
1

Privacy Leakage and Protection of InputConnection
Interface in Android

Chi-Yu Li∗, Hsin-Yi Wang†, Wei-Ching Wang‡, and Chun-Ying Huang∗
∗ College of Computer Science, Department of Computer Science,

National Chiao Tung University & National Yang Ming Chiao Tung University
† Verizon Media, Inc. ‡ Trend Micro, Inc.

Abstract—
Leakage of user credentials has been a conventional security

threat for mobile users. In this work, we discover a new leakage
threat caused by a vulnerability of the input method framework
(IMF) on Android. The vulnerability lies in an IMF interface,
called InputConnection, which is dynamically built to deliver user
inputs from an active input method (e.g., software keyboard) to
WebView, which is an essential Android component rendering
web pages. It allows the IMF interface of a WebView component
to be hijacked by the app or the third-party library that embeds
the WebView. Such hijacking can be exploited to steal user inputs
on the web pages loaded by the WebView. It can also eavesdrop
on input fields of all the web pages loaded by WebView without
user awareness; the attack is self-contained and does not require
any external dependency. It does not interrupt, delay, or change
normal operations. More threateningly, this attack is easy to
launch and works for most Android versions (from 4.4 to 11.0).
We conduct a field study including more than 1500 tests on our
developed IWH attack app. The result shows that the app can
successfully steal user inputs in all the tests and identify the input
strings with 98.0% accuracy. We further devise two solutions, a
web-based virtual keyboard and an IMF hijacking guardian,
for mobile web services and the Android platform, respectively.
We finally prototype them on a web server and on an Android
framework, respectively, to confirm their effectiveness.

Index Terms—Android, Information Leakage, Input Method
Framework, Mobile Privacy, WebView

I. INTRODUCTION

Mobile devices have become the major portal for users to
access the Internet. Statistics [1] show that the Internet usage
of mobile and tablet devices has exceeded that of desktops
since 2016. Mobile-friendly web design has also become one
important ranking factor considered by search engines [2].
However, due to limited display sizes and constrained input
interfaces, it is difficult for mobile users to identify possible
threats when surfing the Internet. It thus has led mobile devices
to become a new playground for attackers.

Information leakage is one critical issue for Internet surfing
on mobile platforms. Attackers can launch phishing [3]–[5]
and pharming [6] attacks to steal sensitive information from
users. Specifically, phishing attacks trap users to provide their
credentials using malicious links and forged websites. The
pharming ones steal user credentials by redirecting users to
malicious sites based on the hijacking of name resolution
services. A number of research works have focused on solving

Corresponding author: Chun-Ying Huang (email: chuang@cs.nctu.edu.tw;
chuang@nycu.edu.tw).

Fig. 1. An invisible WebView hijacking attack against the common account
binding scenario.

these attacks [7]–[15]. However, statistics [16], [17] show that
the number of phishing attacks continues to grow in recent
years. The total number of phishing attacks in 2016 was more
than 1.2 million, with a 65% increase over 2015. It shows
that the financial gains from the information leakage attacks
are still attractive.

In this paper, we discover a vulnerability that can leak user
inputs from arbitrary rendered third-party web content via the
Android input method framework (IMF). The vulnerability
lies in an IMF interface, called InputConnection, which is
dynamically built to deliver user inputs from an input method
(e.g., software keyboard) to an Android view. It allows the
InputConnection interface of a WebView component, which
is used to render web pages on Android, to be hijacked by the
app or the third-party library that embeds the WebView. That
is, all the inputs delivered from an input method to a WebView
component can be leaked. However, it shall be prohibited and
can be attributed to a design defect of Android IMF. Note that
through Android APIs, an app is not allowed to fetch user
inputs on the web pages rendered by its WebView component.

We exploit this vulnerability to devise an attack, invisible
WebView hijacking (IWH), which can eavesdrop on all the
web pages with input fields without user awareness. It can be
launched by malicious apps or third-party components (e.g.,
advertisement libraries and SDKs), which are possibly used
by benign apps. Literature has shown that the use of third-
party components is common in application development [18]–

2

Fig. 2. Two gaming apps request user authentication through the user’s
Facebook account based on the OAuth framework using the WebView. (a) A
benign app. (b) A malicious app that wiretaps user credentials.

[21]. Moreover, it is not rare for third-party components to be
compromised [22], [23]. They may trap users to login pages
(e.g., Facebook OAuth) and steal user credentials without the
awareness of users, benign apps, or anti-malware scanners.

A simple scenario of the IWH attack is shown in Figure 1.
The adversary, Eve, can compromise several third-party li-
braries with the IWH attack. Once any benign apps use those
compromised libraries, the users who use the apps may suffer
from the leakage of user credentials. Consider Alice uses an
app developed based on an IWH-compromised library and
launches its embedded browser to perform web-based account
binding from an Internet service provider (e.g., Google, Face-
book, and Twitter). While Alice goes through the account
binding process with the input of her user credential, Eve can
stealthily capture the user credential without getting Alice’s
awareness. Note that it is common for modern mobile apps
to perform the account binding; according to Facebook [24],
more than 25% of app users choose to connect with Facebook
to improve user experience. In addition to the OAuth scenarios,
other possible scenarios that require a third-party component to
render arbitrary remote content include customized WebViews
(for example, from ad-block SDKs), advertisement SDKs, and
Google Play instant applications.

Take the gaming app as an example. Figure 2 shows two
gaming apps, which request user authentication through the
user’s Facebook account based on the OAuth framework1. The
left one is a benign app, and the right one wiretapping user
credential is malicious. The latter can be a malicious app or
a benign app that uses a malicious third-party OAuth SDK. It
can leak the user’s Facebook credential to the adversary. Note
that the view of captured user inputs is for demonstration only
but can be hidden during attacks.

In contrast to traditional keylogging threats, IWH does not
require any additional permission, setup, or root privilege.
Unlike conventional phishing and pharming attacks, it does not
have to mimic an app, forge a website, perform redirections,
or hijack name resolution services. Therefore, it cannot be
detected by existing detection mechanisms [7]–[11], [25]–
[27]. All the solutions proposed for these existing attacks

1There are two ways to implement OAuth in an Android application: web
services and Android APIs. A malicious app can exploit the vulnerability by
relying on the former with WebView.

cannot defend against IWH. Although IWH requires users to
install a malicious app as conventional phishing attacks [3],
[4], including app spoofing and GUI confusion, it is much
more threatening from two security aspects. First, the effort
of launching IWH is much less than those phishing attacks
since the latter attacks need to customize a set of views or
GUIs for each original app (e.g., Facebook). Our attack does
not need such customization but generally works for the web
pages loaded by WebView. Second, those conventional attacks
may easily cause user awareness and then fail from the user’s
precautions, since the spoofed pages or the mimicked GUIs
may not show correct user information or valid response after
a user credential is submitted (e.g., user-specific information
after a successful login), or some GUI confusion actions (e.g.,
app switch) may not work smoothly. Instead of intervening
in the user interaction, our IWH attack is more stealthy by
passively eavesdropping on the input channel.

Our prototype shows that the IWH attack can be used
to successfully wiretap user inputs without being noticed.
It is stealthy that under attacks, users are still allowed to
access services just as normal — valid hostnames, valid web
certificates, valid content, and no alarms! Our field study
shows that the attack is easy to launch and works for most
Android versions (from 4.4 to 11.0) on various smartphones
with seven phone brands and 22 device models. From more
than 1500 tests, it is observed that our developed attack app
can successfully steal user inputs in all the tests and identify
the input strings with 98.0% accuracy.

We devise two solutions to address the vulnerability: a web-
based virtual keyboard and an IMF hijacking guardian for
mobile web services and the Android platform. The virtual
keyboard prevents IMF from being used for the need of user
input. The hijacking guardian sets up a security association
between two ends for the delivery of user inputs. It encrypts
the user inputs in transit so that they cannot be leaked even if
the InputConnection interface is hijacked. In our prototype,
it is observed that the delay imposed by the guardian is
negligible.

Our contribution is threefold. First, we discover a vulnera-
bility2, input channel hijacking, from the IMF framework and
analyze its root causes. Second, we exploit the vulnerability
to devise an IWH attack that enables malicious apps or
third-party components to wiretap user inputs stealthily from
WebView. Third, we propose solutions that can immediately
mitigate the IWH attack from the perspectives of both mobile
web services and the Android system.

The rest of this paper is organized as follows. We survey
related works in Section II and introduce the background
of IMF and WebView in Section III. Section IV describes
our threat model and methodology. Section V presents the
vulnerability of input channel hijacking from the IMF and
the IWH attack. We propose solutions and discuss issues in
Sections VI and VII, respectively. Section VIII concludes the
paper.

2We follow the principle of responsible disclosure by reporting the dis-
cussed vulnerability to Android. The submission date of this paper was beyond
Google’s 90-full-day disclosure policy [28].

3

II. RELATED WORK

As Android becomes the most popular mobile OS world-
wide, a great number of research studies have examined its
security issues from various aspects. They mainly focus on
the vulnerabilities of system components (e.g., WebView [29]–
[34], Binder3 [35], keyboard apps [21], [36] and services [37]–
[41], and hover technology [42]) and existing security mech-
anisms (e.g., permission/access control [43]–[46], password
protection [47], [48], code injection avoidance [49], and
privacy-preserving [50]). We here focus on security studies
of the WebView component and the threats of privacy leakage
on Android.

WebView Security. Several studies have addressed
some vulnerabilities of WebView Security. Specifically,
Shin et al. [29] discovered that WebView-based apps are
vulnerable to the SSL stripping attack and then proposed
a solution of visual security cues against it. Li et al. [51]
revealed a new threat based on cross-app WebView infection.
A malicious attacker can trap a user to click a crafted URL and
invoke WebView embedded in a vulnerable app, and then use
WebView’s JavaScript interfaces to instruct the compromised
app to perform some specific attacks. Another study [34]
examined that attackers may compromise the web content
shown in the WebView using the APIs which WebView in-
herits from general-purpose UI components. Most of the other
works [30]–[33], [52]–[55] focus on the WebView’s weakness
that JavaScript codes in mobile web pages are allowed to gain
custom interfaces exposed by apps and may thus be able to
manipulate the device or steal sensitive data. Luo et al. [32]
introduced several ways to exploit this weakness, and other
studies [30], [31], [33], [55] seek to address it using access
control-based mechanisms. Different from all these existing
works, we focus on the vulnerability of the cooperation
between WebView and the IMF framework.

Privacy Leakage on Android. The privacy leakage
threats can be classified in terms of exploited vulnerabili-
ties. Third-party keyboard applications may launch keylogger
attacks [37], [39]–[41] to steal sensitive information from
Android users. Several studies [41] seek to detect whether
there are any risks of being keylogged by the keyboard
applications, whereas another work [40] defends against the
keylogger based on one-time passwords. Third-party applica-
tions may leak users’ private data once they are authorized
to access them [56]–[58]. Android users may still suffer
from conventional phishing and pharming attacks, but several
solutions [7]–[10], [12]–[15], [25], [26], [59], [60] have been
proposed.

Studies [4], [36], [38], [61]–[63] explore the privacy leakage
threats from the vulnerabilities of motion sensors, the Ac-
cessibility feature, clipboard, and Android GUI. Specifically,
Cai et al. [38] can employ motion sensors to infer keystrokes
based on the phenomenon that pressing different locations of
the software keyboard causes dissimilar vibrations. Fratanto-
nio et al. [61] present that it is possible to trap users to activate
the Accessibility feature, which can be abused to implement a

3Binder is a class for interprocess communication on Android.

InputMethodService
IMS

InputMethodManagerService
IMM Service

Software
Keyboard

InputConnection

Inactive
IMS

Active

Control Commands User Input Data

InputMethodManager
IMM Client

Active input field

Inactive input fields

Foreground Application System Services

InputMethodService
IMS

InputMethodManagerService
IMM Service

Software
Keyboard

InputConnection

Inactive
IMS

Active

InputMethodManager
IMM Client

Active input field

Inactive input fields

WebView

Foreground Application System Services

ICWrapperMyWebView

Control Commands User Input Data Attacker Implementation

Fig. 3. The IMF architecture of a case that the foreground app is connected
with an input method, a software keyboard.

key logger. Fahl et al. [62] discover that applications without
any permission can access the clipboard. Chen et al. [63]
discuss possible leakage of sensitive information from an
untrusted input method editor (IME). They further propose
an app-transparent sandbox to confine IMEs to predefined
securities. Diao et al. [36] attempt to harvest entries from
the personalized user dictionary of IME. Bianchi et al. [4]
study GUI confusion attacks that can replace or mimic the
GUI of benign apps to steal sensitive information and then
design an on-device defense that can securely inform users
about the origin of the app with which they are interacting.
Different from them, our privacy leakage attack exploits a new
vulnerability lying in the IMF framework.

UiRef [64], SUPOR [65], and UIPicker [66] were designed
to automatically check whether an Android app requests
sensitive data. They detect sensitive input fields by performing
static analysis against source codes as well as layout resource
files. These works are effective for inspecting native text input
UI components. However, these static checkers are not able to
handle possible data leakage from the input fields embedded
in a WebView component.

III. BACKGROUND

In this Section, we introduce two Android components: IMF
and WebView. IMF enables user inputs on an Android view,
which displays content and carries interactive UI components
(e.g., buttons and text fields). WebView, a kind of view, is
employed to display web content by an app.

A. Input Method Framework

IMF [67] provides arbitration of interactions between apps
and input methods. It contains three primary parties: input
methods, an input method manager (IMM), and apps. There
are various input methods, e.g., software keyboards, hard-
ware keyboards, and hand-writing recognizers. Each method
serves as a service, called input method service (IMS). As
shown in Figure 3, only one IMS can be active at a time,
whereas the others are inactive. Users can activate any of
them from the picker dialog of input methods. The foreground
app dynamically creates an InputConnection (IC) interface

4

to receive user inputs from the active IMS whenever any
of its editor components (e.g., a text input field) gets focus.
IMM is responsible for this dynamic binding. The binding is
removed upon the cancelation of the focus. IMM consists of
two entities: IMM service and IMM client. The former is a
global system service that provides user input service to the
foreground app, whereas the latter residing at each app deals
with the request of user input.

We illustrate the IMF operation based on an example case
that the user starts to focus on a text input field in the
foreground app, and the default input method is a software
keyboard. As shown in Figure 3, the app issues a user input
request through the IMM client as soon as the text input field
is clicked. A delivery path of control commands (e.g., hiding
and showing the software keyboard), which is shown as dotted
lines, is then set up between the app and the IMS through
the IMM. In the meantime, the app creates an IC interface
to receive user inputs. It then passes the interface access to
the active IMS via the control path. The data path, which is
represented by solid lines, is thus built to span the software
keyboard, the IMS, the IC interface, and the active input field.
The interface can then read text around the input cursor and
commit the user’s keyboard inputs to the active input field. It
is removed whenever the current input focus is canceled. Note
that a new IC instance is created when the focus is switched
to another input field.
Current Security Defense. The IMF system provides three
major security defenses [67] against the leakage of user inputs.
First, it ensures that only the foreground app’s IC interface
is allowed to bind to the IMS since malicious apps in the
background may do the binding to wiretap the IMS to steal
user inputs. Second, it prevents the foreground app from
retrieving all text edits and most key events, which are sent
to its embedded WebView component. They may be issued
to form user inputs, which can be user credentials, on third-
party web pages loaded by the WebView, so they should not
be taken by the app. Third, the active input method has to be
selected manually by the user; otherwise, malicious apps may
programmatically switch to a malicious input method and then
intercept user inputs.

B. WebView

WebView is an Android component, which can be embed-
ded in an app to display web pages. It can be employed to
load the pages stored locally in the app or remote Internet
pages. Remote page loading is mainly used for two purposes.
First, the developers seek to provide users the convenience
of browsing third-party whose URL links are shown in their
apps. For example, the Facebook app relies on WebView to
show the page of a URL link clicked by a user. Second,
they provide web content that is hosted by themselves on the
Internet since the content can be easily changed without any
app update. WebView offers some browser-like functions (e.g.,
navigating forward/backward, zooming in/out, and searching
text). An app can also enable JavaScript functions to interact
with the web content. Specifically, they can interact with its
Java objects, which can be initially embedded or be injected

into the WebView by the app. Ideally, any user inputs on
third-party web pages rendered by WebView should not be
allowed to be acquired by the app or the software component
which embeds the WebView. However, using WebView may
encounter the following security issues.
Current Security Issues and Defense. There are two major
security issues with using WebView. First, malicious apps can
perform JavaScript code injection attacks to steal user inputs
on WebView [30]–[33], [52]–[54]. They can inject JavaScript
codes to enumerate all input fields in a loaded web page
by scanning the HTML/DOM objects of <input> and then
retrieve their corresponding values. However, this attack can
be addressed by the same-origin policy. It limits the run-time
scope of JavaScript codes; that is, the codes running on a
web page are not allowed to access the other origins’ pages.
From the WebView interface, any JavaScript codes can be
injected into the main frame page rendered by the WebView,
but the injection is not allowed in the other sub-frame pages.
Therefore, a web service can avoid this injection attack by
reorganizing web page layouts and creating barriers to the
access of sensitive input fields.

Second, a malicious web app can attack WebView by
reading or tampering with content inside a WebView object
when they are in the same security context. However, it
has been addressed by a new security feature introduced by
Android 8.0 [68]. An app’s WebView object is run in a separate
process different from its main process, so they are in different
security contexts and the attack can be prevented.

IV. THREAT MODEL AND METHODOLOGY

Threat Model. We focus on the scenario where mobile
users input their user credentials on the web pages rendered by
WebView for account login or binding purposes on Android
devices. The adversary’s objective is to capture the user
credentials stealthily without getting the users’ awareness. The
adversary cannot modify any default Android objects including
WebView, nor install any screenlogger or keylogger malware
on the devices; it does not have their root access either.

The adversary can distribute a malicious component or app
with only the INTERNET permission to Android devices.
The component is in the form of a third-party library or
SDK which provides some useful functions or convenient
development kits, e.g., map/browser/advertisement libraries
and OAuth SDKs. The victim devices install either a benign
app that uses the malicious component or the malicious app;
the apps use WebView to render web pages for users to
perform account login or binding services. The malicious
entities can passively steal user credentials using the IWH
attack, but do not interfere with the operations of normal
services, so the victims are unaware of the attack.
Methodology. We conduct all the feasibility tests and
solution evaluations with our own phones in our laboratory.
Together with the field study in Section V-C, we validate the
identified vulnerability and attack using 22 Android phone
models with Android versions from 4.4 to 11.0 and various
software keyboards (see details in Table II). For the attack
evaluation, we get IRB approved to invite normal users to test

5

Hijacking

Fig. 4. Illustration of the input channel hijacking.

our developed malicious app and examine whether their input
credentials can be successfully stolen or not. For each test, we
notify the tester that his/her real credentials shall not be used.
In case that the real credentials may be accidentally typed, we
keep all the collected data safe without leaking them.

Note that we here focus on how to enable the attack, but how
to distribute malicious components or apps, trap the victims
to input user credentials, and abuse user credentials to cause
damage is beyond the scope of this work.

V. PRIVACY LEAKAGE FROM IMF
In this Section, we identify a vulnerability, input channel

hijacking, from IMF. It can leak private user inputs from
the web pages rendered by WebView. However, it shall be
prohibited. In what follows, we present the vulnerability with
an analysis of its root cause, devise an attack by exploiting it,
and then conduct a field study for the attack.

A. Vulnerability: Input Channel Hijacking

We discover that the input channel between an editor and
an active IMS can be easily hijacked. This hijacking can leak
the user input on a web page rendered by WebView to the
foreground app, as shown in Figure 4.

Seemingly, the input channel does not have any vul-
nerable points observed from its setup procedure and An-
droid APIs. Upon an editor’s focus, the IMM client gets
an IC instance from the current view object by calling its
onCreateInputConnection method. It then requests the IMM
service to bind the instance to the active IMS (e.g., software
keyboard). Afterward, the user input can start to be delivered
from the IMS to the editor through the input channel, which
contains the IC instance. In particular, no Android APIs are
provided for the foreground app to access the IC or interact
with the IMM client/service.

However, there exists a vulnerability that a foreground
app can return its customized IC instance to the IMM
client and let it bind to the active IMS since the We-
bView’s onCreateInputConnection method can be over-
ridden. The method is provided by the View class (i.e.,
android.view.View), and any object inheriting the View can
override it to enable the function of user input. For example,
the WebView class implements this method so that the user
is allowed to type words inside WebView objects. To exploit
this vulnerability, a malicious app can create a new WebView
object which overrides the onCreateInputConnection method
to give a customized IC instance to the IMM client. As a
result, all the user inputs received by the IMS will be sent to
the malicious app’s customized IC.

To maintain normal operations, there are two requirements
for the customized IC instance. First, it shall deliver user inputs

Fig. 5. An overview of the input channel hijacking.

to the editor as normal by forwarding them to the WebView’s
inherent IC instance, which connects to the editor. Second,
it shall support the methods (more than 20) that the IMS
can call. The methods include reading text around the cursor,
committing text, etc. Thanks to the IMF support, there are two
classes available for the customized IC: BaseInputConnection
and InputConnectionWrapper. The former is the base case of
the IC interface, whereas the latter is a wrapper class that
can proxy function calls to an IC instance. The customized
instance can be easily carried out based on either of them. In
sum, the customized IC instance works as the middleware to
proxy calls of the methods between the inherent IC instance
and the IMS.

Validation. We show that the input channel of a Web-
View object can be hijacked by the foreground app, which
embeds the WebView. We create an object, MyWebView, from
the WebView class in our test app. There are two steps
to enable the hijack. First, we implement the middleware,
ICWrapper, by inheriting the InputConnectionWrapper class.
Second, we override the onCreateInputConnection method of
the WebView class. Figure 5 shows the relationship between
different objects when the input channel is hijacked. When
the IMM client requests an IC instance from the MyWebView,
an ICWrapper instance is created and returned. Meanwhile,
an IC instance of the WebView is also created, and then the
ICWrapper forwards calls to it. Afterward, the ICWrapper
can keep capturing the user input until the editor’s focus is
canceled. Upon the cancelation of the focus, both the IC and
ICWrapper instances are dismissed.

We then use the MyWebView app to load the PayPal login
page and validate that it can capture the text typed by the
user on the page, as shown in Figure 6. The left figure is the
app snapshot on a smartphone, whereas the right one is the
log that we generate from the ICWrapper. Some log entries
shown at the bottom of the snapshot are the latter part of the
log. The numbers shown at the beginning of the log entries
indicate their sequence.

Note that we generate the log from each function call
mediated by our ICWrapper. Table I shows the tag we mark

6

10: |45d4fbc7| <IC.create> android.view.inputmethod.EditorInfo@1fe30383
11: |45d4fbc7| <EditorInfo.inputType> TYPE_CLASS_TEXT|TYPE_TEXT_VARIATION_WEB_EDIT_TEXT
12: |76c09fb4| <IC.finish> true
13: |7ee6f925| <IC.create> android.view.inputmethod.EditorInfo@390c9900
14: |7ee6f925| <EditorInfo.inputType> TYPE_CLASS_TEXT|TYPE_TEXT_VARIATION_WEB_EMAIL_ADDRESS
15: |45d4fbc7| <IC.finish> true
16: |7ee6f925| <IC.beforeCursor> [] requested length = 100
17: <Gesture> SingleTap (727,346) [(0,0)+(727,346)]
18: Layout changed: 1080x1701 => 1080x891 (px)
19: |7ee6f925| <IC.beforeCursor> [] requested length = 1
20: |7ee6f925| <IC.beforeCursor> [] requested length = 64
21: |7ee6f925| <IC.composing> [1] u
22: |7ee6f925| <IC.beforeCursor> [u] requested length = 1
23: |7ee6f925| <IC.composing> [1] us
24: |7ee6f925| <IC.beforeCursor> [s] requested length = 1
25: |7ee6f925| <IC.composing> [1] use
26: |7ee6f925| <IC.beforeCursor> [e] requested length = 1
27: |7ee6f925| <IC.composing> [1] user
28: |7ee6f925| <IC.finish> true
29: <View.touch> Down (554,482) [(0,0)+(554,482)]

InputConnection Log from ICWrapper

Input 'user' in the first
field (i.e., username)

Input 'pwd' in the second field (i.e., password)

Fig. 6. Our MyWebView app loading the PayPal login page can wiretap the user input. The left figure is the app snapshot on a smartphone, whereas the
right is the log outputted from the ICWrapper instance.

in each function and its description. In each function, we can
collect the characters the user is typing and the status of the
current editor (or input field). When the user types a character,
the IMS calls the function “setComposingText” to replace the
currently composing text with an updated one or the function
“commitText” to commit the character. In the former function,
marking composition enables the IMS to provide a function
of word suggestions, where the user can select a suggested
word to finish typing after only a few characters are typed.
The newly composing text can be either the old text plus the
character typed by the user or a suggested word. The latter
function is used for the cases that word suggestions are not
applicable, such as password fields (e.g., the password text
on the left side of Figure 6). Moreover, some other functions
of the IC instance are provided for the IMS to monitor the
editor’s status. For example, we can obtain the finish of the
editor, current text in the editor, and the text before the current
cursor position from the functions “finishComposingText,”
“getExtractedText,” and “getTextBeforeCursor,” respectively.

As shown on the right side of Figure 6, the user input “user”
in the username field can be captured in log entry 27. The
characters following the tag IC.composing are those typed
by the user and sent from the IMS to the MyWebView via the
ICWrapper. The content following the tag IC.beforeCursor

includes the characters before the current cursor and the
requested length. It is requested by the IMS and then sent from
the IC instance to it. When the composing is done, the IMS
sends a finish message to the IC. Different from the username
field, the IMS uses the commit function instead of composing
to send input text to the IC for the password field. As shown
in Figure 6, we are able to steal both username and password
strings from the generated log.

Root Cause. This vulnerability is rooted in two design
issues and can be attributed to a design defect of IMF. The
first is insecure delivery of user input data. The security shall
be either to guarantee that no malicious entities can hijack or
wiretap the delivery path or to provide an end-to-end security
association against malicious entities which may sit in the

middle. The discovered vulnerability shows that the current
IMF design does not have either of them. It has no security
association between two separate entities that communicate
in the IMF framework. This kind of communication can
usually happen in a system and should be carefully examined
in terms of data leakage concerns. Specifically, those two
ends are the active IMS and the WebView’s inherent IC
instance, which connects to the focused editor. Since the Web-
View’s onCreateInputConnection method can be overridden,
an intermediate entity, a customized IC instance (i.e., the
ICWrapper in Figure 5), can be built to sit between them by
the foreground app.

The second issue is that two functions are coupled by
a method so that no flexibility exists for disabling them
individually. Specifically, they are the IC interface initializa-
tion and the IMS configuration, which are coupled by the
onCreateInputConnection method. An intuition solution is to
prevent WebView’s onCreateInputConnection method from
being overridden, but it can lead to two critical issues and
be thus hardly considered. First, it would disable the IMS
configuration, which allows an app to restrict the IMS to accept
only numbers or letters as user inputs for each IC instance.
Second, some apps have been developed based on the override,
so the change requires them to be updated.

B. Invisible WebView Hijacking Attack

We devise an invisible WebView hijacking (IWH) attack to
steal user credentials based on the proposed vulnerability. Any
Android apps or third-party components that use WebView
are able to launch this attack. In addition, it can be easily
enabled in current popular apps. The key part of our proof-of-
concept implementation is illustrated in Appendix A. It offers
a general, stealthy approach, which generally works for all
the pages without user awareness, for the adversary to steal
user credentials from the Android WebView. It does not have
the following two limitations which common phishing attacks
have. First, they consider specific web pages which they can
forge, but the ones accessed by users may not be involved.

7

TABLE I
PUBLIC METHODS OF THE INPUTCONNECTION INTERFACE [69]. THE FIRST COLUMN IS A TAG THAT WE SET IN EACH FUNCTION CALL MEDIATED BY

OUR ICWRAPPER.

Tag Function Called by Description
IC.create onCreateInputConnection IMM Client Create a new input connection when an editor gets focus.
IC.commit commitText IMS Commit text to the text box.
IC.action performEditorAction IMS Have the editor perform an action. (e.g., a button is clicked to submit form.)
IC.finish finishComposingText IMS Have the editor finish whatever composing text is currently active.
IC.key sendKeyEvent IMS Send a key event to the editor
IC.region setComposingRegion IMS Mark a certain region of text as composing text.
IC.composing setComposingText IMS Replace the currently composing text with the given text.
IC.delete deleteSurroundingText IMS Delete a region of texts.
IC.dumpText getExtractedText IMS Retrieve the current text in the editor.
IC.beforeCursor getTextBeforeCursor IMS Get characters of text before the current cursor position
IC.afterCursor getTextAfterCursor IMS Get characters of text after the current cursor position

Second, they may make user awareness without showing
genuine content given the input of user credentials. Although
it can be addressed by man-in-the-middle attacks, much more
effort is needed. Moreover, many tools and research studies
have been proposed to address phishing attacks.

We develop a malicious app for the attack and note two
things. First, the attack can also be carried out by third-
party components which are used by benign apps. Second,
we uploaded the IWH app to the Google Play Store and
discovered that it could bypass the verification of the app
security check. The verification result shows “Verified by
Play Protect.” For the security reason that the app may be
accidentally downloaded, we canceled its publishing right after
the upload completes.

The malicious app loads each page that requires user inputs
using WebView, and meanwhile, hijacks its input channel to
collect the user inputs. However, identifying user credentials
from a set of user inputs is not straightforward. They can
be a combination set of user inputs and actions (e.g., typing
and deleting characters and moving cursors). It requires much
more effort than what current tasks are done by the WebView
and the IMS. The WebView prints the characters which are
sent through the input channel on the current cursor position.
The IMS takes care of two major tasks: sending the characters
typed by the user and optimizing user typing actions based on
the state/text in the current input field (e.g., word suggestions).
They care about only the string which is being formed by the
user, but not the final string in each input field, which is needed
to identify user credentials.

We address the following issues in our attack design.

• How to group user inputs which belong to an IC instance
and maybe the final string of a field?

• How to form a string generated by an IC instance given
its user inputs? The string is built based on multiple
operations, including typing, moving cursors, deleting,
etc. It can be in plain text or password format.

• How to resolve the repetition condition that the user may
move the focus to one input field more than once so that
multiple instances are created for that field?

• How to localize each input string among multiple input
fields? The web pages requiring user credentials usually
have more than one input field.

Fig. 7. The architecture of the IWH Attack.

Figure 7 shows the attack design, which mainly consists
of two modules: hijacking/log and analysis modules. The
hijacking/log module keeps monitoring user inputs through the
ICWrapper and the touch events (e.g., Down and SingleTap)
on the WebView from the Android API. The generated logs
are sent to the analysis module, which runs as a local or
remote service. The modularized design also makes it possible
to minimize the footprint of the attack components by injecting
only the hijacking and log module. In the analysis module, we
do user input reconstruction as follows. We consider the string
with which an IC instance ends up in the editor as a building
block since the final result of each input field must come from
one of these kinds of strings. To collect those strings, the
app groups user inputs and touch events according to each IC
instance and then identifies an input string from each group.
It also eliminates duplicate results that exist for one input
field and finally localizes collected input strings among the
input fields. Finally, it can get a set of user credentials. The
algorithm pseudocode of the user input extraction process is
given in Algorithm 1. We elaborate on each component used
in the algorithm below.

Grouping User Inputs and Touch Events. We assign a
32-bit identifier, which is randomly generated, to each IC
instance in our ICWrapper middleware. It is attached to each
log entry. For example, as shown in Figure 6, the identifier
of the instance created for the username is 7ee6f925, whereas

8

that for the password is 4f1ec49f. The log entries generated
for the username/password inputs can be grouped based on the
identifiers. Moreover, the group to which a touch event should
belong is determined based on its identifier. We note two
things. First, the ICWrapper can know when a new instance
is created based on whether the onCreateInputConnection

function is called. Second, we capture touch events by imple-
menting dispatchTouchEvent and GestureDetector listeners
in the WebView.

Identifying Input Strings. We next identify the final string
of an IC instance based on its log entries. Due to different ac-
tions performed on non-password and password cases, we deal
with them differently. Those two cases can be differentiated
based on the information of the editor’s input type. As shown
in Figure 6, the input type of the username, which is plaintext,
can be WEB_EDIT_TEXT or WEB_EMAIL_ADDRESS, whereas that of
the password, which is presented by dots, is WEB_PASSWORD.

For the non-password case, we keep monitoring the ed-
itor’s text throughout the lifetime of the IC instance. By
following each call of IC functions from the IMS, our
ICWrapper calls both functions of getTextBeforeCursor and
getTextAfterCursor to obtain the whole text, which is the
concatenation of the strings returned by those two functions.
It is due to two reasons. First, the text change caused by the
user’s typing in an editor is done by the IC function calls.
Second, whenever an instance is alive, there must be a cursor,
which points out where newly typed characters should appear,
in the editor. Once the observed instance identifier changes or
the form is submitted, the latest observed text is considered
an input field’s final string.

However, the password string cannot be obtained by mon-
itoring the editor’s text because right after each character is
delivered to the editor, it becomes a dot (•). We can only
get a sequence of dots when calling the functions of getting
the editor’s text. We thus maintain intermediate states of user
inputs in real-time to form the password string. We maintain
a text buffer and a cursor position variable. When a character
committed by the commitText function is observed, it is
inserted to the current cursor position in the text buffer, and
the position variable increases by one. We do deletion in the
text buffer whenever any deletion event occurs. Note that We
also need to monitor the current cursor position because the
user may move the cursor by touching the view. Once a touch
event is observed, we call the getTextBeforeCursor function
to get the cursor position. Although this function returns only
dots in this case, the cursor position can be inferred based on
how many dots are in front of the cursor. Finally, the final
password string can be extracted from the buffer.

Eliminating Duplicate Results. We detect duplicate results
by checking whether the existing string of the input field
on which the user newly focuses matches one of the input
strings which we have identified. A match represents that
the user is updating an input string that has been formed,
so the old string will be replaced by the newly formed one.
This way can prevent us from ending up with more than
one input string belonging to an input field after all the
inputs are done. To do the check, we obtain the existing

TABLE II
VARIOUS MOBILE DEVICES AND DIFFERENT DEVICE SETTINGS IN THE

FIELD STUDY.

Mobile Devices
Brand Keyboard Models

HTC HTC Sense Input ONE 801s, B830x, M10h, M9pw,
U-2u

SAMSUNG Samsung Keyboard SM-G900F, SM-G930F
ASUS ASUS Keyboard Z00ED, Z012DA
LG LG Keyboard LGE Nexus 5

SONY Xperia Keyboard
C6502, C6602, D6653, E2363,
E6683, F5321, F8132, G3125,
G8232

OPPO Touchpal A1601, F1f
Google Gboard Pixel 2

Android Emulator
Android SDK Versions

4.4.2, 5.0, 5.0.2, 5.1, 5.1.1, 6.0, 6.0.1, 7.0, 7.1.1, 8.1.0, 9.0, 10.0, 11.0
Screen Resolutions (Pixel)

720x1280, 900x1600, 1080x1920, 1440x2560
DPI (Dots Per Inch)

240, 272, 320, 420, 480, 640

TABLE III
10 WEB PAGES USED IN THE FIELD STUDY.

Company Category Input Web Page
1-2 Amazon, Taobao Online Retailer Account Login

3 eBay E-commerce Account Login
4 Paypal Online Payments Account Login
5 Paypal Online Payments Credit Card Info.
6 American Express Banking Account Login

7-8 CapitalOne, Chase Banking Account Login
9-10 Facebook, Twitter Social Media Account Login

string by calling the getExtractedText function right after
the onCreateInputConnection function is called, and then
compare it with the input strings which have been identified.

Localizing Input Strings. A web page may have multiple
input fields, and they may be filled in any orders. The first three
components only identify the strings inputted on the page but
do not associate them with the input fields. This component
is thus introduced to map the input strings to the input fields
one by one. It does the mapping based on the orders of the
input strings and fields on the page in terms of their vertical
positions. The vertical position order of the input strings can
be identified based on their absolute coordinates on the page,
whereas that of the input fields can be learned by checking the
page through a visited URL. We can obtain the coordinates of
each input string based on its corresponding touch events, but
they are relative coordinates of the current screen or display
area. For one spot in a view area, the relative coordinate
changes when the user scrolls the page, but the absolute one
does not. We thus need to convert relative coordinates to
absolute ones. We calculate the absolute coordinate of each
touch event by getting both the scroll movement range (i.e.,
sx and sy) and the relative coordinate (i.e., tx and ty). The
absolute coordinate can then be obtained by (sx+tx, sy+ty).
Given the absolute coordinate of each input string, the input
strings can be ordered vertically and mapped to input fields
one by one.

9

Algorithm 1 The user input extraction algorithm.

Require: Captured events E = {e1, e2, . . . , en} from a user
1: LD = {an empty dict contains lists of captured events}
2: R = {an empty list for storing extracted user inputs}
3: // {Group User Inputs and Touch Events.}
4: for all e in E do
5: Append e to list LD[e.id]
6: end for
7: // {Identify Input Strings.}
8: for all l in LD do
9: s = {a buffer contains an empty string}

10: pos = 0 {cursor positon}
11: y = {an empty list for storing y coordinates}
12: for all e in l do
13: if e.type in {beforeCursor, afterCursor} then
14: Update s based on e and pos
15: else if e.type in {ComposingText, commitText} then
16: Update s and pos based on e
17: else if e.type in {touchEvent} then
18: Update pos based on e.x
19: Append e.y to y
20: else if e.type in {finishComposing} then
21: Replace s based on e
22: end if
23: end for
24: Append (s, y) to R
25: end for
26: // {Eliminate Duplicate Results.}
27: for all r in R do
28: if r.s is not unique in R and r.y then
29: Remove r from R
30: end if
31: end for
32: // {Localize Input Strings}
33: Sort r in R based on r.y
34: return R

C. Field Study

We conduct a field study to examine whether our attack
design can precisely acquire user credentials in most cases.
We use our developed app for the study and ask volunteers
from our department to test it4. We clone ten web pages con-
taining input fields of login username/password or credit card
information from popular Internet services. The cloned pages
are from different companies in various industry categories, as
shown in Table III. They do not provide any real services but
are used for only the test of input data reconstruction; once
a page is submitted, the browser either goes to the next test
page or ends the test. Note that our server is the one to which
these pages are submitted, so we can collect the actual user
input of each test to gauge the accuracy.

For each test, the app randomly selects one from those ten
pages for the tester to fill in the input fields. To emulate a
real scenario of deployment such an attack, the app collects

4The IRB of this field study has been approved.

IMF and touch events on the device and periodically sends
the collected events to a backend server, which runs our
proposed algorithm to extract leaked user information. Since
we examine whether any modification on the input data can
be correctly detected by our algorithm, we request the tester to
modify his/her input right after the first submission and then
submit it again. Each test produces two test results with the
same web page. We encourage testers to do multiple tests at
their convenience. Overall, we collect 1537 test results from 90
testers. Their devices and settings are summarized in Table II.

We compare the actual user input with the output of our
algorithm. It is observed that it can correctly identify user
inputs in a total of 1507 tests and thus achieve 98.0% accuracy.
2.0% of errors come from the cases that the tester moves the
cursor among characters within a password field by touching
the screen and then modifies the password string. Our attack
design may get the wrong locations of the cursor within the
password string. This is mainly because the font size of an
input field rendered on different devices could be diverse,
and therefore coordinate-based cursor position prediction may
still get an incorrect result even if we have considered DPI-
based corrections on some devices. Moreover, the password
string, each character of which is shown as a dot in the editor,
cannot be obtained by monitoring the editor’s text. This kind of
modification can thus lead to identifying an incorrect password
string. Totally, there are 38,839 input operations captured by
the app. Among them, 4 percent of the operations are cursor
movements, 4 percent are text deletions, and 92 percent are
text composing operations.

Note that we did not collect the information of the Android
patch levels and the WebView versions from the testers since
most of them may have difficulty reporting it without a
background in computer science. However, we have validated
the vulnerability of the input channel hijacking on 22 device
models across seven phone brands and Android versions from
4.4 to 11.0. We thus believe that the vulnerability is a common
security issue of Android but not roots in some manufacturer
customization.

VI. SOLUTION

We devise two solutions for mobile web services and
the Android platform, respectively, under the current IMF
framework. We propose a web-based virtual keyboard for the
web services to prevent users from using IMF for their inputs.
The reasons are twofold. First, the vulnerability may not be
fixed promptly by the Android team. Second, various phone
models and Android versions may not be all updated to be
fixed, even if an updated Android version is released. For the
Android platform, we introduce an IMF hijacking guardian to
set up a security association between the active IMS and the
WebView’s inherent IC instance (see reasons in the root cause
of Section V-A).

A. Web-based Virtual Keyboard

The web-based virtual keyboard avoids using the system’s
input methods on acquiring user credentials. It is based on
the emulation of a software keyboard using the HTML span

10

Fig. 8. Screenshots for the proposed solutions. Left: a sample web-based
virtual keyboard shown on a web page; Right: a pop-up notification from the
IMF hijacking guardian when an input hijacking occurs.

Fig. 9. The IMF hijacking guardian based on a security association between
WebView’s inherent IC instance and the active IMS.

element. The software keyboard is shown based on the span

and hooked to enable user input with JavaScript codes. When
any input field is clicked and thus becomes active, its hook
will cause the virtual keyboard to show up.
Implementation. We carry out the following two major
tasks for the virtual keyboard, as shown in the left of Figure 8.
First, we set input fields to be read-only and draw the keyboard
layout and keys using the span. The input field on which the
user focuses is decorated with a different border color (e.g.,
blue in the sample). Second, the keys are hooked to append
their corresponding characters to the focused input field when
they are clicked, whereas the input fields are hooked to enable
the appearance of the virtual keyboard. Since there is a focus
on the field of “Email address,” the virtual keyboard is shown;
otherwise, it is hidden. It just works as normal input methods,
which deliver characters one by one to an input field.

B. IMF Hijacking Guardian

This guardian prevents the hijacking by setting up a security
association between WebView’s inherent IC instance and the
active IMS. The text sent from the IMS to the IC instance is

Fig. 10. Interactions between the IMF hijacking guardian, a view, and the
IMF framework.

encrypted by a symmetric key and a cryptographic algorithm,
which are assigned by a key registration service in the Android
system. It can enable the system to notify users of any
suspicious signs that current foreground apps may do the
hijacking. The signs allow users to consider to do input with
other trustable apps. In addition, even if the input channel
is hijacked, the encryption prevents user inputs from being
leaked.

Figure 9 shows the guardian’s operation. Whenever an editor
is focused, the WebView registers the service and obtains a
set of the key and algorithm. Afterward, the active IMS also
fetches that security context so that it can encrypt the user’s
input text. The delivery of the encrypted text is shown with
the solid blue arrow in the figure. Therefore, the malicious app
that hijacks the input channel is not able to obtain the input
text in plaintext.

Note that a malicious app may register its view to the key
registration service and then obtain the security context shared
with the current IMS. The user’s input text can be decrypted
only by the malicious app’s customized IC. It results in that
no text input appears on the wrapped view, and the user can
thus be aware of the anomaly.
Implementation. We implement the IMF hijacking
guardian in the framework of Android version 7.1 and generate
a patched framework to run in an emulator to show its effec-
tiveness. Figure 10 shows the detailed interactions between
the IMF hijacking guardian, a view, and the IMF framework.
We implement a key registration service as an additional
feature in the original IMM service. To ensure compatibility
for existing applications, the text input encryption feature is
disabled by default in the constructor of an IC object. An
IC held by sensitive views such as WebView can enable this
feature by calling the setEncryption function, as [P1] shown
in the figure. This function should be called every time an IC

11

TABLE IV
PERFORMANCE IMPACTS FOR TEXT INPUT ENCRYPTION AND DECRYPTION

OPERATIONS.

1-byte 2-byte 4-byte 8-byte 16-byte
AES-128 0.365ms 0.364ms 0.359ms 0.357ms 0.367ms
AES-192 0.349ms 0.356ms 0.361ms 0.363ms 0.352ms
AES-256 0.358ms 0.358ms 0.359ms 0.358ms 0.368ms

RC4 0.257ms 0.252ms 0.250ms 0.251ms 0.244ms

Fig. 11. The IMF hijacking guardian is provided from a standalone crypto-
graphic service.

is instantiated or the onCreateInputConnection is called. The
crypto parameter used for text encryption is thus generated and
returned to the caller. The key registration service maintains
only a single instance of crypto parameters. A second call
to the setEncryption function generates a new instance of
crypto parameters and replaces the existing one. Once the
text encryption service is activated, an active IMS is able
to retrieve the crypto parameters from the key registration
service. Note that the key registration service only responds
to the query coming from an active IMS; otherwise, an error
code is returned.

With the correct crypto parameters, the text messages ex-
changed between the target IC held by a WebView and the
active IMS are encrypted bidirectionally. The IMS can send
encrypted user inputs to the IMM, and then the IMM forwards
them to the IC via commitText and setComposingText. Simi-
larly, the IC can encrypt all the responses to the queries, e.g.,
getTextBeforeCursor and getTextAfterCursor, from other
components in the system, and only the active IMS can decrypt
the responses. An anomaly is identified at the IC when the
received messages cannot be decrypted correctly. The right
side of Figure 8 shows an example that a warning notification
from the IMF hijacking guardian is popped up on a malicious
app that launches the IWH attack after the user sends a text
input to an input field and the IC cannot correctly decrypt the
input.

Performance Impact. We next examine the delays imposed
by the text input encryption/decryption and see whether they
can get user awareness. We conduct experiments on a moderate
CPU (Qualcomm APQ8084) running at 1.5 GHz and emulate
user inputs by generating 1-, 2-, 4-, 8-, and 16-byte texts.
We consider four different cipher algorithms: AES-128, AES-

[WebView]					<onCreateInputConnection>	
[IMM	service]	<setEncryption>	
[IMM	client]		<commitText>	plaintext=u	
[IMM	service]	<doEncryption>	
[IMM	client]		<commitText>	ciphertext=eab990e1a6b1e896b03fec84b8eeb99ce1acbdeba584	
[ICWrapper]			|5b84cefe|	<IC.commit>	[1]	깐ᦱ薰세�◌ᭂ#ᬵ륄	
[WebViewIC]			<commitText>	ciphertext=eab990e1a6b1e896b03fec84b8eeb99ce1acbdeba584	
[WebViewIC]			<commitText>	plaintext=u	

............	Omitted	
[WebViewIC]			<getTextBeforeCursor>	plaintext=u	
[WebViewIC]			<getTextBeforeCursor>	ciphertext=e9a08be898a9ecbb9ce1a88eeb82a2e7858eea9691eeb98c	
[ICWrapper]			|539f68b7|	<IC.beforeCursor>	[컜ᨎ낢 ꖑ�]	
[IMM	client]		<setTextBeforeCursor>	ciphertext=e9a08be898a9ecbb9ce1a88eeb82a2e7858eea9691eeb98c	
[IMM	service]	<doDecryption>	
[IMM	client]		<setTextBeforeCursor>	plaintext=u	
[WebViewIC]			<getTextAfterCursor>	plaintext=sr	
[WebViewIC]			<getTextAfterCursor>	ciphertext=e39e8ee1b2b6efa7a0e49795ea89b9e7919de8a399ee8d99	
[ICWrapper]			|539f68b7|	<IC.afterCursor>	[ꉹ �]	
[IMM	client]		<setTextAfterCursor>	ciphertext=e39e8ee1b2b6efa7a0e49795ea89b9e7919de8a399ee8d99	
[IMM	service]	<doDecryption>	
[IMM	client]		<setTextAfterCursor>	plaintext=sr

commitText

getTextBeforeCursor

getTextAfterCursor

Fig. 12. Demonstration of the alternative deployment that runs the encryption
service in an isolated process: the hijacked channel can only receive encrypted
input texts.

192, AES-256, and RC4. In each test, there are 20,000 runs.
At each run, the text is encrypted and then decrypted. The
average delays are presented in Table IV. It is observed that
the delays are less than 0.4 ms in all the cases. Such delays
are considered negligible and are not noticeable to smartphone
users, since it is even smaller than the fastest refresh interval of
current smartphone displays. The refresh rates of the displays
range from 60 Hz to 120 Hz; that is, the smartphone screens
are redrawn with an interval from 16.67 ms to 8.33 ms.
Alternative Deployment. The IMF hijacking guardian
requires some new functions (e.g., text encryption) to be
supported by input methods, but this requirement may be
difficult for those developed by the third party. An alternative
deployment approach is to run the encryption service in an
isolated process or along with the IMM service, as shown
in Figure 11. Upon the receipt of an input text at the IMM,
it is forwarded to the encryption service via an interprocess
communication channel and then encrypted. Afterward, the
encrypted text is sent back to the IMM and then forwarded
to the IC. A pitfall of this approach is that the input text
without encryption needs to traverse the IMM in the app’s
main process. It leaves a chance for the adversary to steal
the text by scanning memory. However, the chance is very
small because the time interval of the traverse is very short.
Figure 12 demonstrates the alternative deployment with the
built-in input method in an Android emulator. It is observed
that the ICWrapper can receive only encrypted text inputs.

VII. DISCUSSION

In this section, we first examine the IWH attack on password
managers and then discuss several attacks which can be
launched in the same threat model but have more limitations
than IWH. Note that IWH can be applied to only Android,
so we focus the discussion on the attacks against Android.
We leave the examination of the related attacks on iOS to our
future work.
IWH on Password Managers. We examine whether the
IWH attack works for password managers [70] that use the
Accessibility or Autofill services to fill the password field. We
develop two password manager apps using the Accessibility
and Autofill services, respectively, and experimentally test
IWH on them. We discover that IWH does not work for them,
but an approach similar to the InputConnection hijacking can
be used to steal the password when the Autofill service is

12

used. Specifically, an attacker can inherit the WebView class
and do hijacking in the function used by the Autofill service
to send a string to the password field. For the Accessibility
service, although the IMF event can be triggered, the password
captured from the IWH attack is just a string of dots, and
thus the attack fails to obtain the password. However, it has
been suggested that the Accessibility service should not be
enabled for password manager apps since it gives much more
privileges than those needed by the apps and can open the
door to security threats [71].

Malicious Self-made Browser. To steal user credentials
from the user input on an Android view, the adversary may
use a self-made browser that does not inherit the WebView
class; instead, the browser is directly built based on the
view class. Without the restriction imposed by WebView, the
adversary can easily obtain user credentials from the web
pages rendered by the self-made browser. However, creating
such a browser is challenging since the browser is a complex
software component and requires great effort for a stable and
standard-compliant version. Although there have been some
open-source browser packages, the adversary still needs to
patch and rebuild their source codes to enable the leakage of
user credentials. Therefore, the attack based on the self-made
browser needs a much higher implementation cost than the
IWH attack and sets a high technical barrier for the adversary.

Moreover, embedding a self-made browser in a malicious
app may increase the app’s size to a huge number, which could
be used as a feature for the detection of malicious apps by anti-
virus software. The code size of an official WebView package
ranges from 30 MB to 50 MB, so it is reasonable to estimate
that the size of a self-made or open-source browser can be
at least several tens MB. The size has been much larger than
most apps, especially that the malicious app does not provide
any multimedia functions. According to the statistics from two
reports [72], [73], the average sizes of regular apps in 2012
and 2017 are only 6 MB and 15 MB, respectively. An app
with a huge code size could be considered a suspicious app
by the anti-virus software and perform further inspection.

Spoofed Login Forms. The adversary may simply spoof lo-
gin forms of web services, but the spoofed forms can be easily
noticed after the submission of user inputs. Although they can
be used to successfully steal user credentials, the user can be
aware of this phishing attack when no valid user information
can be shown after a successful login, and then may take
some preventive actions immediately (e.g., changing his/her
password). IWH is much more threatening due to its stealthy
eavesdropping, which does not affect the normal operation of
a web service. As for conventional phishing and pharming
attacks, no valid response can be shown after submission of
user inputs in most cases so that the phishing or pharming
pages can be easily suspected and detected. Moreover, the
conventional attacks work for only some specific web services
for which fake pages have been created in advance, but IWH
can be performed on all the web services accessed through
WebView.

Information Leakage from Memory. When the foreground
app and its WebView object are in the same process, the

adversary may be able to scan memory to steal user creden-
tials by using native codes. However, since Android 8.0, the
WebView has been isolated to another process from the app’s
main process.
JavaScript Injection Attacks. Attackers may inject
JavaScript to extract the content of input fields from WebView,
but it can be prevented based on the same-origin policy,
where any JavaScript codes can only be injected into the main
frame page rendered by WebView. Web servers can prevent
injection attacks by embedding the input fields in non-main
frame pages. However, our IWH attack can still work with that
prevention manner. Moreover, our proposed virtual keyboard
can also be made immune to the injection attacks by being
embedded in a non-main frame page.

VIII. CONCLUSION

Embedding WebView is a common practice for modern
Android apps that require showing users web pages. Users may
input user credentials on the WebView for some login/payment
pages, especially for popular OAuth pages. Such input data
belonging to the page owners shall not be exposed to the
foreground app. In this work, we discover that Android fails
to protect the user’s input data on the WebView from the app.
It is caused by an Android design defect where the input
channel between an editor and an active IMS can be easily
hijacked. We devise an attack that can steal user inputs without
user awareness and conduct a field study with our developed
attack app. The result shows that the accuracy of successfully
stealing user inputs can achieve 98.0%. We finally propose
and prototype two solutions, the web-based virtual keyboard
and the IMF hijacking guardian, for mobile web services and
the Android system, respectively.

Our study yields two insights. First, two ends of a data flow,
which may traverse insecure entities, shall set up an end-to-
end security association. System designers should carefully
examine whether each kind of data flows may be forced to
traverse any suspicious entities or not. Second, given that
two functions (the IC interface initialization and the IMS
configuration in this work) are coupled together within a
method when one of them has security issues, we may face
the dilemma of disabling/modifying the method or adding
security protection. The former may have compatibility issues
with existing apps, so our solution takes the latter approach.
We hope our study will raise awareness of this IWH security
threat, and the insights will benefit the security enhancement
of system designs.

ACKNOWLEDGEMENT

This study is supported in part by Ministry of Science and
Technology under grants number MOST 107-2221-E-009-028-
MY3, MOST 109-2218-E-009-010, and MOST 109-2628-E-
009-001-MY3, and in part by the Center for Open Intelligent
Connectivity from The Featured Areas Research Center Pro-
gram within the framework of the Higher Education Sprout
Project by the Ministry of Education in Taiwan. We would
also like to thank anonymous reviewers for their constructive
and insightful comments.

13

public class PoCWebView extends WebView {
class MyICWrapper extends InputConnectionWrapper {

private int id = -1; // IC instance id
public int getid() { return id; }
//// PoC: implement required constructors HERE
//// id is initialized with a random number.
@Override
public CharSequence getTextBeforeCursor(

int n, int flags) {
CharSequence cs =

super.getTextBeforeCursor(n, flags);
// PoC: log captured texts
return cs;

}
@Override
public CharSequence getTextAfterCursor(

int n, int flags) {
CharSequence cs =

super.getTextAfterCursor(n, flags);
// PoC: log captured texts
return cs;

}
@Override
public boolean setComposingText(

CharSequence text, int newCursorPosition) {
// Poc: log captured texts
return super.setComposingText(text, newCursorPosition);

}
@Override
public boolean commitText(

CharSequence text, int newCursorPosition) {
// PoC: log captured texts
return super.commitText(text, newCursorPosition);

}
@Override
public boolean finishComposingText() {

// Poc: extract and log captured texts
return super.finishComposingText();

}
}

private MyICWrapper icw = null;

//// PoC: implement required constructors HERE
@Override
public boolean dispatchTouchEvent(MotionEvent event) {

// PoC: log captured touch event
return super.onTouchEvent(event);

}
@Override
public InputConnection onCreateInputConnection(

EditorInfo outAttrs) {
InputConnection ic =

super.onCreateInputConnection(outAttrs);
return ic == null ?

null : (icw = new MyICWrapper(ic, false));
}

}

Fig. 13. Proof-of-concept implementation of our hijacking and log module.

APPENDIX

A. Proof-of-Concept Implementation

We provide a proof-of-concept (PoC) implementation of
our proposed hijacking and log module in Figure 13. A
malicious developer can create a customized WebView class
by inheriting the system WebView class and then over-
riding the onCreateInputConnection function. The overrid-
den onCreateInputConnection function creates a customized
InputConnection instance and intercept user inputs in the
customized InputConnection instance. All user text inputs
sent to the web page rendered by the customized WebView
are captured by the customized InputConenction instance.

REFERENCES

[1] StatCounter Global Stats, “Mobile and tablet in-
ternet usage exceeds desktop for first time world-
wide,” November 2016, http://gs.statcounter.com/press/
mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide.

[2] K. Kloboves, “Continuing to make the web more mobile friendly,”
Google Webmaster Central Blog, March 2016, https://webmasters.
googleblog.com/2016/03/continuing-to-make-web-more-mobile.html.

[3] J. Hong, “The State of Phishing Attacks,” Communications of the ACM,
vol. 55, no. 1, pp. 74–81, January 2012.

[4] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna, “What the App is That? Deception and Countermeasures in
the Android User Interface,” in Proceedings of the IEEE Symposium on
Security and Privacy, May 2015.

[5] A. Oest, P. Zhang, B. Wardman, E. Nunes, J. Burgis, A. Zand,
K. Thomas, A. Doupé, and G.-J. Ahn, “Sunrise to Sunset: Analyzing the
End-to-end Life Cycle and Effectiveness of Phishing Attacks at Scale,”
in Proceedings of the 29th USENIX Security Symposium (USENIX
Security 20), Aug. 2020, pp. 361–377.

[6] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner, “Dynamic Pharm-
ing Attacks and Locked Same-origin Policies for Web Browsers,” in
Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, 2007, pp. 58–71.

[7] S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know Your Phish:
Novel Techniques for Detecting Phishing Sites and their Targets,”
Proceedings of the 36th IEEE International Conference on Distributed
Computing Systems, pp. 323–333, Jun. 2016.

[8] G. Ramesh, I. Krishnamurthi, and K. S. S. Kumar, “An efficacious
method for detecting phishing webpages through target domain iden-
tification,” Decision Support Systems, vol. 61, no. Supplement C, pp. 12
– 22, 2014.

[9] G. Bottazzi, E. Casalicchio, D. Cingolani, F. Marturana, and M. Piu,
“MP-Shield: A Framework for Phishing Detection in Mobile Devices,”
in Proceedings of the 3rd IEEE International Workshop on Cybercrimes
and Emerging Web Environments, 2015.

[10] L. Wu, X. Du, and J. Wu, “Effective Defense Schemes for Phishing At-
tacks on Mobile Computing Platforms,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 8, pp. 6678–6691, August 2016.

[11] C. Pham, L. A. T. Nguyen, N. H. Tran, E. Huh, and C. S. Hong,
“Phishing-Aware: A Neuro-Fuzzy Approach for Anti-Phishing on Fog
Networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 3, pp. 1076–1089, 2018.

[12] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning
based phishing detection from URLs,” Expert Systems with Applications,
vol. 117, pp. 345–357, 2019.

[13] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage,
G. M. Voelker, and D. Wagner, “Detecting and Characterizing Lateral
Phishing at Scale,” in 28th USENIX Security Symposium (USENIX
Security 19), Aug. 2019, pp. 1273–1290.

[14] Y. Li, Z. Yang, X. Chen, H. Yuan, and W. Liu, “A stacking model
using URL and HTML features for phishing webpage detection,” Future
Generation Computer Systems, vol. 94, pp. 27–39, 2019.

[15] A. Das, S. Baki, A. El Aassal, R. Verma, and A. Dunbar, “SoK: A
Comprehensive Reexamination of Phishing Research From the Security
Perspective,” IEEE Communications Surveys Tutorials, vol. 22, no. 1,
pp. 671–708, 2020.

[16] Anti-Phishing Working Group, “Phishing activity trends report: 4th
quarter 2015,” March 2016, https://docs.apwg.org/reports/apwg trends
report q4 2015.pdf.

[17] ——, “Phishing activity trends report: 4th quarter 2016,” February 2017,
https://docs.apwg.org/reports/apwg trends report q4 2015.pdf.

[18] H. Wang, Y. Guo, Z. Ma, and X. Chen, “WuKong: A Scalable and
Accurate Two-phase Approach to Android App Clone Detection,” in
Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ser. ISSTA 2015. New York, NY, USA: ACM, 2015,
pp. 71–82. [Online]. Available: http://doi.acm.org/10.1145/2771783.
2771795

[19] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and Accurate
Detection of Third-Party Libraries in Android Apps,” in Proceedings of
the 38th International Conference on Software Engineering Companion,
ser. ICSE-C, 2016.

[20] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “LibD: Scalable and Precise Third-Party Library Detection in
Android Markets,” in Proceedings of the 39th International Conference
on Software Engineering, ser. ICSE, 2017.

14

[21] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and H. Chen,
“Detecting Third-Party Libraries in Android Applications with High Pre-
cision and Recall,” in Proceedings of the 25th International Conference
on Software Analysis, Evolution and Reengineering, ser. SANER, 2018.

[22] K. Jain, “Warning: 18,000 android apps contains code that spy
on your text messages,” 2015, https://thehackernews.com/2015/10/
android-apps-steal-sms.html.

[23] M. Kumar, “Backdoor in baidu android sdk puts 100 million
devices at risk,” 2015, https://thehackernews.com/2015/11/
android-malware-backdoor.html.

[24] Facebook.com, “Success Stories,” 2018, https://developers.facebook.
com/success-stories/.

[25] S. Gastellier-Prevost, G. G. Granadillo, and M. Laurent, “A Dual
Approach to Detect Pharming Attacks at the Client-Side,” in Proceedings
of the 4th IFIP International Conference on New Technologies, Mobility
and Security, Feb 2011, pp. 1–5.

[26] Y. Cao, W. Han, and Y. Le, “Anti-phishing Based on Automated
Individual White-list,” in Proceedings of the 4th ACM Workshop on
Digital Identity Management, 2008, pp. 51–60.

[27] G. Xiang, J. I. Hong, C. P. Rosé, and L. F. Cranor, “CANTINA+: A
Feature-Rich Machine Learning Framework for Detecting Phishing Web
Sites,” ACM Transactions on Information and System Security, vol. 14,
no. 2, pp. 21:1–21:28, 2011.

[28] T. Willis, “Policy and disclosure: 2020 edition,” News
and updates from the Project Zero team at Google,
January 2000, https://googleprojectzero.blogspot.com/2020/01/
policy-and-disclosure-2020-edition.html.

[29] D. Shin, H. Yao, and U. Rosi, “Supporting visual security cues for
WebView-based Android apps,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013.

[30] E. Chin and D. Wagner, “Bifocals: Analyzing WebView Vulnerabilities
in Android Applications,” in Proceedings of International Workshop on
Information Security Applications, 2013.

[31] J. Yu and T. Yamauchi, “Access Control to Prevent Attacks Exploiting
Vulnerabilities of WebView in Android OS,” in Proceedings of the 10th
IEEE International Conference on High Performance Computing and
Communications and IEEE International Conference on Embedded and
Ubiquitous Computing, 2013, pp. 1628–1633.

[32] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView
in the Android system,” in Proceedings of the 27th Annual Computer
Security Applications Conference, 2011.

[33] T. Luo, “Attacks and Countermeasures for WebView on Mobile Sys-
tems,” Ph.D. dissertation, Syracuse University, 2014.

[34] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touchjacking Attacks
on Web in Android, iOS, and Windows Phone,” in Proceedings of
International Symposium on Foundations and Practice of Security, 2012.

[35] H. Feng and K. G. Shin, “Understanding and Defending the Binder At-
tack Surface In Android,” in Proceedings of the 32nd Annual Conference
on Computer Security Applications, 2016, pp. 398–409.

[36] W. Diao, X. Liu, Z. Zhou, K. Zhang, and Z. Li, “Mind-Reading: Privacy
Attacks Exploiting Cross-App KeyEvent Injections,” in Proceedings
of the 20th European Symposium on Research in Computer Security.
Springer International Publishing, 2015, pp. 20–39.

[37] F. Mohsen and M. Shehab, “Android keylogging threat,” in Proceed-
ings of the 9th International Conference Conference on Collaborative
Computing: Networking, Applications and Worksharing, 2013.

[38] L. Cai and H. Chen, “TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion,” in Proceedings of the 6th USENIX
Workshop on Hot Topics in Security, 2011.

[39] J. Cho, G. Cho, and H. Kim, “Keyboard or keylogger?: A security
analysis of third-party keyboards on Android,” in Proceedings of the
13th Annual Conference on Privacy, Security and Trust, 2015.

[40] M. H. Ahmadzadegan, A. Khorshidvand, and M. Pezeshki, “A method
for securing username and password against the Keylogger software
using the logistic map chaos function,” in Proceedings of the 2nd Inter-
national Conference on Knowledge-Based Engineering and Innovation,
2015.

[41] T. Fiebig, J. Danisevskis, and M. Piekarska, “A Metric for the Evaluation
and Comparison of Keylogger Performance,” in Proceedings of the 7th
USENIX Workshop on Cyber Security Experimentation and Test, 2014.

[42] E. Ulqinaku, L. Malisa, J. Stefa, A. Mei, and S. Capkun, “Using
Hover to Compromise the Confidentiality of User Input on Android,”
in Proceedings of ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2017.

[43] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang,
and B. Zang, “Vetting Undesirable Behaviors in Android Apps with
Permission Use Analysis,” in Proceedings of the 2013 ACM SIGSAC

Conference on Computer and Communications Security, November
2013, pp. 611–622.

[44] J. Cappos, L. Wang, R. Weiss, Y. Yang, and Y. Zhuang, “BlurSense:
Dynamic Fine-Grained Access Control for Smartphone Privacy,” in
Proceedings of 2014 IEEE Sensors Applications Symposium, 2014.

[45] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “An-
droid Permissions: User Attention, Comprehension, and Behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security,
ser. SOUPS ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:14.

[46] Y. Fratantonio, A. Bianchi, W. Robertson, M. Egele, C. Kruegel,
E. Kirda, and G. Vigna, “On the security and engineering implications
of finer-grained access controls for android developers and users,” in
Proceedings of International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, 2015.

[47] D. Liu, “Enhanced Password Security on Mobile Devices,” Ph.D.
dissertation, Duke University, 2013.

[48] D. Liu, E. Cuervo, V. Pistol, R. Scudellari, and L. P. Cox, “ScreenPass:
Secure Password Entry on Touchscreen Devices,” in Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, 2013.

[49] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code Injection
Attacks on HTML5-based Mobile Apps: Characterization, Detection and
Mitigation,” in Proceedings of ACM SIGSAC Conference on Computer
and Communications Security, 2014.

[50] L. Zhang, Z. Cai, and X. Wang, “FakeMask: A Novel Privacy Preserving
Approach for Smartphones,” IEEE Transactions on Network and Service
Management, vol. 13, no. 2, pp. 335–348, 2016.

[51] T. Li, X. Wang, M. Zha, K. Chen, X. Wang, L. Xing, X. Bai, N. Zhang,
and X. Han, “Unleashing the Walking Dead: Understanding Cross-App
Remote Infections on Mobile WebViews,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. New York, NY, USA: ACM, 2017, pp. 829–844.

[52] M. G. S. Jana and V. Shmatikov, “Breaking and Fixing Origin-Based
Access Control in Hybrid Web/Mobile Application Frameworks,” in
Proceedings of 2014 Network and Distributed System Security (NDSS
’14), San Diego, February 2014.

[53] G. Yang, A. Mendoza, J. Zhang, and G. Gu, “Precisely and Scalably
Vetting JavaScript Bridge In Android Hybrid Apps,” in Proceedings of
the 20th International Symposium on Research in Attacks, Intrusions,
and Defenses, 2017.

[54] D. Davidson, Y. Chen, F. George, L. Lu, and S. Jha, “Secure Integration
of Web Content and Applications on Commodity Mobile Operating
Systems,” in Proceedings of the 12th ACM on Asia Conference on
Computer and Communications Security, 2017.

[55] G. S. Tuncay, S. Demetriou, and C. A. Gunter, “Draco: A System for
Uniform and Fine-grained Access Control for Web Code on Android,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY, USA: ACM,
2016, pp. 104–115.

[56] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. Cox,
J. Jung, P. McDaniel, and A. Sheth., “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones,”
ACM Transactions on Computer Systems, vol. 32, no. 2, pp. 5:1–5:29,
Jun. 2014.

[57] K. Fawaz, H. Feng, and K. G. Shin, “Anatomization and Protection
of Mobile Apps’ Location Privacy Threats,” in Proceedings of the 24th
USENIX Security Symposium. Washington, D.C.: USENIX Association,
2015, pp. 753–768.

[58] W. Koch, A. Chaabane, M. Egele, W. Robertson, and E. Kirda, “Semi-
automated Discovery of Server-based Information Oversharing Vulner-
abilities in Android Applications,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2017. New York, NY, USA: ACM, 2017, pp. 147–157.

[59] M. Wu, R. C. Miller, and S. L. Garfinkel, “Do Security Toolbars Actually
Prevent Phishing Attacks?” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2006, pp. 601–610.

[60] L. Wu, X. Du, and J. Wu, “MobiFish: A lightweight anti-phishing
scheme for mobile phones,” in Proceedings of the 23rd International
Conference on Computer Communication and Networks, 2014.

[61] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and Dagger:
From Two Permissions to Complete Control of the UI Feedback Loop,”
in Proceedings of the IEEE Symposium on Security and Privacy, May
2017.

[62] S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, “Hey, You,
Get Off of My Clipboard-On How Usability Trumps Security in Android
Password Managers,” in Proceedings of Financial Cryptography and

15

Data Security, A.-R. Sadeghi, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 144–161.

[63] J. Chen, H. Chen, E. Bauman, Z. Lin, B. Zang, and H. Guan, “You
Shouldn’t Collect My Secrets: Thwarting Sensitive Keystroke Leakage
in Mobile IME Apps,” in Proceedings of the 24th USENIX Security
Symposium, 2015.

[64] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie,
“UiRef: Analysis of Sensitive User Inputs in Android Applications,” in
Proceedings of the ACM Conference on Security and Privacy in Wireless
and Mobile Networks, Jul. 2017.

[65] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and
G. Jiang, “SUPOR: Precise and Scalable Sensitive User Input
Detection for Android Apps,” in Proceedings of the 24th USENIX
Conference on Security Symposium, ser. SEC’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 977–992. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831143.2831205

[66] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “UIPicker:
User-Input Privacy Identification in Mobile Applications,” in Proceed-
ings of the 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, 2015, pp. 993–1008.

[67] Android.com, “InputMethodManager API Reference,” 2018,
https://developer.android.com/reference/android/view/inputmethod/
InputMethodManager.html.

[68] ——, “Android 8.0 behavior changes,” https://developer.android.com/
about/versions/oreo/android-8.0-changes.html#security-all, 2018.

[69] ——, “InputConnection API Reference,” 2018, https://developer.
android.com/reference/android/view/inputmethod/InputConnection.
html.

[70] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing Attacks on
Modern Android,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, pp. 1788—-
1801.

[71] W. Diao, Y. Zhang, L. Zhang, Z. Li, F. Xu, X. Pan, X. Liu, J. Weng,
K. Zhang, and X. Wang, “Kindness is a Risky Business: On the Usage of
the Accessibility APIs in Android,” in 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019). Chaoyang
District, Beijing: USENIX Association, Sep. 2019, pp. 261–275.

[72] ABI Research, “Average Size of Mobile Games for iOS In-
creased by a Whopping 42% between March and September,”
ABI Research Press, Oct. 2012, https://www.abiresearch.com/press/
average-size-of-mobile-games-for-ios-increased-by-/.

[73] B. Boshell, “Average app file size: Data for Android and iOS mobile
apps,” Sweet Pricing Blog, Feb. 2017, https://sweetpricing.com/blog/
2017/02/average-app-file-size/.

Chi-Yu Li is currently an Associate Professor with
the Department of Computer Science, National Yang
Ming Chiao Tung University (NYCU). He received
the Ph.D. degree in computer science from the Uni-
versity of California, Los Angeles (UCLA) in 2015.
His research interests include wireless networking,
mobile networks and systems, and network security.
He was awarded MTK Young Chair Professor in
2016.

Hsin-Yi Wang is currently a production engineer
in Verizon Media, Inc. She received an M.S. de-
gree in computer science from National Chiao Tung
University (NCTU) under the supervising of Prof.
Chun-Ying Huang. Before joining NCTU, she re-
ceived her Bachelor’s degree from the Department of
Computer Science and Engineering, National Taiwan
Ocean University. Her research interests include user
privacy, system security, and network security.

Wei-Ching Wang is currently a software engineer
in Trend Micro, Inc. He received an M.S. degree in
computer science from National Chiao Tung Univer-
sity (NCTU) under the supervising of Prof. Chun-
Ying Huang. Before joining NCTU, he received his
Bachelor’s degree from the Department of Com-
puter Science, National Tsing Hua University. His
research interests include user privacy, web security,
and mobile security.

Chun-Ying Huang is a Professor at the Department
of Computer Science, National Yang Ming Chiao
Tung University (NYCU). Dr. Huang leads the secu-
rity and systems laboratory in NYCU. He received
the Ph.D. in Electrical Engineering from National
Taiwan University in 2007. His research interests
include system security, multimedia networking, and
mobile computing. Dr. Huang is a member of ACM
and IEEE. He was awarded ACM Taipei/Taiwan
Chapter K. T. Li Young Researcher Award in 2014.

