth consumption and power consumption of the native RDP [24], VNC [32], and
GA [18] over Wi-Fi and LTE networks. Their observations show that RDP and VNC consume fewer
resources in more static scenes; GA trades higher bandwidth consumption for shorter latency.
This is expected, as GA is designed for cloud gaming. Compared with their work, our current article
considers more performance metrics and more screen sharing technologies. Last, our earlier work [17]
compares the AirPlay, Chromecast, GA, Miracast, MirrorOp and Splashtop on different OSes under
diverse network conditions. While a rich set of performance metrics is considered, the screen
sharing technologies therein are native and mostly proprietary (except GA). In contrast, the current
article compares the performance of representative native and clientless screen sharing technologies,
which has never been done before.

3 ARCHITECTURE

Fig. 2 shows the common architecture of screen sharing technologies. Each server and client contains
three components: a capturer/renderer, a compressor/decompressor, and a sender/receiver. The server
first captures the screen and sound, the video/audio is compressed into bitstreams, which are then
packetized and sent to the client. The client receives and reassembles the video/audio packets into
compressed bitstreams, which are then decompressed into raw video/audio for rendering to the
users. The key factors affecting the performance of screen sharing technologies are the designs of
the compression (compressor/decompressor) and transmission (sender/receiver) components. Each

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:5

dm Server Client m

Capturer | | Renderer |

l Raw Video/Audio T

| Compressor | |Decom7ressor|

Compressed Bitstream

Recei
| Sender Video/Audio eceiver |

Packets

| Input Replayer FW' Input Handler |

Fig. 2. Common architecture of screen sharing technologies.

g RDP 4.0® ® RDP 8.0
kS VNC:RFB3.3 @ ® RFB 3.8
2
GA
9 Fmpeg/H.264
Q
= noVNC®
<
L WebRTC
S
. 7
1995 2000 2005 2010 2015 00 Time
®——— Primitive Drawing Video Codec

Fig. 3. The timelines and classifications of the representative screen sharing technologies.

screen sharing technology employs its own compression codec and network protocol to meet the
design objectives of its target applications. Certain tradeoffs must be considered in the design phase,
e.g., different video codecs achieve diverse tradeoffs between video quality and encoding speed.
VNC client, for example, supports multiple codecs for users to opt for higher video quality or faster
encoding speed. WebRTC clients and servers exchange a list of supported codecs using Session
Description Protocol (SDP) at the initialization time. Its network protocols add temporal meta-data,
such as timestamps and sequence numbers, to the packets to handle out-of-order delivery. Screen
sharing technologies may measure live network conditions, such as network bandwidth, round-
trip time, and packet loss rate, to better adapt to network dynamics. That is, under bad network
conditions, the receiver notifies the sender to send lower-quality video, in order to avoid late and
lost packets for smooth playout. For example, a VNC client periodically sends update requests
for the next few frames. Therefore, the client can adjust the frequency of such requests based on
the current network conditions. WebRTC also measures the network conditions and dynamically
turns on/off Forward Error Correction (FEC) for better error resilience. Last, some screen sharing
technologies send user inputs in reverse channels. The keystrokes, mouse movements, mouse clicks,
inertial and other sensor readings are captured by input handler and sent to the input replayer at
the server. The server replays these inputs to applications. The inputs typically have fairly low
bitrates but need to be reliably delivered. Hence, inputs are mostly sent over TCP protocol, which
may be different from video/audio packets.

4 SCREEN SHARING TECHNOLOGIES: OVERVIEW AND IMPLEMENTATIONS

In this section, we present an overview of the representative screen sharing technologies. We also
introduce how they are implemented and configured on our testbed. Fig. 3 summarizes the timelines
of these screen sharing technologies. It also classifies the technologies into two dimensions: (i)
native versus clientless and (ii) primitive drawing versus video codec.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:6 Huang, C. et al.

4.1 Native Screen Sharing Technologies

We first present three representative native technologies.

Remote Desktop Protocol (RDP) is a proprietary screen sharing protocol developed by Mi-
crosoft, which is used by several Windows tools, such as Remote Desktop Operation and Microsoft
Windows Remote Assistance (MSRA). The captured screens are compressed using both intra- and
inter-frame video coding before being transmitted. Our experiments employ MSRA [25] as the RDP
implementation. Both the server and client run on Windows 10. We set up screen sharing sessions
as follows. We first share a directory between the server and client. The server then launches MSRA,
and saves an invitation file in the shared directory. After that, the server screen shows a password
for the client to enter. The user at the client clicks the saved invitation file in the shared directory
and enters the password to create a screen sharing session.

Virtual Network Computing (VNC) is a platform-independent screen sharing technology
developed by Olivetti & Oracle Research Lab (ORL). VNC uses the Remote Frame-Buffer (RFB)
protocol [32] to remotely access and control the screens of servers. Because the RFB protocol works
at the framebuffer level, it is applicable to all Graphical User Interfaces (GUIs), including X11,
Windows, and OSX. An RFB server runs a daemon process that maintains the framebuffer states.
The RFB protocol defines a very primitive operation of drawing rectangles, which gives the VNC
server flexibility to adaptively determine the granularity of the streamed screens under diverse
network conditions and server/client computing power. VNC users may terminate VNC sessions
at any time, and reconnect to the servers later so as to resume the sessions. Moreover, multiple
VNC clients are allowed to connect to a VNC server at the same time. There are multiple VNC
implementations, and we use tightVNC [13] in our experiments. tightVNC is free and provides
several codec options, including a tight codec that is tailored for low network bandwidth. In the
experiments, both the server and client run on Windows 10. First, the sever launches the tight VNC
server and sets up the configuration such as the port number and the password. We choose tight
codec with a compression quality and efficiency level of 6, and a screen polling cycle of 30 ms. The
client launches tightVNC client with the IP address, port number, and password of the server. The
screen sharing session is then created.

GamingAnywhere (GA) is a cloud gaming platform with high extensibility, portability, recon-
figurability, and openness. It supports several video/audio codecs from the libavcodec library [18].
GA is designed to be modularized because the screen capturing and rendering APIs are platform-
dependent, and the codecs and network protocols are platform-independent. GA supports Windows
and Linux, and can be ported to other OSes like OSX and Android. GA users can change the
configurable parameters, such as codecs and protocols, via configuration files. Each GA session
consists of two network flows: data and control. The video/audio packets are sent via data flows
using RTSP or RTP. The user inputs are sent via control flows. In our experiments, we use x264 as
the codec, RTP as the data flow protocol, and TCP as the control flow protocol. The server runs the
periodic mode, where the entire screens are streamed to the client. We run GA on Windows 10
using MinGW [26].

4.2 Clientless Screen Sharing Technologies

We next present three representative clientless technologies.

noVNC is an HTML5-based VNC client library and application [23], which allows a client to
connect to a VNC server. The noVNC client is implemented with HTML5 WebSockets, canvas, and
JavaScript, while the noVNC server is almost the same as a regular VNC server. However, regular
VNC servers do not support WebSockets, and thus a noVNC server has to proxy the TCP sockets
and WebSockets. Each client creates an RFB object at the server, and the RFB object is assigned to

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:7

Server Traffic Controller Client
Screen Sharing Screen Sharing
1 1 tepd
[Server cpdump T c cpdump Client

Fig. 4. The overview of our measurement testbed.

an HTML5 element, which is attached to a new canvas. Next, the screens are rendered at the client
via commands of drawing pixels, while the actual drawing commands are determined by the chosen
codec and network conditions. Because VNC is a pull-based protocol, a client may adjust the update
request frequency to better match the current network condition. We run the server and client on
Windows 10. For the server, we use the tightVNC server described earlier. The noVNC server also
runs on the same machine serving as a proxy between TCP sockets and WebSockets. We employ
Chrome to run our client, which supports HTML5 WebSockets and canvas in our experiments.

WebRTC is an open framework developed by Google [40], which aims for real-time communi-
cations among web browsers without plug-ins. It is supported on multiple web browsers: including
Chrome, Opera, and Firefox. WebRTC supports high-quality video/audio communications over
peer-to-peer networks. WebRTC APIs are implemented in JavaScript, which enables screen cap-
turing, compression, and streaming for web browser applications. The APIs use SDP for session
negotiation, but leave the implementation details to application developers for their usage scenarios.
Moreover, WebRTC also integrates protocols, such as ICE, STU, and TURN to address the NAT
and firewall traversal problems. In our experiments, we build a WebRTC application, where both
the server and client run in web browsers. We test the WebRTC application with two browsers:
Chrome (version 76) and Firefox (version 70), and denote them as WebRTC-C and WebRTC-F
in tables and figures. Both Chrome and Firefox are 64-bit binaries running on Windows 10. We
use VP8 as the video codec, and RTP/UDP as the network protocol. We note that the WebRTC
implementations in Chrome and Firefox are different. First, Chrome retransmits lost packets using
a channel specified by a different RTP Synchronization Source Identifier (SSRC), whereas Firefox
retransmits lost packets using the existing channel. Second, Chrome supports FEC for better error
resilience, while Firefox does not. More discussions on these subtle differences are presented in our
experiment analysis.

FFmpeg can be leveraged to build a clientless screen sharing technology as follows. First, we
set up a PHP server. The client opens a browser which supports HTML5 and connects to the server
URL. Once the connection is up, FFmpeg APIs are used to capture server screens as a video stream
and then stream it to the HTML5 video tag. In our experiments, FFmpeg APIs capture the screens
into YUV420p videos, which are compressed with 1ibx264 codecs at 30 fps. The resulting bitstreams
are embedded into mp4 container files.

5 MEASUREMENT METHODOLOGY

In this section, we detail our experiment designs encompassing the testbed, environment setup,
and interpretation procedure.

5.1 Testbed

We set up a testbed for our measurement study, as illustrated in Fig. 4. The testbed consists of
three workstations: the server and client for running the screen sharing technologies, and the traffic
controller for emulating the diverse and dynamic network conditions. The server and client are put
on two different LANs connected by the traffic controller, which runs the tc utility to dynamically

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:8 Huang, C. et al.

A. Capture the server screen B. Capture the client screen

by screen recorder at 60 fps Server Client by screen recorder at 60 fps
Output: Video A Output: Video B
compute video quality by
Serverfy | Client @) comparing with Video A

iPhone 6s

C. Record both the server and client screens
by iPhone 6s at 240 fps

Output: Video C
Compute end-to-end latency and frame
decoding ratio between server and client

Fig. 5. Video-related performance metrics require us to capture several videos using both HDMI video
capturing boxes (videos A and B), and a high-speed camera (video C).

Table 1. Representative Network Conditions Table 2. Considered Video Content

Network Condition | Network Bandwidth | Delay | Packet Loss Rate Application | Video Content
Ideal Unlimited Oms | 0% G1 First-Person Shooter
Lossy Unlimited 0 ms 2% Game G2 Car Racing
High Delay Unlimited 200 ms | 0% G3 Real-Time Strategy
Low Bandwidth 4 Mbps 0 ms 0% M1 Movie (Slow)
Chall 4 Mbps 200 ms | 2% . n
Movie M2 Movie (Fast)
M3 Talk Show
Al Google Map Street View
Desktop Apps | A2 PowerPoint and Spread-sheet Editing
A3 | Web Browsing (Wikipedia and Amazon)

configure the Linux kernel packet scheduler, so as to throttle the network bandwidth, increase
the round-trip delay, and inject packet losses. We run tcpdump on the server and client to capture
packets. By comparing the captured packets at the server and client, we compute the bandwidth
consumption among other network related metrics. For video-related metrics, we capture the videos
from the testbed as illustrated in Fig. 5. More specifically, we use HDMI video capturing boxes to
capture the server and client screens as a YUV420p video with a resolution of 1280x720 at 60 fps.
The videos are then compared to calculate the video quality. We also use an iPhone 6s to shoot a
video containing both the server and client screens at 240 fps. Through embedding frame numbers
in the shared screens, we analyze the captured video to match the client frames to individual server
frames. The analysis results lead to latency, frame decoding ratio, and other video-related metrics.

5.2 Setup and Procedure
We configure tc to emulate various network conditions. In particular, we chose the network
parameters as below following the literature [15, 17]".

e Network bandwidth: In addition to unlimited bandwidth, we also throttle the network

bandwidth at 6 Mbps and 4 Mbps.

e Delay: We add a delay of 0 ms, 100 ms, and 200 ms from the server to client.

e Packet loss rate: We inject packet loss rate of 0%, 1%, 2%, and 5%.
The total number of emulated network conditions is therefore: 3 X 3 x 4 = 36. Although we conduct
a measurement study on all 36 conditions, we zoom into five more representative conditions when

10ur pilot tests indicate that expanding the ranges of our selected network parameters does not lead to significantly different
observations.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:9

B Ve :

(b)

Fig. 6. Sample frames from the three considered applications: (a) game, (b) movie, and (c) desktop apps.

comparing the performance of different screen sharing technologies, as summarized in Table 1.
The chosen conditions include: (1) ideal network, which has no limitation on the network, (2) lossy
network, which injects some packet loss, (3) high delay network, which sets the delay at 200 ms, (4)
low bandwidth network, which considers the network bandwidth at 4 Mbps, and (5) challenging
network, which sets the bandwidth at 4 Mbps, the delay at 200 ms, and the packet loss rate at 2%.

We consider three representative applications: game, movie, and desktop apps, which are remotely
accessed through the considered screen sharing technologies. For fair comparisons, we record
three sample YUV420p videos for each application in 1280x720 at 30 fps at the server. Figure 6
shows sample frames from the considered applications. Table 2 summarizes the considered nine
videos. Each video lasts for one minute. We concatenate all nine videos into a single test video to
simplify the experiment procedure, and insert 3 seconds of white frames between any two videos.
The resulting test video lasts for 566 seconds (or 16,991 video frames).

The test video is played once the client connects to the server. For every screen sharing technol-
ogy, we play the test video under 36 different network conditions. The experiment procedure is
summarized in the following:

(1) Launch tcpdump to record the network packets.

(2) Establish a session of a screen sharing technology.

(3) Start recording the screens into videos.

(4) Play the test video at the server.

(5) Stop collecting network packets and recording screens after the test video is finished.
(6) Change the network conditions and the screen sharing technology, and go back to (1).

We consider the following performance metrics.

e Bandwidth consumption: After each experiment, we analyze the pcap file saved by tcp-
dump and compute the bandwidth consumption.

e Latency: We embed the frame numbers in individual video frames (more details below)’.
Since the frame rate is fixed, the latency between a frame sent by the server and rendered by
the client is computed by analyzing the recorded screens of both the server and client.

e Decoding ratio: Some frames might be dropped due to network congestion or system failures.
The decoding ratio is defined as the percentage of successfully decoded frames at the client.
Frames that are significantly corrupted so that their frame numbers cannot be identified at
the client are not counted toward the decoding ratio.

¢ Video quality: We consider two video quality metrics: PSNR and SSIM (Structural Similarity
Index) [4]. PSNR is the ratio between the maximum power of a signal and the power of the

2 Another possible way to measure the latency is to insert the timestamps or frame numbers into the video packets at
the server and collect the receiving timestamps or frame numbers at the client. However, doing so might suffer from less
accurate latency measurements because the clocks at the server and client may not be perfectly synchronized (say, at
millisecond level).

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:10 Huang, C. et al.

Fig. 7. Sample problematic QR codes because of: (a) half-refreshed frame from VNC and (b) distorted frame
from GA.

- 5 ol G S Sl

[T RS
3 e e 3

@)

Fig.8. Sample colorcodes proposed by us: (a) a frame with its embedded frame number, (b) localized colorcodes,
and (c) localized colorcodes in a distorted frame.

corrupting noise, which is defined as a function of Mean Squared Error (MSE) in the decibel
(dB) scale. In particular, the luminance value of the pixel pair from the two corresponding
frames from the client and the server are compared to calculate the PSNR value. The SSIM is
designed as a more comprehensive objective quality metric than PSNR. SSIM approximates
the Human Vision System (HVS) and considers not only pixel values but also the contrast
and structure. SSIM value varies between 0 and 1. Higher PSNR and SSIM values generally
mean lower distortion and higher video quality.

5.3 Embedded Frame Numbers

We embed frame numbers into the video before streaming it, in order to match the frames captured
at the client to the frames captured at the server. We first consider the existing solutions: data
matrix [19] and QR (Quick Response) code [9]. Decoding frame numbers from frames is generally
done in two steps: (i) localizing the embedded patterns and (ii) converting the patterns into the
frame numbers. We conduct some pilot tests to study the efficiency and robustness of the data
matrix and QR code. We make two key observations. First, locating and decoding data matrices
is computationally intensive: it takes several seconds to locate and decode each code in a high-
resolution image. Hence, we do not consider the data matrix in the rest of this article. Second,
we notice that QR codes have a complex structure and may be sensitive to distortion caused by
network congestion. Fig. 7 shows two sample frames with problematic QR codes. Fig. 7a shows
a half-refreshed frame. Since the top and bottom halves of the QR code come from two different
frames, the decoded frame number would be wrong. Fig. 7b shows a distorted frame due to a couple
of lost packets. In this case, the QR code is undecodable. Fig. 7 demonstrates the limitations of using
QR codes to embed frame numbers, and thus we propose our own colorcode in the following.

Our proposed colorcode borrows the localization approach of the QR code, but introduces high
redundancy by only encoding very few information bits. More specifically, each pattern is filled
with a single 8-bit color, where each RGB component encodes two possible values: minimum (0) or

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:11

GA_ldeal GA_Challenging VNC_Ideal VNC_Challenging

(b)

Fig. 9. Performance comparisons: (a) colorcodes in a distorted frame can still be decoded and (b) our proposed
colorcodes are more robust than the QR code.

Decimal form of Checksum computed from
decoded number octal number

(b)

Fig. 10. Sample outputs of our colorcode decoder: (a) successfully obtained frame number and (b) checksum
error found in a frame.

maximum (255). Therefore, each colorcode can be one of the 2* = 8 possible values. Considering
the length of our test video, we decide to employ five colorcodes to represent the frame numbers.
To further increase the robustness, we add a sixth colorcode to encode the checksum. Fig. 8a shows
a sample video frame with the octal frame number represented by six colorcodes. We note that
about 26% of the frame is occupied by colorcodes.

To decode the colorcodes in captured screens, we first employ quirc [3] to localize the codes.
Fig. 8b and Fig. 8c show sample localized colorcodes without and with distortion caused by packet
loss. We define a Region-of-Interest (Rol) around the center of each colorcode, and convert the
most occurring color in the Rol into an octal digit. We also validate the checksum for better
robustness. Next, we compare the successful decoding rate of our colorcode against the QR code. For
fair comparisons, we increase the QR code size, so that it also occupies about 26% of each frame.
We consider two network conditions: (i) ideal, where tc is disabled and (ii) challenging network,
where tcis configured for a network bandwidth of 4 Mbps, a delay of 200 ms, and a packet loss rate
of 2%. Fig. 9a shows that our colorcode still works with GA under some distortion due to packet
loss. Fig. 9b reports the overall results, which reveals that our colorcode achieves higher successful
decoding rates than the QR code. For example, for GA in the challenging network, switching from
the QR code to our colorcode increases the success rate by 22.4%. Last, we present two sample
outputs of the colorcode decoder in Fig. 10, including a successfully decoded frame and a frame
with a checksum error.

6 COMPARATIVE ANALYSIS

In this section, we analyze the measurement results. Table 3 summarizes the considered screen
sharing technologies. We report the average results with error bars indicating the standard deviation

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:12 Huang, C. et al.

Table 3. Considered Screen Sharing Technologies

Technology RDP VNC GA FFmpeg noVNC WebRTC-C&F

Type Native Native Native Clientless Clientless Clientless
Components

Capturer OS-Specific | OS-Specific | OS-Specific | FFmpeg APIs OS-Specific WebRTC APIs

Codec RDP tight H.264 H.264 tight VP8

Transmission | RDP/TCP VNC/TCP RTP/UDP HTTP/TCP VNC/TCP RTP/UDP

Renderer RDP VNC GA HTMLS5 Video Tag | HTML5 Canvas | HTML5 Video Tag

4000
3610.1

3000

Latency (ms)
8

1000

Bandwidth Consumption (Mbps)

129.2 118.6

51.2 7.3 18.5 54
FFmpeg noVNC WebRTC-C WebRTC-F RDP VNC GA FFmpeg noVNC WebRTC-CWebRTC-F

30

o
2
£ 5

Kl 0 20
5 9
o €
o >
£ =
-] =]
9 S

S C 1o
e 8
3
>

0

FFmpeg noVNC WebRTC-C WebRTC-F GA FFmpeg noVNC WebRTC-C WebRTC-F
(© (d)

Fig. 11. Performance comparisons under the ideal network condition: (a) bandwidth consumption, (b) latency,
(c) decoding rate, and (d) video quality in PSNR.

whenever possible. We note that due to space limitations, some detailed analysis results are given
in Appendix A.

6.1 Performance Comparisons Under The Ideal Network Condition

We first report the results under the ideal network condition (see Table 1) in Fig. 11. We make a few
observations. First, Fig. 11a shows that VNC and noVNC incur high bandwidth consumption: 40.6
and 37.9 Mbps, respectively. These are more than 2.5 times the bandwidth consumption of RDP at
14.8 Mbps. All other considered screen sharing technologies only consume about 3 Mbps network
bandwidth. A closer look indicates that the difference can be attributed to the codecs adopted
by different screen sharing technologies. In particular, VNC and noVNC use the tight encoding
algorithm, and RDP employs proprietary compression algorithms. All these three algorithms draw
screens with some graphics primitives, such as rectangles with given width and height. In contrast,
other screen sharing technologies employ the commodity video codecs. For example, FFmpeg and
GA use H.264, and WebRTC-C and WebRTC-F use VP8 as the default codecs. Because video codecs
are highly optimized, nontrivial difference on bandwidth consumption is observed.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:13

2
a
= 4000
<
8 =
a
£ E 500
2)
g 5
[¢] 2000
< 3
5
3
] 1000
5
@ -
i o 185 7
RDP VNC GA FFmpeg noVNC WebRTC-C WebRTC-F RDP VNC GA FFmpeg noVNC WebRTC-CWebRTC-F

(b)

Decoding Ratio (%)
Video Quality in PSNR (dB)

FFmpeg noVNC WebRTC-C WebRTC-F RDP VNC GA FFmpeg noVNC WebRTC-C WebRTC-F

(© (d)

Fig. 12. Performance comparisons under different network bandwidth with no extra delay and packet loss
rate: (a) bandwidth consumption, (b) latency, (c) decoding ratio, and (d) video quality in PSNR.

Next, Fig. 11b reveals that VNC and GA achieve very low latency: 7 ms and 18 ms, respectively.
RDP and noVNC have slightly longer latency at 51 ms and 54 ms. These are trailed by WebRTC-C
and WebRTC-F at 129 ms and 118 ms. FFmpeg suffers from an extremely long latency of nearly
3.5 seconds. Such a long latency may be due to its design: it adopts the FFmpeg APIs to capture
the screens and an HTTP server to stream the captured screens. The HTTP server, unfortunately,
incurs too much extra buffering delay, which results in long latency. Fig. 11c gives the decoding
ratio. Among all screen sharing technologies, VNC achieves the highest decoding ratio at 96.2%.
This is followed by GA at 94.4%. WebRTC-C and FFmpeg have decoding ratios of 93.5% and 92.4%,
respectively. WebRTC-F and noVNC achieve around 80%. The worst one is the outdated RDP at
66.6%. Last, Fig. 11d shows that the screen sharing technologies achieve very similar video quality.
Particularly, WebRTC-C, WebRTC-F and FFmpeg achieve the highest PSNR values at about 27 dB.
RDP and GA achieve PSNR values at about 26 dB, while VNC and noVNC achieve PSNR values
that are slightly lower than 26 dB. We note that the results from SSIM show similar trends, and
thus are not plotted due to space limitations’.

In summary, under the ideal network condition, VNC achieves the best overall performance.
It achieves a low latency at 7.3 ms, a high decoding ratio at 96.2%, and fairly good video quality.
However, we notice that VNC incurs a high bandwidth consumption of about 40 Mbps, which may
be unrealistic in real-life scenarios. Hence, we discuss the performance of different screen sharing
technologies under different network bandwidths in the next section. Last, because FFmpeg incurs
an extremely long latency, we no longer consider it in the rest of this article.

3We only report sample PSNR results in the rest of this article, because the same trend is observed under other network
conditions.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

—_
-
ESN

Huang, C. et al.

c

8

=) —~

E 32 6000

2 =

c 3

8 o sd2 od7 10 g

< ©

o ;4000

e 3

& E e

o S 2000

S 2

©

£ : 5o e

5 Db gt ol o e ey e
FFmpeg noVNC WebRTC-C WebRTC-F RDP VNC GA FFmpeg noVNC WebRTC-CWebRTC-F

Normalized Decoding Ratio (%)
Normalized Video Quality in PSNR (%)

FFmpeg noVNC WebRTC-C WebRTC-F RDP VNC GA FFmpeg noVNC WebRTC-C WebRTC-F

(© (d)

Fig. 13. Normalized performance comparisons under different network bandwidth with no extra delay and
packet loss rate: (a) bandwidth consumption, (b) latency, (c) decoding ratio, and (d) video quality in PSNR. All
bars are normalized to the ideal network condition with unlimited network bandwidth.

S e ‘m A q ‘Wm?% M%jj.,‘ ,,,,,, =
| I | s {

20000
15000
10000
5000
3 BRRPEA - VAR T o
100
e T & PR 2 B e L A 2ek] --
50
25

n 1
et s S s o ! h b 1

[“Aueno | ["oney=a | [AoueieT | [upmpueg|

[TAweno | [Tonen-a | [#ousien | [wewpueg]

- ,"(w:'l’":’ij“r:"':‘:":«r“p')*jr‘ﬂ'.mv"ﬁi’;‘f;“.q”i":’:‘“:“‘, =bagashase-
|
154) "~
0 i 2 3 i 5 6 7 8 s : 3 i 5 § 7 b 5
Minute Minute
(a) (b)

Fig. 14. The per-second performance results from GA: (a) no bandwidth limitation and (b) 4 Mbps bandwidth
limitation. Dashed lines represent mean values.

6.2 Performance Implications of Bandwidth Limitations

We next analyze the implications of lower network bandwidth on the performance of different
screen sharing technologies. Fig. 12 plots the results. First, Fig. 12a shows that the bandwidth
consumption of noVNC, VNC, and RDP is indeed throttled at 4 (or 6) Mbps, which is quite different
from those in Fig. 11a. Hence, they are expected to suffer from performance degradation under
bandwidth limitations. Indeed, we observe their performance degradation in Fig. 12b, Fig. 12c,
and Fig. 12d. Based on their performance, we can classify the screen sharing technologies into
three groups: (1) WebRTC, (2) noVNC, VNC and RDP and (3) GA. For WebRTC, the bandwidth
limitation has little, if any, influence on other performance metrics. As for noVNC, VNC and RDP,
the deficiency of network bandwidth induces dramatic decreases on the decoding ratio. We also

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:15

Latency (ms)
8 2

Bandwidth Consumption (Mbps)

RDP VNC GA noVNC WebRTC-C WebRTC-F

2:[.\ 272271 2I.1

Decoding Ratio (%)
Video Quality in PSNR (dB)

RDP VNC GA noVNC WebRTC-C WebRTC-F RDP VNC GA noVNC WebRTC-C WebRTC-F

(© (d)

Fig. 15. Performance comparisons under different delays with no bandwidth limitation and packet loss rate:
(a) bandwidth consumption, (b) latency, (c) decoding ratio, and (d) video quality in PSNR.

normalize the measurement results to those from the ideal network condition (unlimited network
bandwidth), and plot the normalized results in Fig. 13. The figure further confirms the above
observations.

Fig. 14 compares the performance results of GA under unlimited bandwidth and 4 Mbps, where
the dashed lines indicate the mean values. Fig. 14a shows that GA may occasionally consume more
bandwidth than 4 (or 6) Mbps, although its codec is configured for an average rate of 3 Mbps. This
is because Average BitRate (ABR) instead of Constant BitRate (CBR) is employed by the default
video codec library of GA. Fig. 14b gives the performance results of GA under 4 Mbps bandwidth
limitation. In terms of bandwidth consumption, the curve is flat within applications 1, 2, and 9,
which shows that GA needs more network bandwidth (than 4 Mbps) for some applications. For
these applications, the corresponding latency increases significantly. In terms of video quality, it is
observed that during applications 1 and 2, GA suffers from some degradation. This can be attributed
to insufficient network bandwidth, which causes the frames to be delayed or distorted.

In summary, we observe that when the network bandwidth is reduced, the performance of VNC
suffers, especially on the decoding ratio. GA performs better, as it achieves 18 ms latency, consumes
less than 3 Mbps network bandwidth, and has a decoding ratio of 94.4%. Another good choice
is WebRTC-C, which achieves a high decoding ratio of 93.5%, a high PSNR of 27.2 dB, and only
consumes a low bandwidth of 2 Mbps.

Table 4. Measured TCP Throughput (Mbps) Under Different Network Conditions with iperf3

Unlimited | 0% 1% 2% 6 Mbps ‘ 0% 1% 2% 4 Mbps ‘ 0% 1% 2%
Oms | 930 290 93 Oms | 58 5.79 5.61 Oms | 3.87 3.86 3.84

100 ms | 15.5 2.94 2.06 100 ms | 5.78 2.47 1.85 100 ms | 3.86 2.79 1.71
200ms | 7.77 174 1.01 200ms | 5.55 1.58 1.03 200ms | 3.84 1.6 0.93

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:16 Huang, C. et al.

1000
60
@
a
S
g 750
c
2 =
540
£ £
2 g s00
<] 5]
2 8
< 3
B 20
% 250
2
]
o
0
RDP VNC GA noVNC WebRTC-C WebRTC-F noVNC WebRTC-C WebRTC-F
@
o
=
9 o
e L2
2 @
5 a
o <
=3 >
£ =
S]
§ 8 10
= 8
2
>
0
noVNC WebRTC-C WebRTC-F GA noVNC WebRTC-C WebRTC-F
(© (d)

Fig. 16. Performance comparisons under different packet loss rates with no bandwidth limitation and delay:
(a) bandwidth consumption, (b) latency, (c) decoding ratio, and (d) video quality in PSNR.

6.3 Performance Implications of Delay

Fig. 15 compares the performance under different delays at 0 (ideal network condition), 100, and 200
ms. We observe that with longer delays, VNC and noVNC suffer from larger decoding ratio drops
(Fig. 15¢). Moreover, the measured latency of noVNC is increased from 54 ms to 307 ms and 554 ms
(Fig. 15b), which are significantly higher than the incurred extra delay. In fact, larger performance
drops are seen with the screen sharing technologies that employ TCP transport protocol, which
can be due to the TCP congestion control. This is validated by our iperf3 experiments summarized
in Table 4, which is collected from our testbed. We also observe that the UDP-based WebRTC and
GA are rather resilient to higher delay (Fig. 15b): the only impact is the higher latency that is
proportional to the incurred delay.

6.4 Performance Implications of Packet Loss Rate

Fig. 16 compares the performance at the different packet loss rates of 0%, 1%, 2%, and 5%. Differing
from other screen sharing technologies, when the packet loss rate is increased from 0% to 5%, GA
results in much higher latency (more than 15 times as shown in Fig. 16b) and nontrivial video
quality drops (from 26 to 20 dB as shown in Fig. 16d). This is because GA adopts UDP transport
protocol and does not implement the error resilience mechanism. Besides, Fig. 16¢ shows that, with
most screen sharing technologies, the decoding ratio drops when the packet loss rate is increased.
However, the decoding ratio of WebRTC-C/WebRTC-F is not affected by the packet loss rate. A
closer look indicates that although WebRTC-C/WebRTC-F employ UDP protocol, they also enable
FEC and NACK-based retransmission. Therefore, they are more resilient to packet loss. We study
the WebRTC’s error resilience mechanisms in Section 6.6.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:17

4
@
Q
£ 2000
<3
=3
S &
5 1500
£ E
22)
5 5
o & 1000
= -
§ 1
Z 500
<
]
o
0 0
noVNC WebRTC-C WebRTC-F noVNC WebRTC-C WebRTC-F
100 30
o
k=2
X5 o
b z
2 D 20
‘5 o
o £
20 =
k<] T
o =3
8 C o
Q 2 8
S
>
0 0
GA noVNC WebRTC-C WebRTC-F GA noVNC WebRTC-C WebRTC-F
(© (d)

Fig. 17. Performance comparisons under the challenging network condition: (a) bandwidth consumption, (b)
latency, (c) decoding rate, and (d) video quality in PSNR.

‘ @ Hybrid NACKIFEC ® NACK only
r======= 1 r======= 1 r======= 1 r======= 1
= 178 221 23 3 07 1 0.95 S | 12708 | 23558 327.85 o | 2289 | 4952 4204
2 | X | X | 2 |
e & &, T oe & &, I e [!
< ! ! e ! ! S ! ! < ! !
@ 1 | o 1 | @ 1 \ @ 1 \
2 178 216 224 ? 0.69 0.91 0.87 @ | 12887 23222 326.52 a3 2071 25.86 31.87
° ! 1 ° ! 1 o ! 1 ° ! 1
Pl L] | poll ° | ol [] | Pl L] |
g ° L A I S A I S A IR S |
& <1 & &
o 178 177 177 o 0.69 o7t o7t o 129.22 22495 327.38 o 20.74 22.46 2296
of e ° ° of e ° ° of e [} [o e o °
) 100 %0 T 00 70 3 o B) 0 ED
Round-trip delay (ms) Round-trip delay (ms) Round-trip delay (ms) Round-trip delay (ms)
(a) (b) (© (d)

Fig. 18. WebRTC-C with unlimited bandwidth, latency varying among 0, 100 to 200 ms, and packet loss rate
varying among 0, 1to 2%: (a) mean bandwidth consumption, (b) standard deviation of bandwidth consumption,
(c) mean latency, and (d) standard deviation of latency. The marker size represents the magnitude of the
value. Dashed boxes indicate the network conditions where FEC is enabled.

6.5 Performance Comparisons Under The Challenging Network Condition

Next, we report the results from the challenging network condition (see Table 1) in Fig. 17. We
observe that WebRTC-C retains a high decoding ratio of 86% and good video quality of 27 dB;
while WebRTC-F also performs well. The TCP-based screen sharing technologies, including RDP,
VNC, and noVNC suffer from low decoding ratio due to the TCP congestion control. Last, the less
ideal decoding ratio of GA can be attributed to its lack of error resilience mechanism as discussed
above. In summary, WebRTC outperforms other screen sharing technologies under challenging network
conditions due to the combination of UDP transport protocol and error resilience mechanisms.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:18 Huang, C. et al.

yyyyyyy

Fig. 19. Performance when packet loss rate is changed once every minute: (a) decoding ratio and (b) video
quality in PSNR. Dashed lines represent mean values within each packet loss rate setting (roughly one minute).

6.6 Error Resilience Mechanism in WebRTC

Our measurement results presented above show that WebRTC (especially WebRTC-C, which runs
in Chrome) is robust against diverse network conditions. For example, WebRTC-C achieves at
least 86% decoding ratio, less than 350 ms latency, and at least 27 dB video quality in PSNR, while
only consuming less than 3 Mbps bandwidth. This is made possible by several error resilience
mechanisms, as we describe below based on analyzing network traffic and tracing their source
code. First, we note that the WebRTC implementation in Firefox and Chrome both realize NACK
to cope with packet loss. However, their actual implementations are slightly different. WebRTC-F
retransmits the lost packets within the original channel along with the regular media stream, while
WebRTC-C employs a different channel for retransmission. Hence, WebRTC-F has to treat the
retransmitted packets as out-of-order packets, since they are streamed along with regular packets.

In addition to NACK, WebRTC-C also enables its Forward Error Correction (FEC) mechanism
once the network delay and packet loss become non-trivial. When the FEC is enabled, the FEC codes
are appended to the payloads of individual packets. More precisely, WebRTC-C switches between
two modes: NACK and NACK/FEC. Fig. 18 reports the performance of WebRTC-C under different
network conditions. From the bandwidth consumption given in Fig. 18a, we reverse engineer the
logic of its mode switching: NACK/FEC is adopted when the packet loss rate exceeds 1% and the
delay exceeds 100 ms. A closer look into the source code confirms the above experiment results: in
fact, the NACK/FEC is enabled once the packet loss rate is nonzero and the delay is longer than
20 ms. We emphasize that the switching logic is only true for WebRTC-C (Chrome); WebRTC-F
(Firefox) only implements NACK for error resilience.

6.7 Implications of Dynamic Network Conditions

Networks are dynamic in various aspects. Due to the space limitations, we focus on the two most
critical aspects: the packet loss rate and link failure events, which may lead to a catastrophic drop in
user experience. We first compare the performance of screen sharing technologies under a changing
packet loss rate as follows. When the experiment starts, we set the traffic controller to incur no
packet loss. We then increase the packet loss rate by 1% every minute until it reaches 5%. One
minute after that, we reset the packet loss rate to 0% again. Each experiment lasts for 9 minutes.
We plot the performance of different screen sharing technologies in Fig. 19. Fig. 19a shows that
only VNC, GA, and noVNC suffer from fluctuating decoding ratios under dynamic packet loss rates.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies

Throughput (Kbps)

3000

0 1000

Throughput (Kbps)

=

0 20000 40000

Throughput (Kbps)

4000 8000

0

50000

L

Throughput (Kbps)
0 2000 4000
L1

Throughput (Kbps)
0 2000 4000
L1

Throughput (Kbps)
0 20000

Fig. 20. Client throughput over time after a 10-sec link failure (e [10, 20]): (a) RDP, (b) VNC, (c), GA, (d)
noVNC, (e) WebRTC-C, and (f) WebRTC-F.

Nonetheless, after 6 minutes, VNC and GA quickly recover from an inferior (about 25%) decoding
ratio. Fig. 19b reveals that only GA suffers from fluctuating video quality under dynamic packet
loss rates. GA, however, recovers after 6 minutes. In summary, Fig. 19 shows that WebRTC-C and
WebRTC-F perform the best under dynamic packet loss rates, which is followed by RDP.

Next, we study the recovery speed of different screen sharing technologies after link failures.
We start screen sharing sessions and manually introduce link failure between the 10- and 20-th
sec using iptables*. Then, we observe whether the client recovers from the link failure. We plot
the throughput at the client side in Fig. 20. This figure reveals that: (i) the UDP-based GA and
WebRTC-C/WebRTC-F screen sharing technologies recover from the link failure soon after the
20-th sec, and (ii) the TCP-based VNC, RDP, and noVNC never recover from the link failure®. We
like to mention that the throughput of FFmpeg recovers 10-sec after the link recovery (figure
omitted for brevity), although it is based on TCP. This may be attributed to the fact that FFmpeg is
rendered in HTML video tag. However, with FFmpeg, the client suffers from video freezes even
after the throughput is recovered, which indicates that the received data are undecodable.

Overall, the TCP-based screen sharing technologies react more slowly than the UDP-based one
under dynamic network conditions. Among the UDP-based screen sharing technologies, some
mechanisms of monitoring the network conditions are needed to mitigate poor network quality or
even terminate the network connections whenever necessary.

6.8 Summary and Recommendations

Following the measurement results, we classify the screen sharing technologies into three classes:
(1) WebRTC, (2) GA, and (3) VNC, noVNC, and RDP. While both WebRTC and GA use RTP/UDP
protocols, WebRTC is implemented with error resilience mechanisms, and thus is robust against
packet loss and dynamic network conditions. In contrast, GA suffers from degraded decoding ratio
under nontrivial packet loss rates, but achieves lower latency in general. Because WebRTC and GA
both adopt UDP protocol, longer delay and higher packet loss rate do not affect their bandwidth
consumption compared to the TCP protocol. Furthermore, the average bandwidth consumptions

4We chose to use iptables instead of removing the cable for more challenging situations. This is because removing the cable
would lead to link-down events from Ethernet ports.
SWe plot this figure for 60 sec for clarity, although we wait for much longer for the screen sharing technologies to recover.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:20 Huang, C. et al.

VNC] GA] noVNC] WebRTC-C] WebRTC-F |
@
75]
3
E
50 g
H
25 2 2 2 p 2.2 o g
||||I I I|||I| I II AT lI
00 m L]
800
o
600 wor se2 &
« 7 i g
400 <
260 24 265 267 251 260 272 70 §
1111 .
0 L |
100 o7 o7 o7 o5 o5 %8 o7 98 95 o o5 95 95 95 65 o]
e g e s
75 @
57 58y se s 52 Pl
50 3
« °
25 R
muuimm L
o L[] e e
27 27 27 27 27 27 27 27 28 28 28 77 28 28 28 28 7 28 28 1
o 7 2 .. f P 2 2 7 g o -
20 @
=z
o
10 g
0
123456789 123456789 123456789 123456789 1234567889 234567889
Content
(a)
RDP i noVNG i WebRTC-C i WebRTC—F |
o
3 o
, o g S 3
2 2 2 2 5 , =
2 £ £ . |3
T B ol b 5 | 4 | 4 E . g
0 0 Ly 0 o ‘ V 1 1 I I‘ 1 l 1 l 1 I I ., g
N i T N il 2]
. —
3000 =i -
2z &
5
2000 H
‘ mzu usa g
1000 17 i 2
330 311 296 305 2¢ 2 3' 3s8 #28 370 334 347 351 355 354 364 356 339 ‘33 '2' =) 403 351 380
. EREsuEEe i & PSR il i
90 91 92]
= g1 83 B4 gy
75 5 7 7
1B
50 A
S
25 2
0 L |
= w —
o e 2 ..) siaiois EERELEE. . EEEEEEE. .
2 o
20 s N 3
z
o
) IIII I)
0

123456789 123456789 123456789 123456789 123456789 1234567889
Content

(b)

Fig. 21. Performance summary for each class of applications under different network conditions. Sample
results from: (a) high delay and (b) challenging network conditions are shown.

of WebRTC and GA are no higher than 4 Mbps. The codecs of VNC, noVNC, and RDP are quite
bandwidth hungry. In the ideal network condition, these screen sharing technologies provide lower
latency than WebRTC. However, network resources for most users are limited. Because these three

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:21

technologies adopt TCP protocol, their performance drops once the delay and packet loss rate
become nontrivial.

Last, we look into the performance of different application classes and give two sample results
in Fig. 21. This figure reveals that the performance of individual screen sharing technologies differ
greatly for diverse applications. For example, GA performs better with games and movies, but
slightly worse with web browsing. Specifically, Fig. 21a shows the sample results under the high
delay network condition. The figure shows that GA has a good balance among video quality,
decoding ratio, and latency. It is therefore good for playing games, watching movies, and working
with most desktop apps. We note that the results from the ideal network are similar, except for
the shorter latency (about 200 ms less compared to the high delay network condition). Fig. 21b
gives the sample results from the challenging network condition. It is clear that GA’s performance
suffers under nontrivial packet loss rate and insufficient network bandwidth, due to its lack of error
resilience mechanism. In contrast, WebRTC performs fairly stably and provides good video quality
and acceptable decoding ratio in the challenging network condition. Based on the aforementioned
observations, we provide the recommended screen sharing technologies for different application
classes in Table 5. In short, if short latency is required and the network condition is not bad, we
recommend that users adopt the (native) GA [18]. Otherwise, we recommend that users adopt the
(clientless) WebRTC [40].

Table 5. Recommended Screen Sharing Technologies for Different Applications and Network Conditions

Network Condition | Game Movie Desktop Apps
Ideal GA GA/WebRTC GA
Lossy WebRTC WebRTC WebRTC
High Delay GA GA/WebRTC GA

Low Bandwidth WebRTC WebRTC WebRTC
Challenging WebRTC WebRTC WebRTC

7 CONCLUSION

From the extensive experiment results, we conclude that WebRTC is a promising screen sharing
technology. Except for a higher latency of about 120 ms, WebRTC outperforms other screen sharing
technologies. It consumes low bandwidth which is no higher than 3 Mbps, yet delivers high
video quality and decoding ratio. WebRTC also has the best ability to adapt to changing network
conditions and recover from link failure. Besides, WebRTC enables clientless screen sharing using
web browsers, which relieve users from installing software. With WebRTC APIs, developers can
focus on the protocol design and codec selection without worrying about the OS- and device-
specific details. Our proposed measurement methodology can be seen as a contribution in its own
right. The captured packets and videos are programmatically analyzed into performance metrics,
including bandwidth consumption, latency, decoding ratio, and video quality. The procedure is
applicable to any screen sharing technologies, including both the native and clientless screen
sharing technologies.

Last, we remark that the gap between the native and clientless screen sharing technologies has
continued to shrink over the past few years as WebRTC APIs are widely implemented in mainstream
web browsers. We believe that the WebRTC has become mature enough to support screen sharing:

(1) in most network conditions except the ideal network condition, in which technologies like
VNC trades high bandwidth consumption for better video quality;

(2) for most applications excluding fast-paced games such as first-person shooter games, in which
extremely low latency is a must for acceptable user experience.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

1:22 Huang, C. et al.

Several future research directions may address the above two limitations. For example, more
adaptive codecs can be used in WebRTC, in order to capitalize the available bandwidth in the
ideal network condition for better screen sharing performance. Besides, various latency reduction
mechanisms proposed for cloud gaming, such as image-based warping [35] and the zero-buffering
mechanism [18], can be integrated into fast-paced games and WebRTC APIs to achieve extremely
low latency. Furthermore, more comprehensive measurement experiments can be designed to
investigate the intelligent adaptation algorithms. The experiment results may provide more insights
to further optimize the screen sharing technologies for different applications under diverse network
conditions and heterogeneous clients (including desktops and mobile devices). In addition to video,
the performance of audio streaming is also important and worth to be evaluated for some particular
applications, such as games and movies. This is one of our future directions. We firmly believe
that this article will stimulate many exciting works, which in turn make clientless screen sharing
technologies applicable to more interactive applications under more diverse network conditions.

REFERENCES

[1] Maha Abdallah, Carsten Griwodz, Kuan-Ta Chen, Gwendal Simon, Pin-Chun Wang, and Cheng-Hsin Hsu. 2018. Delay-
Sensitive Video Computing in the Cloud: A Survey. ACM Transactions on Multimedia Computing, Communications,
and Applications 14, 3s (2018), 54:1-54:29.

Doreid. Ammar, Katrien De Moor, Min Xie, Markus Fiedler, and Poul Heegaard. 2016. Video QoE Killer and Performance

Statistics in WebRTC-Based Video Communication. In Proc. of IEEE International Conference on Communications and

Electronics (ICCE’16). 429-436.

Daniel Beer. 2019. QR Decoder Library. (2019). https://github.com/dlbeer/quirc

Sumohana S. Channappayya, Alan C. Bovik, Constantine Caramanis, and Robert W. Heath. 2008. SSIM-Optimal Linear

Image Restoration. In Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’08). Las

Vegas, USA, 765-768.

[5] Hao Chen, Xu Zhang, Yiling Xu, Ju Ren, Jingtao Fan, Zhan Ma, and Wenjun Zhang. 2019. T-gaming: A cost-efficient
cloud gaming system at scale. IEEE Transactions on Parallel and Distributed Systems 30, 12 (2019), 2849-2865.

[6] Mark Claypool and Kajal Claypool. 2010. Latency Can Kill: Precision and Deadline in Online Games. In Proc. of ACM
SIGMM Conference on Multimedia Systems (MMSys’10) (MMSys ’10). Phoenix, AZ, 215-222.

[7] Mark Claypool and David Finkel. 2014. The Effects of Latency on Player Performance in Cloud-Based Games. In Proc.
of ACM Workshop on Network and Systems Support for Games (NetGames’14). 1-6.

[8] Mark Claypool, Tianhe Wang, and McIntyre Watts. 2015. A Taxonomy for Player Actions with Latency in Network
Games. In Proc. of ACM Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’15).
Portland, Oregon, 67-72.

[9] DENSO WAVE INCORPORATED. 2019. QRcode.com | DENSO WAVE. (2019). https://www.qrcode.com/

[10] FFmpeg Team. 2019. FFmpeg. (2019). http://ffmpeg.org/

[11] Rama Rao Ganji, Mihai Mitrea, Dancho Panovski, and Bojan Joveski. 2016. Improving the RDP Based Applications by
Using HTMLS5 Content Representation. Electronic Imaging 2016 (February 2016), 1-7.

[12] Boni Garcia, Luis Lopez-Fernandez, Micael Gallego, and Francisco Gortazar. 2016. Testing Framework for WebRTC

Services. In Proc. of EAI International Conference on Mobile Multimedia Communications (MobiMedia’16). Xi’an, China,

40-47.

GlavSoft LLC. 2019. TightVNC: VNC-Compatible Free Remote Control / Remote Desktop Software. (June 2019).

https://www.tightvnc.com/

[14] Google. 2019. Stadia. (2019). https://stadia.dev/

[15] Chih-Fan Hsu, De-Yu Chen, Chun-Ying Huang, Cheng-Hsin Hsu, and Kuan-Ta Chen. 2014. Screencast in the wild:
performance and limitations. In Proc. of ACM International Conference on Multimedia (MM’14). 813-816.

[16] Chih-Fan Hsu, Ching-Ling Fan, Tsung-Han Tsai, Chun-Ying Huang, Cheng-Hsin Hsu, and Kuan-Ta Chen. 2016. Toward
an Adaptive Screencast Platform: Measurement and Optimization. ACM Transactions on Multimedia Computing,
Communications, and Applications 12, 5s (2016), 79:1-79:23.

[17] Chih-Fan Hsu, Tsung-Han Tsai, Chun-Ying Huang, Cheng-Hsin Hsu, and Kuan-Ta Chen. 2015. Screencast Dissected:
Performance Measurements and Design Considerations. In Proc. of the ACM SIGMM Conference on Multimedia Systems
(MMsys’15). Portland, Oregon, 177-188.

[18] Chun-Ying Huang, Kuan-Ta Chen, De-Yu Chen, Hwai-Jung Hsu, and Cheng-Hsin Hsu. 2014. GamingAnywhere:
The First Open Source Cloud Gaming System. ACM Transactions on Multimedia Computing Communications and

—
Do
—

— r—
~ow
it

—

[13

— =

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

https://github.com/dlbeer/quirc
https://www.qrcode.com/
http://ffmpeg.org/
https://www.tightvnc.com/
https://stadia.dev/

Performance Comparisons of Native and Clientless Screen Sharing Technologies 1:23

Applications 10, 1s (January 2014), 10:1-10:25.

ISO/IEC 16022:2006(E) 2006. Information Technology — Automatic Identification and Data Capture Techniques — Data
Matrix Bar Code Symbology Specification. Standard. International Organization for Standardization/International
Electrotechnical Commission.

Benjamin F. Janzen and Robert J. Teather. 2014. Is 60 FPS Better Than 30?: The Impact of Frame Rate and Latency on
Moving Target Selection. In Proc. of the Extended Abstracts of ACM Conference on Human Factors in Computing Systems
(CHI EA’14). Toronto, Ontario, Canada, 1477-1482.

[21] Youming Lin, Teemu Kdmarainen, Mario Di Francesco, and Antti Yla-Jaaski. 2015. Performance Evaluation of Remote
Display Access for Mobile Cloud Computing. Computer Communications 72 (2015), 17 — 25.

Luis Lopez, Miguel Paris, Santiago Carot, Boni Garcia, Micael Gallego, Francisco Gortazar, Raul Benitez, Jose A. Santos,
David Fernandez, Radu Tom Vlad, Ivan Gracia, and Francisco Javier Lopez. 2016. Kurento: the WebRTC Modular Media
Server. In Proc. of ACM International Conference on Multimedia (MM’16). Amsterdam, The Netherlands, 1187-1191.
[23] Joel Martin. 2019. noVNC. (April 2019). https://novnc.com/info.html

[24] Microsoft Corp. 2018. Remote Desktop Protocol. (May 2018). https://docs.microsoft.com/en-us/windows/desktop/

[19

—

[20

—

[22

—

[l

termserv/remote-desktop-protocol

Microsoft Corp. 2019. Use Remote Assistance to Let Someone Fix Your PC. (January 2019). https://support.microsoft.

com/en-us/help/4026516/windows-use-remote-assistance-to-let-someone-fix-your-pc

[26] MinGW.org. 2019. MinGW | Minimalist GNU for Windows. (July 2019). http://www.mingw.org/

[27] Miniwatts Marketing Group. 2019. World Internet Users Statistics and 2019 World Population Stats. (2019). www.
internetworldstats.com/stats.htm

[28] Yasuhiro Mochida, Daisuke Shirai, and Tatsuya Fujii. 2016. Novel Web-based Remote Collaboration System Architecture

for Wider Use Cases. In Proc. of International Conference on Supporting Group Work (GROUP’16). Sanibel Island, Florida,

437-440.

Davide Mulfari, Antonio Celesti, Massimo Villari, and Antonio Puliafito. 2014. Using Virtualization and noVNC to

Support Assistive Technology in Cloud Computing. In Proc. of IEEE Symposium on Network Cloud Computing and

Applications (NCCA’14). 125-132.

[30] Hyunwoo Nam, Kyung-Hwa Kim, and Henning Schulzrinne. 2016. QoE Matters More Than QoS: Why People Stop
Watching Cat Videos. In Proc. of IEEE International Conference on Computer Communications (INFOCOM’16). San
Francisco, CA, 1-9.

[31] NVIDIA. 2019. Game Anywhere on Your Mac, Windows PC, or SHIELD Device with NVIDIA’s Cloud Gaming Service.

(2019). https://www.nvidia.com/en-us/geforce/products/geforce-now/

Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper. 1998. Virtual Network Computing.

IEEE Internet Computing 2 (February 1998), 33-38.

[33] Ron Sharp. 2012. Latency in Cloud-Based Interactive Streaming Content. Bell Labs Technical Journal 17, 2 (September

2012), 67-80.

Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu. 2003. The Effect of Latency on User

Performance in Warcraft III. In Proc. of ACM Workshop on Network and System Support for Games (NetGames’03).

Redwood City, CA, 3-14.

[35] Shu Shi, Cheng Hsu, Klara Nahrstedt, and Roy Campbell. 2011. Using Graphics Rendering Contexts to Enhance the
Real-Time Video Coding for Mobile Cloud Gaming. Proc. of ACM International Conference on Multimedia (MM’11)
(November 2011), 103-112.

[36] Shu Shi and Cheng-Hsin Hsu. 2015. A Survey of Interactive Remote Rendering Systems. Comput. Surveys 47, 4 (2015),
57:1-57:29.

[37] Sony Interactive Entertainment. 2019. PS4 Remote Play Windows PC/Mac. (2019). https://remoteplay.dl.playstation.

net/remoteplay/lang/en/index.html

Matthias Ueberheide, Felix Klose, Tilak Varisetty, Markus Fidler, and Marcus Magnor. 2015. Web-Based Interactive

Free-Viewpoint Streaming: A Framework for High Quality Interactive Free Viewpoint Navigation. In Proc. of ACM

International Conference on Multimedia (MM’15). Brisbane, Australia, 1031-1034.

Valve Corporation. 2019. Steam In-Home Streaming. (2019). https://store.steampowered.com/streaming/

WebRTC. 2019. WebRTC Home | WebRTC. (June 2019). https://webrtc.org/

Li Yan. 2011. Development and Application of Desktop Virtualization Technology. In Proc. of IEEE International

Conference on Communication Software and Networks (ICCCN’11). Maui, HI, 326-329.

[42] Youhui Zhang, Peng Qu, Jiang Cihang, and Weimin Zheng. 2015. A cloud gaming system based on user-level
virtualization and its resource scheduling. IEEE Transactions on Parallel and Distributed Systems 27, 5 (2015), 1239-1252.

[25

—

—

[29

—

(32

—

[34

—

[38

—

[39
[40
[41

—

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2020.

https://novnc.com/info.html
https://docs.microsoft.com/en-us/windows/desktop/termserv/remote-desktop-protocol
https://docs.microsoft.com/en-us/windows/desktop/termserv/remote-desktop-protocol
https://support.microsoft.com/en-us/help/4026516/windows-use-remote-assistance-to-let-someone-fix-your-pc
https://support.microsoft.com/en-us/help/4026516/windows-use-remote-assistance-to-let-someone-fix-your-pc
http://www.mingw.org/
www.internetworldstats.com/stats.htm
www.internetworldstats.com/stats.htm
https://www.nvidia.com/en-us/geforce/products/geforce-now/
https://remoteplay.dl.playstation.net/remoteplay/lang/en/index.html
https://remoteplay.dl.playstation.net/remoteplay/lang/en/index.html
https://store.steampowered.com/streaming/
https://webrtc.org/

	Abstract
	Acknowledgments
	1 Introduction
	2 Related Work
	3 Architecture
	4 Screen Sharing Technologies: Overview and Implementations
	4.1 Native Screen Sharing Technologies
	4.2 Clientless Screen Sharing Technologies

	5 Measurement Methodology
	5.1 Testbed
	5.2 Setup and Procedure
	5.3 Embedded Frame Numbers

	6 Comparative Analysis
	6.1 Performance Comparisons Under The Ideal Network Condition
	6.2 Performance Implications of Bandwidth Limitations
	6.3 Performance Implications of Delay
	6.4 Performance Implications of Packet Loss Rate
	6.5 Performance Comparisons Under The Challenging Network Condition
	6.6 Error Resilience Mechanism in WebRTC
	6.7 Implications of Dynamic Network Conditions
	6.8 Summary and Recommendations

	7 Conclusion
	References
	A Detailed Analysis
	A.1 Resource Consumption Comparisons
	A.2 Overall Ranking Under Diverse Network Conditions

