
1

On the Optimal Encoding Ladder of Tiled 360◦

Videos for Head-Mounted Virtual Reality
Ching-Ling Fan, Shou-Cheng Yen, Chun-Ying Huang, Member, IEEE, and Cheng-Hsin Hsu, Senior Member, IEEE

Abstract—Dynamic Adaptive Streaming over HTTP (DASH)
has been widely used by several popular streaming services,
such as YouTube, Netflix, and Facebook. Adopting DASH re-
quires to pre-determine a set of encoding configurations, called
encoding ladder, to generate a set of representations stored
on the streaming server. These representations are adaptively
requested by clients according to their network conditions during
streaming sessions. In this article, we aim to solve the optimal
laddering problem that determines the optimal encoding ladder
to maximize the client viewing quality. In particular, we consider
video models, viewing probability, and client distribution to
formulate the mathematical problem. We use divide-and-conquer
approach to decompose the problem into two subproblems: (i)
per-class optimization for clients with different bandwidths and
(ii) global optimization to maximize the overall viewing quality
under the storage limit of the streaming server. We propose
two algorithms for each of the per-class optimization and global
optimization problems. Analytical analysis and real experiments
are conducted to evaluate the performance of our proposed
algorithms, compared to other state-of-the-art algorithms. Based
on the results, we recommend a combination of the proposed
algorithms to solve the optimal laddering problem. The evalu-
ation results show the merits of our recommended algorithms,
which: (i) outperform the state-of-the-art algorithms by up to
52.17 and 26.35 in Viewport Video Multi-Method Assessment
Fusion (V-VMAF) in per-class optimization, (ii) outperform the
state-of-the-art algorithms by up to 43.14 in V-VMAF for optimal
laddering in global optimization, (iii) achieve good scalability
under different storage limits and number of bandwidth classes,
and (iv) run faster than the state-of-the-art algorithms.

Keywords-360◦ videos, encoding ladders, encoder configura-
tions, video streaming, adaptive streaming, virtual reality, aug-
mented reality, mixed reality, extended reality, optimization

I. INTRODUCTION

Global IP video traffic has been forecast to account for

82% of all business Internet traffic by 2022 [1], which can

be attributed to the fast development of too many multimedia

network services. In particular, Dynamic Adaptive Streaming

over HTTP (DASH) [2], [3] has been widely used by several

popular multimedia streaming services, such as YouTube,

Facebook, and Netflix. Videos on DASH servers are encoded

with different encoding configurations, such as resolutions and

Quantization Parameters (QPs), where the resulting encoded

videos are referred to as representations. To accommodate

network dynamics and client heterogeneity, the encoded videos

are split into a series of short segments. Streaming different

representations of each segment provides different quality lev-

els while consuming different amounts of network bandwidth.

C. Fan, S. Yen, and C. Hsu are with the Department of Computer Science,
National Tsing Hua University. C. Huang is with the Department of Computer
Science, National Chiao Tung University.

Fig. 1 illustrates a sample DASH streaming service of-

fered by a content distributor, such as YouTube and Netflix.

Content distributors receive production-quality videos from

content providers, such as Walt Disney and Warner Bros.,

prepare multiple representations of segments, and distribute

the videos over the Internet to clients. The DASH streaming

service contains three entities: (i) production server, which

produces the encoded video segments, (ii) streaming server,

which stores the encoded video segments and sends the video

streams, and (iii) clients, which request, decode, and render the

video segments to viewers. The operations among these three

entities can be divided into two phases: (i) preparation phase,

which is triggered only when new videos are added to the

streaming servers and (ii) streaming phase, which is triggered

at individual streaming sessions when the clients request video

segments from the streaming servers. The Adaptive BitRate

(ABR) algorithm [4], [5] is a key client-side component in

the streaming phase. The goal of the ABR algorithm is to

adaptively select the representations that minimize the video

distortion without congesting the networks. However, the ABR

algorithms can only request for the representations that are

generated in the preparation phase. Hence, content distributors

must carefully choose a set of representations to cover a broad

range of network bandwidth. The set of configurations used

for generating the above mentioned set of representations is

referred to as the encoding ladder1.

:&%+$(

!"#$%+,

!"#$%&"'(

)*%%+,(

-./&0&1+,

:&%+$(

5+'0+"/(

9*/*;*6+

ITM

ITM

ITM

8,$%C#/&$"(5+,P+,

5/,+*0&"'(5+,P+,

W3&+"/6

!

!"#$%"$#

8,+.*,*/&$"(8U*6+ 5/,+*0&"'(8U*6+

!

3"%)

4&$0+,

30560,',

4&$0+).0/20#',)
&#)7"890',

:#8+$&#/)1"$$0-

!"#$%&@$96$+,)&

"+&!2."%0)&

1$5.$)$+,2,"%+)

W$"/+"/(8,$P&%+, W$"/+"/(9&6/,&;C/$,

Fig. 1: Two phases of DASH services: preparation and stream-

ing.

At first glance, to support clients with diverse network

bandwidth and computational power, the encoding ladder shall

1By varying different encoding parameters of the configurations, multiple
Rate-Distortion (R-D) curves can be generated. However, at any given bitrate,
a configuration is selected from one of the R-D curves following a selection
criterion. Combining all the selected encoding configurations at different
bitrates results in the encoding ladder. More details on the encoding ladders
can be found in the literature [6], [7].

2

contain one representation for every single client, so as to

capitalize all the available bandwidth. Doing so, however,

requires long encoding time and huge storage usage, and

thus is not scalable as the server resources are bounded.

Hence, the production server should optimally determine the

encoding ladder to maximize the overall viewing quality of

clients without exceeding the storage limit on the server. We

call this problem as the optimal laddering problem. Through

solving the optimal laddering problem, content distributors

store the segment representations that better fit the client

bandwidth distribution on the streaming server. Therefore, the

ABR algorithms on the clients will have better chance to

switch to the representations with smaller video distortion.

In this article, we focus on on-demand videos, which can be

carefully analyzed offline for the optimal encoding ladders.

E"
/+
,"
+/

234(=3&+"/6

<&'B(#$0.3+]&/G(

3+D+3(*"%(D&+@&"'(

.,$;*;&3&/G(.*,/

Y6+,(

D&+@.$,/

534(=3&+"/6

534(=3&+"/6

6
(7
8

5
(7
8

9
(7
8

5/,+*0&"'(5+,D+,(

HSO([A(5/$,*'+()&0&/J

-
D
+,
*3
3(
:
&+
@
&"
'
(W
>
*3
&/
G
(&
6(
7
*]
&0
&1
+%

2&3+(@&/B(

W8(D*3>+

?+.T(S

?+.T(I

?+.T(M

!"#$%&"'()*%%+,

7$6/(/&3+6(*,+(`,$0(?+.T(S

7$6/(/&3+6(*,+(`,$0(?+.T(I

7$6/(/&3+6(*,+(`,$0(?+.T(M

!

\
O
(7
;
.
6

^
O
(7
;
.
6

I
O
(7
;
.
6

Fig. 2: An illustrative example of the optimal laddering

problem.

Although the optimal laddering problem has been studied

for conventional videos [6], [7], solving the same problem

for tiled2 360◦ videos [9] to Head-Mounted Displays (HMDs)

is much more challenging for a couple of reasons. First, the

extremely high resolution of 360◦ videos consumes much

more storage space than conventional videos. Second, the

optimal ladders may be different among tiles of the same

video. This is because each tile may have different complexity

levels and viewing probabilities. For example, the tiles that

are frequently viewed (e.g., the main foreground objects) may

need to have higher quality levels than those tiles that are

rarely viewed (e.g., straight up/down).

In this paper, we study the optimal laddering problem for

tiled 360◦ videos to HMDs in the preparation phase. This is

different from the majority of prior work on designing ABR

algorithms for tiled 360◦ videos [10], [11], [12], [13], [14],

2The modern HEVC codecs [8] spatially divide a video into smaller
rectangular subvideos, referred to as tiles, which can be independently
streamed and decoded. Tiles are essential for 360◦ video streaming, in which
HMD viewers only watch small portions of the whole 360◦ videos at any
moment.

[15], [16], where the viewing quality of each client in the

streaming phase is maximized under a given encoding ladder.

To the best of our knowledge, Ozcinar et al. [17] is the only

work that also computes the encoding ladder for 360◦ videos.

However, their solution allocates even bitrate to all tiles and

assumes all tiles have the same complexity level and viewing

probability. In contrast, we consider a more general setup,

which consists of diverse:

• Video model, which maps the encoding configurations

(i.e., QP in this article) to expected video distortion levels

and bitrates. The video model captures the complexity

levels of individual tiles of each video.

• Viewing probability, which quantifies the chance of each

tile being viewed by HMD viewers. The viewing prob-

ability can be estimated from historical data of other

HMD viewers or computed using fixation prediction

algorithms [18], [19]. We take the former approach in

this article if not otherwise specified.

• Client distribution, which represents the fraction of

clients with different amounts of available bandwidth.

The clients with the same available bandwidth is con-

sidered in the same bandwidth class in our problem.

Fig. 2 shows an illustrative example of our optimal laddering

problem, in which we allocate more resources to the tiles

with higher complexity levels and viewing probabilities (e.g.,

with smaller QP values) and to the representations being

requested by more clients (e.g., with larger storage space).

The eventual goal is to maximize the overall viewing quality

in the streaming phase.

To solve the optimal laddering problem, we leverage the

divide-and-conquer approach to decompose the problem into

two subproblems: (i) per-class optimization and (ii) global

optimization. The per-class optimization problem focuses on

the optimization for each class with a given available band-

width. We formulate this problem into a convex optimiza-

tion problem [20] considering video models and viewing

probability. We solve it using a suite of mathematics tools,

such as Lagrangian multiplier and rounding, in the Rate-

Distortion Optimization (RDO) fashion [21]. However, the

complex video models result in non-negligible computation

overhead. Thus, we also propose a more efficient greedy

algorithm that iteratively sets the encoding configurations of

individual tiles. For the global optimization, the goal is to

adjust the solution from the per-class optimization to meet

the overall storage limit. In this problem, the client bandwidth

distribution is considered when optimizing the overall viewing

quality across all clients at the given storage limit. We have

also proposed two algorithms for global optimization. One of

them runs more efficiently and the other one offers better video

quality. We have conducted experiments on a real testbed to

evaluate our proposed algorithms, compared to state-of-the-

art algorithms. We then recommend a combination of our

proposed algorithms to efficiently solve the optimal laddering

problem while achieving high viewing quality.

We make the following contributions in this article.

• We formulate the optimal laddering problem for 360◦

videos into a mathematical optimization problem con-

3

!"#$%&"'(

)*%%+,(

-./&0&1+,

2&3+%45+'0+"/(

!"#$%+,
2&3+%45+'0+"/6

789

:&%+$(9*/*;*6+

789(8*,6+,

2&3+%45+'0+"/(

<*"%3+,

2&3+%45+'0+"/(

9+#$%+,

:&%+$(7$%+36

=3&+"/(9&6/,&;>/&$"

?*@(:&%+$6

-./&0*3(

!"#$%&"'(

)*%%+,

789

A*"%@&%/B42&3+(

7*..&"'

2&3+%45+'0+"/(

?+C>+6/
2&3+%4

:&%+$

8,$%>#/&$"(5+,D+, 5/,+*0&"'(5+,D+, =3&+"/

E"
/+,"
+/

2&3+%4

5+'0+"/6(

F(789

:&+@&"'(8,$;*;&3&/G

5/$,*'+()&0&/

Fig. 3: System overview of our considered 360◦ video streaming system.

sidering video models, viewing probability, and client

distribution.

• We solve the problem using the divide-and-conquer ap-

proach with a diverse suite of mathematical tools. We

also analytically analyze the performance of our proposed

algorithms.

• We conduct extensive experiments to show the per-

formance and practicality of our proposed algorithms.

Our evaluation results reveal that: (i) our algorithms

outperform state-of-the-art algorithms by up to 52.17

and 26.35 in Viewport Video Multi-method Assessment

Fusion (V-VMAF) [22] in per-class optimization, (ii) our

algorithms outperform the state-of-the-art algorithms by

up to 43.14 in V-VMAF in global optimization problem

for the optimal ladders, (iii) our algorithms scale well

under different storage limits and different number of

bandwidth classes, and (iv) our algorithms run faster than

the state-of-the-art algorithms.

II. SYSTEM OVERVIEW

Fig. 3 details our considered streaming system for tiled 360◦

videos. The components are introduced below.

• Encoding ladder optimizer determines the optimal en-

coding ladder under the storage limit. The resulting ladder

is then used for encoding the tiled-segments.

• Tiled-segment encoder on the production server com-

presses and splits the videos into tiled-segments. Each

tiled-segment is a tile across multiple consecutive video

frames. Tiled-segments are the basic streaming units that

can be independently encoded and decoded.

• Video database on the streaming server stores the en-

coded tiled-segments following the encoding ladder. The

video database also stores the MPD (Media Presentation

Description) files, which provide the meta-data of the

representations to the clients.

• MPD parser on the client parses the MPD files from the

server to get the mapping between representations and

URLs.

• Tiled-segment handler on the client sends the requests

and receives the incoming tiled-segments. It also imple-

ments ABR algorithms for selecting the tiled-segments.

• Tiled-segment decoder on the client decodes the re-

ceived tiled-segments for the HMD viewers.

The interactions among these components are as follows.

At the production server, raw 360◦ videos are encoded and

segmented into tiled-segments according to the encoding lad-

der computed by the encoding ladder optimizer. These tiled-

segments and the MPD files are stored in the video database

on the streaming server. At each streaming session, the MPD

parser parses the MPD file for the meta-data of the tiled-

segments. The tiled-segment handler then adaptively requests

videos from the streaming server. The streamed tiled-segments

are decoded by the tiled-segment decoder for the HMD

viewers. Among the above components, the encoding ladder

optimizer (shaded block in Fig. 3) is the core component

studied in this article, which will be detailed in the remaining

sections.

III. OPTIMAL LADDERING PROBLEM

In this section, we first describe our research problem, which

is followed by the system models and problem formulation.

Table I summarizes the symbols used in this article.

TABLE I: Symbol Table

Symbol Description

V Number of videos

C Number of bandwidth classes

T Number of segments

N Number of tiles

Q Maximum of available QP values

S Storage limit on server

fv,c
Probability of client in bandwidth class c watching
video v (client distribution)

pv,t,n
= pφ

Viewing probability of tile n at segment t for
video v

an Area scaling factor of tile n
xv,t,n,c,q

= xφ,c,q

Whether tile n with QP q at segment t is selected
to be transmitted in bandwidth class c watching video v

yv,t,n,q

= yφ,q

Whether tile n with QP q at segment t watching video v
is selected to be stored on the server

Dv,t,n

= Dφ

Maximum distortion of tile n at segment t of
video v

dv,t,n(q)
= dφ(q)

Distortion of tile n with QP q at segment t of
video v (distortion model)

rv,t,n(q)
= rφ(q)

Bitrate of tile n with QP q at segment t of
video v (bitrate model)

bc Available bandwidth of bandwidth class c

A. Problem Statement

Our research problem can be described as follows. Given

a 360◦ video server with a storage limit of S, each 360◦

video is divided into T segments, where each segment is

further divided into N tiles. We classify the clients into C

classes based on their available bandwidth bc. A class c client

has a probability of fv,c to watch video v. In particular,

fv,c = wv
v × wb

c. wv
v denotes the video popularity and wb

c

denotes the fraction of clients at bandwidth class c, where
∑V

v=1 w
v
v = 1 and

∑C
c=1 w

b
c = 1. Let n denote the tile

number and q denote the encoding QP3. The goal of the

3We focus on controlling QP for rate control, while other parameters may
be used as well. For example, studies in the literature propose to employ
Lagrangian multiplier λ [23], [24], [25] instead of QP to control the video
quality for higher rate control accuracy.

4

encoding ladder optimizer is to make two sets of decisions

to minimize the overall viewing distortion. First, the tiles and

their representations stored on the streaming server need to

be determined. These are captured by the boolean variables

yv,t,n,q ∈ {0, 1}, where v denotes the video, t denotes the

segment number, n denotes the tile number, and q denotes the

encoding QP. yv,t,n,q = 1 if and only if video v’s tiled-segment

(t, n) has a representation with QP q stored on the streaming

server. Second, the tiles and their representations that are

planned to be streamed to the clients need to be determined.

These are captured by the boolean variables xv,t,n,c,q ∈ {0, 1},

where xv,t,n,c,q = 1 if and only if the representation with

QP q of tiled-segment (t, n) is streamed to class c clients

who watch video v. We use φ to represent (v, t, n) and

Φ = {(v, t, n)|v ∈ [1, V], t ∈ [1, T], n ∈ [1, N]} to denote

all possible 3-tuples in the remaining article for brevity. For

example, we interchangeably write yv,t,n,q and yφ,q as well as

xv,t,n,c,q and xφ,c,q if they do not cause any ambiguity.

TABLE II: The Adj. R2 of the Video Models for the Consid-

ered Videos

Video
Mega

Coaster

Roller

Coaster

Shark

Shipwreck

Hog

Rider

Chariot

Race

SFR

Sport

MSE 0.99 0.99 0.99 0.99 0.99 0.93

Bitrate 0.99 0.99 0.99 0.99 0.99 0.99

B. Video Models

We let dφ(q) and rφ(q) be the distortion and bitrate models,

which are functions of QPs. The video models allow us to

estimate the viewing quality and consumed bandwidth when

solving the optimal laddering problem. To understand the

properties of the models, we divide videos from a public

dataset [26] into 6×4 tiles and encode them multiple times

with different QPs in {1, 8, 14, 20, 26, 32, 38, 44, 51} using

Kvazaar [27]. The Mean Square Error (MSE)4 and bitrate

of each tile under these QPs are measured. We then use the

measured results to estimate the model parameters. Several

possible functions can be adopted for the models, such as lin-

ear, power, and exponential functions. Our pilot tests indicate

that the linear function has the worst modeling performance.

In contrast, the distortion and bitrate functions can be well

modeled by the power and exponential functions, respectively.

Our findings are inline with other empirical models [28]

with only minor differences. Specifically, we write these two

models as:
dφ(q) = αd

φq
βd
φ + γd

φ; (1)

rφ(q) = αr
φe

βr
φq. (2)

In the models, αd
φ, βd

φ, γd
φ, αr

φ, and βr
φ are model parameters.

We fit the distortion and bitrate models for individual tiled-

segments. We plot the MSE and bitrate of a sample tiled-

segment from Mega Coaster in Figs. 4(a) and 4(b) under

4Instead of 360◦ video quality metrics, we use MSE of individual tiles
to quantify the distortion of the video. This is because our problem is to
determine the QP values of individual tiles, i.e., at the tile level, while 360◦

video quality metrics are at the video level. Nonetheless, we employ 360◦

specific metrics, e.g., V-VMAF, to quantify the overall video quality in our
evaluations. We note that, in addition to MSE, other quality metrics at the
tile-level may be adopted, such as Peak Signal-to-Noise Ratio (PSNR) or
Quality of Experience (QoE) models [16].

different QPs. These figures reveal that Eqs. (1) and (2) are

reasonably accurate, as the curves closely follow the samples.

We also encode the tiled-segment with several additional QPs

to evaluate the accuracy of the resulting models. We mark

these additional samples in the figures with circles, which

are also close to the model curves. We notice that figures

from video models of other tiled-segments are similar, and

are left out due to the limited space. The average adjusted

R2 of the distortion and the bitrate models are reported in

Table II. This table confirms the accuracy of our video models.

The power and exponential models are both convex functions.

This property is utilized by our solution proposed later.

0 10 20 30 40 50

0

100

200

300

400

(a)

0 10 20 30 40 50

0

1

2

3

(b)

Fig. 4: Sample video models: (a) MSE over QP (dφ(q)) and

(b) bitrate over QP (rφ(q)).

C. Problem Formulation

The optimal laddering problem is quite hard to solve. We

give the proof of the following lemma in Appendix B.

Lemma 1: The optimal laddering problem is NP-hard.
We formulate the optimal laddering problem into an Integer
Linear Programming (ILP) problem. The decision variables of
our formulation are xφ,c,q and yφ,q . When projecting tiles of
the 2D reconstructed videos to the 3D sphere for generating
the viewports, different sphere areas are covered by each tile
(mainly due to different latitudes). To account for this, we let
an be the area scaling factor of tile n, which is defined as
the ratio of the area of tile n to that of the whole 3D sphere.
Concretely, we let An be the area of tile n on the sphere, where
1 ≤ n ≤ N . We then write scaling factor an as An

∑

N
i=1 Ai

.

A larger an value indicates that tile n affects the resulting
viewports more. Note that without incurring ambiguity, we
interchangeably write aφ and an; we define aφ = an, where
φ = (v, t, n) as a is different only when n changes. Similarly,
we let fφ,c = fv,c, where φ = (v, t, n). With the notations
defined so far, we write our problem as:

min

C
∑

c=1

∑

φ∈Φ

fφ,cpφaφ

Q
∑

q=1

dφ(q)xφ,c,q (3a)

st :
N
∑

n=1

Q
∑

q=1

rv,t,n(q)xv,t,n,c,q ≤ bc c ∈ [1, C], v ∈ [1, V], t ∈ [1, T];

(3b)

∑

φ∈Φ

Q
∑

q=1

rφ(q)yφ,q ≤ S; (3c)

xφ,c,q ≤ yφ,q c ∈ [1, C], q ∈ [1, Q], φ ∈ Φ; (3d)

Q
∑

q=1

xφ,c,q = 1 c ∈ [1, C], φ ∈ Φ; (3e)

xφ,c,q ∈ {0, 1} c ∈ [1, C], q ∈ [1, Q], φ ∈ Φ; (3f)

yφ,q ∈ {0, 1} q ∈ [1, Q], φ ∈ Φ. (3g)

The objective function in Eq. (3a) minimizes the expected

5

overall distortion in weighted-MSE5 [29], where the tile

weights depend on: (i) viewing probability (pφ) and area

scaling factor (aφ) across all tiles and (ii) the probability of

clients in different classes watching different videos (fφ,c).

Eq. (3b) makes sure that the total streamed bitrate to each

client class c does not exceed the available bandwidth bc.

Eq. (3c) constrains the consumed storage space within the

storage limit S on the server. Eq. (3d) indicates that clients

only select the tiles offered by the server. Besides, each client

only selects one representation for each tile as enforced by

Eq. (3e).

IV. PROBLEM DECOMPOSITION

The optimal laddering problem in Eqs. (3a)–(3g) is fairly

complicated because of the complex interplay between the

bandwidth and storage constraints. More specifically, the best

solution that satisfies all the bandwidth constraints may exceed

the storage limit, while restricting the storage space for each

class causes a huge number of permutations on storage space

assignments across videos. Hence, we opt for the divide-and-

conquer approach, as illustrated in Fig. 5. In particular, we

decompose the optimal laddering problem into the following

two subproblems.

• Per-class optimization problem optimizes the per-class

solution under the bandwidth constraint of each class.

It takes the video models and viewing probability of

video v and bandwidth constraint of class c as the inputs.

It then determines the best QP values for tiled-segment

(t, n). The output for class c of video v contains the

boolean values {x∗
v,t,n,c,q(= x∗

φ,c,q)|∀t, n, q}, which are

collectively denoted as X
∗
v,c.

• Global optimization problem combines and adjusts all

per-class solutions into a global solution under the storage

limit. It takes the video models, viewing probability,

client distribution, and the storage limit of all videos

as the inputs. It then adjusts X
∗
v,c of each class c to

fit all tiled-segments into the storage limit. When the

storage limit is loose, all X
∗
v,c solutions from the per-

class optimization problems may be directly accepted.

The output of the global optimization problem contains

the revised X
∗
v,c for all v and c, which is collectively

written as X
∗. Moreover, the output also specifies the

optimal QP values for stored tiled-segment (t, n) of video

v as {y∗v,t,n,q(= y∗φ,q)|∀v, t, n, q}, which is collectively

written as Y
∗. Y

∗ is essentially the optimal encoding

ladder. It is not hard to see that Y
∗ is a function of

X
∗; that is, y∗v,t,n,q = 1 if and only if

∑C
c=1 x

∗
v,t,n,c,q ≥

1, ∀v, t, n, q.

We solve the per-class optimization problem for each class

with a bandwidth constraint in Sec. V. We solve the global

optimization problem with the storage limit in Sec. VI.

V. PER-CLASS OPTIMIZATION

We first give the formulation, which is followed by two

algorithms.

5The overall distortion in our formulation is a video-level quality metric,
which is essentially a weighted sum of all the tile quality.

5

$)# *)

"*+9:-,;;#$%&'('),&'/1

5

6-/7,-#

$%&'('),&'/1

<'2*/#=/2*-#+# ,

<'*>'13#"+/7,7'-'&?#-

:-'*1&#@';&+'70&'/1#.

$"#"
)

/"

/&

/'

"*+9:-,;;#$%&'('),&'/1

"*+9:-,;;#$%&'('),&'/1

<'2*/#A

5

"*+9:-,;;#$%&'('),&'/1/"

/&

/'

"*+9:-,;;#$%&'('),&'/1

"*+9:-,;;#$%&'('),&'/1

<'2*/#!

5

5

"

B,12>'2&C#

:/1;&+,'1&;

D&/+,3*#
E'('&

$"#&
)

$"#'
)

$0#"
)

$0#&
)

$0#'
)

Fig. 5: The overview of our divide-and-conquer approach.

A. Per-Class Formulation

Let P (v, c) be the subproblem of bandwidth class c watch-
ing video v, where the storage limit is ignored. That is,
this subproblem only considers the constraints in Eqs. (3a)–
(3g) that are related to xv,t,n,c,q. We formally formulate the
problem as:

P (v, c) : min
T∑

t=1

N∑

n=1

pv,t,nan

Q∑

q=1

dv,t,n(q)xv,t,n,c,q (4a)

st :
N∑

n=1

Q∑

q=1

rv,t,n(q)xv,t,n,c,q ≤ bc t ∈ [1, T]; (4b)

Q∑

q=1

xv,t,n,c,q = 1 t ∈ [1, T], n ∈ [1, N]; (4c)

xv,t,n,c,q = {0, 1} t ∈ [1, T], n ∈ [1, N],q ∈ [1, Q].
(4d)

Eq. (4a) minimizes the expected distortion for the clients in

bandwidth class c who watch video v. Eq. (4b) constrains the

consumed bitrate within the available bandwidth bc. Eq. (4c)

ensures that only one representation is selected.

We next propose two algorithms to solve the formulation

in Eqs. (4a)–(4d): (i) Per-Class Lagrangian-Based Algorithm

(PC-LBA), which leverages the convexity of video models to

get the solution, and (ii) Per-Class Greedy-Based Algorithm

(PC-GBA), which runs more efficiently. Their performance

will be compared in Sec. VII.

B. Lagrangian-Based Algorithm: PC-LBA

PC-LBA consists of two steps: (i) a QP optimizer, which

employs Lagrangian multiplier [30] to find the optimal QPs

as real numbers, and (ii) optimal rounding algorithm, which

solves an ILP formulation to optimally round the QPs to

integers supported by the encoder.
QP optimizer. To adopt the Lagrangian approach, we trans-

form the discrete decision variables xv,t,n,c,q into continuous
decision variables κv,t,n,c. We let κv,t,n,c represent the QP
value of tiled-segment (t, n) of video v streamed to class c
clients. κv,t,n,c is a real number in the range of [κmin, κmax],
where κmin and κmax are the QP bounds from the video
encoder. With κv,t,n,c, the transformed formulation has fewer

6

decision variables and gets rid of Eq (4c). Moreover, we ob-
serve that the decisions on different segments are independent.
Hence, we write each P (v, c) into a series of transformed
P ′(v, t, c) for all t ∈ [1, T] as:

P ′(v, t, c) = min
N∑

n=1

dv,t,n(κv,t,n,c)pv,t,nan (5a)

st :
N∑

n=1

rv,t,n(κv,t,n,c) ≤ bc; (5b)

κv,t,n,c ∈ [κmin, κmax]. (5c)

In this formulation, Eqs. (5a) and (5b) account for the

expected distortion and consumed bitrate for clients in class

c watching segment t of video v. The following two lemmas

show that the transformed formulation in Eqs. (5a)–(5c) can

be solved efficiently. The proofs are given in Appendix B to

maintain the flow of the article.

Lemma 2: When the power function in Eq. (1) is adopted

as the distortion model, the objective function in Eq. (5a) is

convex.

Lemma 3: When the exponential function in Eq. (2) is

adopted as the bitrate model, the constraint in Eq. (5b) is

convex.
We write {κv,t,1,c, κv,t,2,c, · · · , κv,t,N,c} as Kv,t,c in the

following for the sake of presentation. Combining Lemmas 2
and 3, we know that our optimization problem is a convex
programming problem, which can be solved using Lagrangian
multiplier as follows. We first introduce a Lagrangian multi-
plier µ ∈ R

+, and rewrite our (constrained) convex program-
ming problem into an unconstrained optimization problem:

min L(Kv,t,c, µ) =
N∑

n=1

dv,t,n(κv,t,n,c)pv,t,nan

+ µ(
N∑

n=1

rv,t,n(κv,t,n,c)− bc)

(6)

Consider Eq. (6) as the primal Lagrangian problem, the
Lagrangian dual function g minimizes the Lagrangian value
over Kv,t,c:

g(µ) = inf
Kv,t,c

(Kv,t,c, µ) = inf
Kv,t,c

(
N∑

n=1

dv,t,n(κv,t,n,c)pv,t,nan

+ µ(
N∑

n=1

rv,t,n(κv,t,n,c)− bc)).

(7)

Lemma 4: The Lagrangian dual function (Eq. (7)) consti-

tutes a lower bound for the objective value of any feasible

solution to the Lagrangian primal problem (Eq. (6)). In fact,

because the strong duality holds here, the optimal solution of

the Lagrangian dual problem is also the optimal solution of

the original (primal) problem.
To solve the Lagrangian dual problem, we first calculate the

partial derivative w.r.t. each κv,t,n,c ∈ Kv,t,c:

∂L

∂κv,t,n,c

=(αd
v,t,nβ

d
v,t,nκ

βd
v,t,n−1

v,t,n,c)pv,t,nan

+ µαr
v,t,nβ

r
v,t,ne

βr
v,t,nκv,t,n,c = 0.

(8)

Then, we utilize Lambert W function [31] to represent each
κv,t,n,c using µ:

κv,t,n,c =
1− βd

v,t,n

βr
v,t,n

W (
βr
v,t,n

1− βd
v,t,n

e

− ln
µαr

v,t,nβr
v,t,n

−αd
v,t,nβd

v,t,npv,t,nan

1−βd
v,t,n). (9)

Last, we substitute κv,t,n,c into Eq. (7) to derive the optimal

µ and the corresponding Kv,t,c. Notice that, if some optimal

solution κv,t,n,c ∈ Kv,t,c falls outside of [κmin, κmax], the QP

optimizer caps κv,t,n,c at κmin or κmax. It then recalculates

Kv,t,c until all QP values fall in the practical range of

[κmin, κmax].

1: X
∗
v,c ← ∅

2: for t← 1 to T do

3: // QP optimizer
4: Kv,t,c ← Solved with Eqs. (7) and (9)
5: while ∃κv,t,n,c ∈ Kv,t,c, where κv,t,n,c /∈ [κmin, κmax] do
6: Set the out-of-range κv,t,n,c to the closest border
7: Kv,t,c ← Solved with Eqs. (7) and (9)
8: // Optimal rounding algorithm
9: Solve Eqs. (10a)–(10d) for K∗

v,t,c
10: Transform K

∗
v,t,c to X

∗
v,t,c

11: X
∗
v,c ← X

∗
v,c ∪X

∗
v,t,c

12: return X
∗
v,c

Fig. 6: The pseudocode of the PC-LBA algorithm.

Optimal rounding algorithm. Next, we round the real
number QPs in Kv,t,c into integer QPs for the video encoder.
We let K

′
v,t,c be a subset of Kv,t,c containing tiles in

Kv,t,c with non-integer optimal QP values. Our problem is
to determine whether to round each κv,t,n,c in K

′
v,t,c up or

down to minimize the resulting distortion without consuming
excessive bandwidth. For n ∈ [1,

∣

∣K
′
v,t,c

∣

∣], we define the
decision variable zv,t,n,c,0 = 1 if κv,t,n,c is rounded down, and
zv,t,n,c,0 = 0 otherwise. Similarly, we define zv,t,n,c,1 = 1 if
κv,t,n,c is rounded up and zv,t,n,c,1 = 0 otherwise. The optimal
rounding problem can then be written as:

min

|K′

v,t,c|∑

n=1

zv,t,n,c,0di(⌊κ
′
v,t,n,c⌋)+zv,t,n,c,1dv,t,n(⌈κ

′
v,t,n,c⌉) (10a)

st :

|K′

v,t,c|∑

n=1

zv,t,n,c,0ri(⌊κ
′
v,t,n,c⌋)+zv,t,n,c,1ri(⌈κ

′
v,t,n,c⌉)

≤

|K′

v,t,c|∑

n=1

rv,t,n(κ
′
v,t,n,c); (10b)

zv,t,n,c,0 + zv,t,n,c,1 = 1 n ∈ [1, |K′
v,t,c|]; (10c)

zv,t,n,c,0, zv,t,n,c,1 ∈ {0, 1} n ∈ [1, |K′
v,t,c|]; (10d)

In this formulation, Eq. (10a) minimizes the additional

distortion due to rounding, while Eq. (10b) makes sure that

the bitrate does not exceed the bandwidth constraint. Eq. (3g)

ensures that each QP value is either rounded down or up, but

not both. The formulation can be optimally solved for K∗
v,t,c

using existing solvers, like CPLEX [32] and GLPK [33].

Last, we transform the optimal K
∗
v,t,c back to X

∗
v,t,c =

{x∗
v,t,n,c,q|q ∈ [1, Q], n ∈ [1, N]} of the original problem.

Pseudocode. Fig. 6 presents the pseudocode of our PC-

LBA. Lines 4–7 repeatedly solve Eqs. (7) and (9) until there

is no out-of-range κv,t,n,c ∈ Kv,t,c. Line 9 rounds the real

QP values into integers. Line 10 transforms the QP set Kv,t,c

to the binary set Xv,t,c. Line 11 collects the solution for each

segment. Line 12 returns the optimal solution x∗
v,t,n,c,q ∈ X

∗
v,c

for clients in bandwidth class c watching video v. The follow-

ing lemma analyzes the complexity of PC-LBA.

Lemma 5: The PC-LBA algorithm runs in time O(T2N)
with space complexity of O(N).

7

2&3+(S
2&3+(I
2&3+(M

A&/,*/+

9
&6
/$
,/
&$
"

9
&6
/$
,/
&$
"

9
&6
/$
,/
&$
"

A&/,*/+ A&/,*/+

W8(-./&$"6

=>,,+"/(5+3+#/+%(W8

=*"%&%*/+(W8

K+]/(5+3+#/+%(W8

E/+,*/&$"(O

E/+,*/&$"(# E/+,*/&$"(#aS/B

5*6-$+

5*6.$+

5*$6$7$+
5*6-$+

5*6.$+

5*$6$7$+ 8 5*$6$7$+4S

&/+,*/&$"6

S(&/+,*/&$"

Fig. 7: An illustrative example of PC-GBA with several

iterations.

1: X
∗
v,c ← ∅

2: for t← 1 to T do
3: Set κv,t,n,c ∈ Kv,t,c as κmax, ∀i = 1, 2, . . . , N
4: B′ = bc −

∑N
n=1

rv,t,n(κv,t,n,c)
5: while B′ > 0 do

6: //Tile Selector
7: Θ← {θv,t,n,c|n = 1, 2, . . . , N}
8: n∗ ← argmaxΘ
9: //Status Tracker

10: B′ = B′ − (rv,t,n∗ (κv,t,n∗,c − 1)− rv,t,n∗ (κv,t,n∗,c))
11: κv,t,n∗,c = κv,t,n∗,c − 1
12: Transform K

∗
v,t,c to X

∗
v,t,c

13: X
∗
v,c ← X

∗
v,c ∪X

∗
v,t,c

14: return X
∗
v,c

Fig. 8: The pseudocode of the PC-GBA algorithm.

C. Greedy-based Algorithm: PC-GBA

PC-LBA may suffer from higher computational complexity

due to the ILP formulation of optimal rounding6. Therefore,

we also propose a more efficient greedy algorithm to solve

the problem with discrete QPs. Our greedy algorithm contains

two components: (i) status tracker and (ii) tile selector. The

status tracker keeps track of the current QP selected for each

tile, their accumulated bitrate, and the remaining bandwidth.

The tile selector selects the tile with the highest coding

efficiency to allocate more bitrate by reducing its QP. The

status tracker then updates the accumulated bitrate and the

remaining bandwidth. The above steps iterate until there is no

remaining bandwidth or all tiles are coded at the smallest QP

values.
The crux of the greedy algorithm is the definition of the

coding efficiency θv,t,n,c when allocating the additional bitrate
to tiled-segment (t, n) of video v. We let κv,t,n,c be the current
selected QP for tiled-segment (t, n) of v streamed to class c
clients. We then define θv,t,n,c as:

[dv,t,n(κv,t,n,c − 1)− dv,t,n(κv,t,n,c)]pv,t,nan

rv,t,n(κv,t,n,c − 1)− rv,t,n(κv,t,n,c)
, (11)

where pv,t,n is the viewing probability and an is the area scal-

ing factor. θv,t,n,c is essentially the slope of the rate-distortion

curves at κv,t,n,c. Fig. 7 shows an illustrative example of the

proposed PC-GBA streaming a video with three tiles. The

current QPs are marked with solid dots, which are selected

6Notice that when optimality is not a major concern, much simpler rounding
algorithms, such as rounding down, can be adopted for lower computation
complexity.

from all QP options marked with circles. Besides, the next

candidate QPs of each tile are represented by squares. In this

figure, after iteration m, the tile selector chooses tile three to

allocate more bandwidth since it has the steepest slope. Note

that if all tiles have the same coding efficiency, we use the

weights pv,t,nan and then the QPs to break the ties. After all

the QP values are determined, we transform κ∗
v,t,n,c ∈ K

∗
v,t,c

to binary indicators x∗
v,t,n,c,q ∈ X

∗
v,t,c.

Pseudocode. Fig. 8 presents the pseudocode of our PC-

GBA algorithm that determines the QPs for segments. Lines

3–4 initialize the QP of each tile at the maximum QP and

the remaining bandwidth. The while loop between lines 5–11

iteratively allocates more bitrate to the tile with the highest

coding efficiency selected in line 8. Lines 10–11 update the

status through the status tracker, including the QP value of the

selected tile and the remaining bandwidth. Line 12 transforms

the determined QP set Kv,t,c to binary set Xv,t,c. Line 13

collects the solution for each segment. Line 14 returns the

optimal solution x∗
v,t,n,c,q ∈ X

∗
v,c for clients in bandwidth

class c of video v.

Lemma 6: The PC-GBA algorithm runs in time

O(TN(logN)Q) with space complexity of O(N).

VI. GLOBAL OPTIMIZATION FOR THE OPTIMAL LADDERS

1: Initialize Y
∗ = {yv,t,n,q = 0}

2: // Per-class optimization
3: X∗ = {X∗

v,c|∀v, c} ← PC-LBA or PC-GBA

4: for v ← 1 to V , t← 1 to T , n← 1 to N ,q ← 1 to Q do

5: if
∑C

c=1
xv,t,n,c,q ≥ 1 then

6: yv,t,n,q ← 1

7: S′ ←
∑V

v=1

∑T
t=1

∑T
n=1

∑Q
q=1

rv,t,n(q)yv,t,n,q

8: // Global optimization
9: while S′ > S do

10: E ← {ǫv,t,n,c,q |v ∈ [1, V], t ∈ [1, T], n ∈ [1, N], c ∈ [1, C], q ∈
[1, Q]} using Eq. (12)

11: (v∗, t∗, n∗, c∗, q∗)← argminE
12: xv∗,t∗,n∗,c∗,q∗ ← 0
13: xv∗,t∗,n∗,c∗,q∗+δ ← 1
14: Update yv∗,t∗,n∗,q∗ , yv∗,t∗,n∗,q∗+δ , and S′

15: return X
∗,Y∗

Fig. 9: The pseudocode of the proposed GL-ITRA algorithm.

7: Sv ←
S
V
, ∀v = 1, 2, · · · , V

8: for v ← 1 to V do
9: S′ ←

∑T
t=1

∑T
n=1

∑Q
q=1

rv,t,n(q)yv,t,n,q

10: while S′ > Sv do

11: E ← {ǫv,t,n,c,q |t ∈ [1, T], n ∈ [1, N], c ∈ [1, C], q ∈ [1, Q]}
using Eq. (12)

12: (t∗, n∗, c∗, q∗)← argminE
13: xv,t∗,n∗,c∗,q∗ ← 0
14: xv,t∗,n∗,c∗,q∗+δ ← 1
15: Update yv,t∗,n∗,q∗ , yv,t∗,n∗,q∗+δ , and S′

16: return X
∗,Y∗

Fig. 10: The pseudocode of the proposed GL-ITAA algorithm.

Note that lines 1–6 are identical to those in Fig. 9 and thus

are omitted.

We propose two greedy algorithms to solve the global

optimization problem. The first algorithm directly solves the

problem and considers all possible storage space allocation

8

TABLE III: The Comparisons among Ours and Relevant Algorithms

Method Phase Problem Objective Constrains
Inputs Tile

Qualities
per Segment

Solution

ApproachVideo
Model

Viewing
Prob.

Client
Dist.

Our Algorithms Preparation
Optimal
laddering

Viewed distortion
minimization

Bandwidth,
storage space

X X X Multiple
Lagrangian, ILP,

and Greedy

Ozcinar et al. [17]

(ISM)
Preparation

Optimal
laddering

Overall distortion &
cost minimization

Bandwidth,
storage space,

min. bitrate gap
X X Single ILP

Chakareski et al. [28]

(ICC)
Streaming Per-class

Viewed distortion
minimization

Bandwidth X X Multiple
Convex

Optimization

Corbillon et al. [34]
(MM)

Streaming Per-class
Viewed quality
maximization

Bandwidth,
max. bitrate gap

X Multiple Heuristic

across multiple videos, which we refer to as the Global InTeR-

video Algorithm (GL-ITRA). The second algorithm simplifies

the problem by: (i) equally dividing the storage space among

all videos and (ii) assuming the video popularity is uniformly

distributed across all videos. We refer to this algorithm as

the GLobal InTrA-video Algorithm (GL-ITAA). We present

these two algorithms below and compare their performance in

Sec. VII.
GL-ITRA Algorithm. We propose a greedy algorithm

to adjust the per-class solutions X
∗
v,c for minimizing the

expected distortion while meeting both the client bandwidth
constraints and overall server storage limit. First, yv,t,n,q is

initialized as 1 if and only if
∑C

c=1 xv,t,n,c,q ≥ 1, where
v ∈ [1, V], t ∈ [1, T], n ∈ [1, N],and q ∈ [1, Q]; yv,t,n,q is set
to be 0, otherwise. We introduce a constant system parameter
δ to denote the step size of QP adjustments. We then compute
the weight of each tile considering the client distribution as
ǫv,t,n,c,q =

∑V
v=1

∑C
c=1

fv,c · [dv,t,n(q + δ)− dv,t,n(q)]pv,t,nanxv,t,n,c,q

[rv,t,n(q)− rv,t,n(q + δ)(1− yv,t,n,q+δ)]yv,t,n,q

. (12)

ǫv,t,n,c,q is the ratio between the weighted distortion gain and

the storage reduction if the QP value of tiled-segment (t, n)

of v increases7. In particular, dv,t,n(q + δ) − dv,t,n(q) is the

distortion gain, while
∑V

v=1

∑C
c=1 fv,c and pv,t,nav,t,n are the

weights. rv,t,n(q) − rv,t,n(q + δ)(1 − yv,t,n,q+δ) denotes the

reduced storage space, while (1−yv,t,n,q+δ) indicates whether

tiled-segment (t, n) of v has already been chosen to streamed.

That is, if yv,t,n,q+δ = 1, then the reduced storage space is

rv,t,n(q), otherwise the reduced storage space is rv,t,n(q) −
rv,t,n(q+δ). The algorithm iteratively increases the QP of the

tile having the lowest ǫv,t,n,c,q by step size δ until the storage

limit S is not exceeded.

Pseudocode. Fig. 9 shows the pseudocode of the proposed

GL-ITRA algorithm. Lines 1–3 initialize Y
∗ and compile

X
∗ using the PC-LBA or PC-GBA algorithms. Lines 4–6 set

yv,t,n,q according to xv,t,n,c,q. Line 7 initializes the current

storage size S′. Lines 9–14 greedily select the tile to adjust

its QP value according to Eq. (12) iteratively until the required

storage space S′ fits the storage limit S. Lines 12–14 update

X
∗ and Y

∗, and the current required storage space. Line 15

returns the decisions X
∗ and Y

∗.

Lemma 7: The GL-ITRA algorithm runs in time

O(V TNC(log V TNC)Q
δ
) with space complexity of

O(V TNC).

7ǫv,t,n,c,q is undefined when yv,t,n,q = 0, which is not an issue because
the term is never considered in the algorithm.

GL-ITAA Algorithm. We propose a simplified greedy

algorithm for lower time and space complexity. In particular,

we assume the storage space is uniformly assigned to all

videos and the probabilities of videos (wv
v) are equal. The

global optimization problems of individual videos are then

decoupled and can be independently solved.

Pseudocode. The pseudocode of GL-ITAA differs from GL-

ITRA (in Fig. 9) only from line 7, which is presented in

Fig. 10. Line 7 initializes the storage limit Sv for each video v.

Lines 8–15 greedily adjust the QP values of the selected tiles

for each video v. Line 16 returns the X
∗ and Y

∗ aggregated

from the decision of each video. Because of the optimization

problems of individual videos can be independently solved,

its time and space complexities are O(V TNC(log TNC)Q
δ
)

and O(TNC).

VII. EVALUATIONS

We compare our proposed algorithms against the state-of-

the-art ones through extensive experiments in this section.

A. Implementations

Table III summarizes our algorithms and the state-of-the-art

algorithms. In this table, Ozcinar et al. [17] and our algorithms

solve the optimal laddering problem in the preparation phase,

while other algorithms only solve the per-class optimization

problem in the streaming phase. Furthermore, the per-class

optimization algorithms (Corbillon et al. [34] and Chakareski

et al. [28]) do not consider the client distribution. In addition,

Corbillon et al. [34] assume all tiles have the same complexity

levels and do not take video models into account. Besides, the

other optimal laddering algorithm (Ozcinar et al. [17]) does not

consider the viewing probability of each tile. Compared to the

abovementioned algorithms [17], [34], [28], our algorithms

are the only ones that consider all three features: video

models, viewing probability, and client distribution.

We have implemented our proposed algorithms and three

state-of-the-art algorithms [28], [34], [17] for evaluations and

comparisons. Note that we use Python for implementations

as much as we can. Certain optimization problems, however,

can be efficiently solved with specialized solvers that are not

written in Python. For example, cvx [35] and CPLEX [32] are

tailored for solving convex optimization and ILP problems,

respectively. Similarly, MATLAB [36] supports optimization

problems with symbolic variables. We opt to call these spe-

cialized solvers from Python rather than reimplementing them,

9

in order to understand the performance achieved by real-

life implementations. In particular, we use MATLAB [36]

and CPLEX [32] to implement PC-LBA’s QP optimizer and

optimal rounding algorithm, respectively. We present the de-

tailed implementations of the state-of-the-art algorithms in the

following.

• Per-class optimization algorithms:

– Chakareski et al. [28] (ICC) formulate the tile

quality selection problem into an ILP problem and

propose to solve it using convex optimization. We

use cvx [35] to implement this algorithm.

– Corbillon et al. [34] (MM) propose a heuristic algo-

rithm for bitrate allocation within a 360◦ video [37].

Their algorithm can be extended for tiled videos

by classifying tiles into foreground and background

tiles. Their classification [37] is based on the ground

truth of user viewport, which is impractical because

of the network latency. Therefore, we use 25 per-

centile of viewing probability as the threshold for the

classification8. A 3.5 ratio of maximum bitrate gap

between the maximum surface bitrate and minimum

surface bitrate is set following the recommendation

in their paper. Each tile is allocated with the bitrate

proportional to the area scaling factor an. We use

Python to implement this algorithm.

• Optimal laddering algorithms:

– Ozcinar et al. [17] (ISM) formulate the optimal

laddering problem into an ILP problem without

proposing any efficient algorithms. In addition to the

storage limit, they also consider different resolutions

and introduce a 1.2 ratio of minimum bitrate gap

between any two adjacent representations. We use

CPLEX to implement this algorithm.

We adopt the same video models in Sec. III-B for all algo-

rithms for fair comparisons.

B. Setup

Parameters, traces, and videos. Several system parameters

are varied in our experiments. We fit the bandwidth CDF curve

following Cisco’s forecast on 2019 fixed broadband bandwidth

in North America [38]. If not otherwise specified, we select

the bandwidth classes in {3.12, 4.68, 7.02, 10.52, 15.78,

23.67, 35.51, 53.28, 79.91, 119.87} Mbps, which is geometric

progression with 1.5 times that covers the bandwidth range of

the bandwidth CDF curve. Besides, we adopt the smallest step

size of 1 for optimal overall distortion. Such fine-grained step

size results in slightly longer running time, which however is

insignificant (up to 7% in our experiments) compared to the

video encoding time. We randomly select 10 users from the

50 users in a public dataset [26] to evaluate the performance

of all algorithms. The remaining 40 users are used to derive

the viewing probability for fair comparisons. Each selected

user watches six 1-min videos. The videos are classified into

three categories:(i) Computer-Generated, Fast-Paced (CG-FP),

8We also tried 50 and 75 percentile and observed similar results, which are
left out for clarity.

(ii) Natural Image, FP (NI-FP), and (iii) NI, Slow-Paced (NI-

SP). Two videos are selected from each video category at a

resolution of 3840×1920 with 6×4 tiles, 6×4 tiles have been

shown to achieve the best tradeoff between viewport flexibility

and bitrate overhead [39], while other numbers of tiles can also

be used with our proposed solutions. The considered encoding

QPs are in [1,51] if not otherwise specified. Besides, we take

the number of views of the considered videos on YouTube

as the video popularity in the evaluation. For example, the

most popular Hog Rider and Mega Coaster account for the

two highest ratio, which are about 38.69% and 32.36%,

respectively.

For conservative comparisons, we let ISM take additional

resolutions in {2560×1280, 1920×960} into considerations.

Because the production server has limited memory, the ISM

algorithm can only consider a QP step of 5 in [1,51] without

exceeding a memory consumption of 12 GB. Besides, the ISM

algorithm tends to terminate after many days, and we set a

practical time limit of 2 hours for each video, which is more

than 3 times of the running time of our algorithms.

!"#$%&"'(

)*%%+,(

-./&0&1+,

:&%+$(9*/*;*6+

H<I-J

5/,+*0&"'(5+,D+,

K+/@$,L(

!0>3*/$,(H/#J
MNOP :&%+$(

83*G+,(HQ5/,+*0J

=3&+"/

<228RSTS

8,$%>#/&$"(5+,D+,

?+.,+6+"/*/&$"(

F(5/*/>6()$''+,

2&3+%45+'0+"/(

!"#$%+,(HUD*1**,J

?*@(:&%+$?+#$"6/,>#/+%(:&%+$

!D*3>*/&$"(7+/,V(

:&+@&"'(W>*3&/GX(

A*"%@&%/B(Y/&3&1*/&$"X(+/#T

!"#$%&"'(

)*%%+,

Fig. 11: The overview of our evaluation testbed.

Testbed. To faithful the experiments, we build a real stream-

ing testbed following the one implemented in Yen et al. [16].

The testbed is illustrated in Fig. 11. We setup two Intel i7

workstations with 16 GB RAM running Linux. One of them

contains both the production and streaming servers and the

other one runs the client. The two workstations are directly

connected to each other with a GigE network cable. We

employ tc [40] in Linux to throttle the network bandwidth.

On the server, we adopt Kvazaar [27] as the tiled segment

encoder to encode the videos. We use H2O [41] as the HTTP

server to store the representations following the decisions from

the encoding ladder optimizer. On the client, we use a Python-

based DASH client, AStream [42] as the 360◦ video player.

Besides, the status, such as throughput and stalls, and the

received representations are logged for further analysis.

We have implemented an ABR algorithm [13] designed

for 360◦ video streaming in the player9. Our implemented

ABR algorithm performs viewport prediction based on user’s

previous orientations. The scene is split into three parts: (i)

viewport, which is the predicted user’s viewport, (ii) extended

area, which is 30◦ outside the predicted viewport, and (iii)

background, which is the remaining tiles of the scene. The

ABR algorithm first allocates the lowest representation to each

part, then allocates the highest affordable representation to the

viewport. The residual bandwidth is allocated to the extended

9Other ABR algorithms in the literature can be adopted in our work as
well.

10

0 50 100

0

2

4

6

8

10

(a)

0 50 100

0

2

4

6

8

10

(b)

0 50 100

0

2

4

6

8

10

(c)

Fig. 12: Expected distortion under different bandwidth: (a) CG-FP, (b) NI-FP, and (c) NI-SP.

0 50 100

20

30

40

50

60

(a)

0 50 100

0.75

0.8

0.85

0.9

0.95

1

(b)

0 50 100

0

20

40

60

80

100

(c)

Fig. 13: The viewing quality under different bandwidth: (a) V-PSNR, (b) V-SSIM, and (c) V-VMAF.

area, followed by the background. To accommodate some

background traffic, we instruct the ABR algorithm to set the

available bandwidth at 70% of the measured throughput.

We evaluate the results using the following metrics:

• Viewing quality. We consider V-PSNR [43], V-SSIM,

and V-VMAF, which essentially are the PSNR [44],

Structural Similarity Index (SSIM) [45], and VMAF [22]

in the HMD viewports. The computation of V-VMAF is

similar to that in Ozcinar et al. [46]. Because V-SSIM and

V-VMAF are not pixel-wise metrics, we cut each circle

viewport10 into its inscribed square when computing

them. We believe the negative impacts of removing small

areas close to the viewport borders are insignificant as

they are far away from the viewport center.

• Bandwidth utilization. The ratio between the streamed

bitrate to the total bandwidth.

• Number of stalls. The total number of stalls of the

algorithms throughout each 1-min playout.

• Running time. The consumed time of the algorithms for

determining the encoding ladder.

• MPD overhead. The ratio between the size of the MPD

file (meta-data) and the total streamed data in each

streaming session.

In the following sections, we first evaluate the per-class

optimization algorithms in terms of distortion and viewing

quality. After that, we conduct extensive experiments on the

testbed to evaluate the performance of optimal laddering

algorithms, which solve the global optimization problem. This

is followed by a summary of our key findings. The results are

reported with 95% confidence interval plotted as error bar.

10Our HMD (Oculus DK2) is measured to have a circle viewport [18].

C. Per-Class Optimization Results

Our proposed PC-LBA and PC-GBA algorithms ef-

fectively offer lower expected distortion. Fig. 12 plots

the expected distortion under different bandwidth levels for

different video categories, which is computed with Eq. (4a).

This figure shows that our proposed algorithms effectively

reduce the expected distortion compared to other state-of-the-

art algorithms. ICC sometimes (around 1
3 of the time) fails to

find the solutions using cvx, and thus results in the highest

expected distortion across all videos. In contrast, our PC-

LBA algorithm is a customized algorithm solving a convex

programming problem for low distortion. The greedy PC-GBA

algorithm also achieves comparable distortion than the PC-

LBA algorithm. MM is a heuristic algorithm that results in

slightly higher distortion compared to our algorithms. Across

different video categories, videos in NI-SP result in lower

expected distortion in general. This is because NI-SP videos

contain simpler scenes and slower movements compared to

other videos, which lead to higher coding efficiency.

Our proposed algorithms outperform others more in

viewing quality at lower bandwidth. We plot the viewing

quality of all videos in user’s viewport in Fig. 13. All three

quality metrics demonstrate the same trend: our proposed

algorithms deliver higher viewing quality than others in most

bandwidth classes, especially at lower bandwidth. We empha-

size that the performance of low bandwidth classes is more

crucial, as clients in these classes are more vulnerable to

inferior viewing experience. Because three viewing quality

metrics show similar trends, we only report the quality in V-

VMAF in the rest of the article.

We next plot the overall viewing quality of different video

11

CG-FP NI-FP NI-SP

0

20

40

60

80

100

Fig. 14: The viewing quality of dif-

ferent video categories.

TABLE IV: Maximum and Av-

erage of Quality Improvement in

V-VMAF Compared to State-of-

the-Art Algorithms

PC-LBA

State-of-the-Art Avg. Max.

ICC 22.57 50.19

MM 1.55 24.82

PC-GBA

State-of-the-Art Avg. Max.

ICC 23.85 52.17

MM 2.83 26.35

TABLE V: The Average Per-Segment Run-

ning Time of PC-LBA and PC-GBA

Algorithm PC-LBA PC-GBA

Component
QP

Optimizer

Optimal

Rounding

Algorithm

Total Total

Time (s) 73.8315 44.6170 118.4485 0.1074

0 20 40 60

0

20

40

60

80

(a)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 15: The bandwidth utilization across 10 users watching a

sample video at storage limit S=1200 MB: (a) over time and

(b) CDF.

categories in Fig. 14. This figure shows the merits of our

algorithms, over ICC and MM algorithms. It also shows

that the videos from NI-SP have higher viewing quality for

all algorithms, which is consistent with Fig. 12. We report

the average and maximum improvements of our algorithms

over the state-of-the-art algorithms in Table IV. This table

illustrates that our PC-LBA averagely outperforms ICC and

MM by 22.57 and 1.55 in V-VMAF. Moreover, PC-GBA

outperforms ICC and MM by 23.85 and 2.83. In fact, the

improvements of PC-GBA are as high as 52.17 and 26.35.

From the figures, we observe that MM achieves reasonably

good viewing quality. However, it only supports a single video

and a single bandwidth class. In contrast, we also study the

optimal laddering problem that takes client distribution and

storage limit into considerations, which will be evaluated in

Sec. VII-D.

PC-GBA achieves even better performance than PC-

LBA. Our evaluation results show that PC-GBA offers better

viewing quality than PC-LBA (Figs. 12–14). That is, simulta-

neously limiting multiple out-of-range QPs into the practical

range seriously degrades the viewing quality. In contrast, PC-

GBA iteratively and gradually adjusts the QP values in discrete

manner, which finds better discrete solutions. We report their

average computing time for each segment in Table V. This

table shows that PC-GBA runs faster, which is due to the

much higher complexity of the Lagrangian multiplier approach

in PC-LBA. Because of the better performance of PC-GBA

compared to PC-LBA in terms of both viewing quality and

computing time, we adopt PC-GBA as the per-class optimiza-

tion algorithm in the rest of this article.

D. Optimal Laddering Results

We use our real testbed to evaluate our optimal laddering

algorithms compared to the ISM algorithm. We throttle the

network bandwidth of users following the distribution in

Cisco’s report [38]. Note that the ISM algorithm does not

take video popularity into considerations, and thus we only

compared it against GL-ITAA, where the storage space limit

is evenly divided among all videos.

Our testbed effectively performs adaptive streaming

over the network. Fig. 15(a) plots the bandwidth utilization

across 10 users watching a sample video over time. This figure

reveals that our testbed effectively runs ABR algorithm at the

clients, which achieves around 60% of bandwidth utilization

after 4 seconds. Besides, Fig. 15(b) plots the CDF of the

bandwidth utilization indicating that most of the bandwidth

utilization is about 65%, which is quite close to the target

70% of the available bandwidth. Throughout the experiments,

we observe no stall events.

Our proposed GL-ITAA algorithm outperforms the

state-of-the-art algorithm. We then conduct experiments to

evaluate the performance under different storage limits. Fig. 16

plots the CDF of the bandwidth utilization achieved by GL-

ITAA across 10 users watching 6 videos under different

storage limits. This figure shows that the smaller storage limits

result in lower bitrates of some representations, which in turn

lead to lower bandwidth utilization. This demonstrates the

effectiveness of our GL-ITAA algorithm. We next compare the

overall viewing quality with the ISM algorithm. Fig. 17 plots

the viewing quality under different storage limits. This figure

shows that our proposed GL-ITAA algorithm outperforms the

ISM algorithm under all considered storage limits. Moreover,

our algorithm outperforms ISM algorithm by larger margins

as the storage limit decreases. In particular, our GL-ITAA

algorithm averagely outperforms the state-of-the-art ISM al-

gorithm by 43.14 in V-VMAF when the storage limit is

as low as 400 MB per video. This indicates that our GL-

ITAA algorithm scales well under different storage limits.

This can be attributed to the fact that our GL-ITAA algorithm

effectively reduces the required storage by cutting the bitrate

allocated to the less important tiles that are rarely viewed.

To confirm that our proposed algorithm outperforms ISM in

terms of Quality of Experience (QoE), we conduct a user study

to quantify the real user experience. We randomly select a user

trace watching 6 videos and generate the viewport videos using

the trace. We then recruit 12 subjects to watch these viewport

12

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Fig. 16: CDF of viewing quality

across different viewers and videos.

400 600 800 1000 1200

0

20

40

60

80

100

Fig. 17: Viewing quality under dif-

ferent storage limits.

400 800

1

2

3

4

Fig. 18: The MOS scores under

different storage limits.

3 5 10

0

20

40

60

80

100

Fig. 19: Viewing quality under dif-

ferent number of representations at

storage limit 600 MB.

2400 3600 4800 6000 7200

0

20

40

60

80

100

Fig. 20: The viewing quality of GL-

ITRA and GL-ITAA.

TABLE VI: The Ratio of the Meta-

Data in DASH for Our Proposed

Algorithm

Storage Limit Meta-Data Video Data

Unlimited 0.112% 99.888%

1200 MB 0.115% 99.885%

1000 MB 0.118% 99.882%

800 MB 0.123% 99.877%

600 MB 0.133% 99.867%

400 MB 0.152% 99.848%

videos in random order and give overall quality scores in [1,5]

scale. Fig. 18 plots the Mean Opinion Score (MOS) with 95%

confidence intervals from different algorithms under 400 and

800 MB storage limits. In this figure, GL-ITAA outperforms

ISM across all storage limits. Besides, the p-value from the

ANOVA test is 0.0029 (< 0.05), which shows the statistical

significance. As an example, GL-ITAA outperforms ISM by

more than 2 points (out of a range of 4 points) in MOS at

400 MB storage limit. The above observations are consistent

with our earlier observations on Fig. 17, which are made in

V-VMAF. That is, we find that V-VMAF closely follows the

user experience derived from time-consuming and expensive

user studies. Hence, we use V-VMAF as the quality metric in

the rest of this article.

We then consider C ∈ {3, 5, 10}, where the considered

bandwidth are {3.12, 10.52, 35.52} Mbps and {3.12, 7.02,

15.78, 35.51, 79.91} Mbps for C = 3 and 5, respectively. We

report the results across all videos and 10 users with storage

limit S = 600 MB per video in Fig. 19. This figure shows

the good scalability for our algorithm on different number

of bandwidth classes. In particular, our GL-ITAA algorithm

averagely outperforms the ISM algorithm by 8.2 in V-VMAF

under different number of bandwidth classes. In summary,

our GL-ITAA algorithm delivers higher viewing quality under

various conditions. Next, we conduct experiments to see

whether GL-ITRA can further improve the viewing quality.

GL-ITAA runs more efficiently while offering similar

viewing quality compared to GL-ITRA. Last, we introduce

diverse video popularity and compare the performance of

GL-ITAA and GL-ITRA. In this experiment, we let each

user watch 1 of the 6 considered videos following the video

popularity. Fig. 20 plots the viewing quality of both the GL-

ITRA and GL-ITAA under different storage limits. This figure

shows that the GL-ITRA and GL-ITAA achieve almost the

same viewing quality regardless of the storage limits. This is

because both algorithms effectively reduce the resource allo-

cated to the tiles with lower viewing probability. However, the

running time of the GL-ITRA is at least an order of magnitude

longer than the GL-ITAA, while GL-ITAA averagely spends

39 minutes across different storage limits for each video.

Moreover, it is suitable in practical usage scenarios, where new

videos are gradually added to the streaming servers without: (i)

recomputing the optimal encoding ladders and (ii) re-encoding

the new representations of the existing videos. Last, GL-ITAA

is easier to be parallelized and thus is more scalable. Hence,

we recommend GL-ITAA for solving the optimal laddering

problem.

Our proposed algorithms incur small meta-data over-

head. Last, we measure the overhead of our proposed algo-

rithms. In particular, our adopted per-tile-per-segment video

models occupy averagely 53.33 KB storage space per 1-min

long video. This is equivalent to about 0.013% overhead at

400 MB storage limit. We give the average ratio between the

size of the meta-data and the total steamed data under different

storage limits in Table VI. This table shows that the meta-data

overhead increases as the storage limit decreases, but it never

exceeds 0.2% of the total data size.

E. Summary of the Key Findings

The following summarizes findings on the evaluation re-

sults.

• Per-class optimization. Our PC-LBA and PC-GBA al-

gorithms optimize the viewing quality of the clients in

the same bandwidth class. Our evaluation results show

that PC-LBA and PC-GBA outperform ICC and MM

13

by up to 52.17 and 26.35 in V-VMAF, respectively. We

recommend PC-GBA for per-class optimization for its

higher viewing quality and shorter running time.

• Global optimization under assumptions. Our GL-ITAA

algorithm solves a simplified global optimization problem

for optimal laddering. The goal is to optimize the overall

viewing quality of the clients, where each video has a pre-

determined storage limit. Our evaluation results show that

GL-ITAA outperforms ISM by up to 43.14 in V-VMAF

when the storage limit is 400 MB per video. Moreover,

our GL-ITAA delivers better viewing quality and runs

faster than ISM. Our GL-ITAA scales well in terms of

both storage limits and number of bandwidth classes.

• Global optimization. Our GL-ITRA algorithm solves the

most general optimal laddering problem, which jointly

optimizes the overall viewing quality of the clients across

multiple videos. To the best of our knowledge, none of

the existing work in the literature addresses the same

problem. While our results show that both GL-ITRA and

GL-ITAA achieve high viewing quality, GL-ITAA runs

much faster than GL-ITRA.

In summary, we recommend GL-ITAA and PC-GBA for

solving the optimal laddering problem, which has not been

rigorously solved in the literature.

VIII. CONCLUSION

We study the optimal laddering problem for tiled 360◦

video streaming to HMD viewers. We consider video models,

viewing probability, and client distribution to maximize the

client viewing quality. We formulate the problem into ILP

and take a divide-and-conquer approach to solve the problem.

In particular, we decompose it into: (i) per-class optimization

for each bandwidth class and (ii) global optimization for the

overall client viewing quality optimization. We have proposed

two algorithms for each of the per-class optimization and

global optimization problems. We have performed both ana-

lytical analysis and conducted experiments on a real testbed to

quantify the performance of our algorithms compared to three

state-of-the-art algorithms. We then recommend a combination

of the proposed algorithms to solve the optimal laddering

problem, which are the PC-GBA and GL-ITAA algorithms.

The results show that our recommended algorithms outperform

state-of-the-art algorithms by up to 52.17 and 26.35 in V-

VMAF in per-class optimization problem and by up to 43.14

in global optimization problem. Moreover, our recommended

algorithms scale well under different storage limits and run

efficiently.

We plan to extend our work in multiple directions. First,

the selection of some parameters should be systematically

done. For example, we plan to develop an algorithm to

adaptively determine the considered bandwidth classes so as

to further maximize the client viewing quality. Second, we

plan to develop new optimal laddering algorithms that are

more tightly integrated with the ABR algorithms. For example,

different objectives can be applied on our optimal laddering

problem according to the employed ABR algorithms to further

maximize the user experience in different usage scenarios.

Last, a content-aware adaptive tiling scheme can be developed

and integrated in our proposed optimal laddering algorithms.

For example, videos with static scenes or scattered viewing

probability may be encoded with fewer tiles to get better

coding efficiency. The interplay among the number of tiles,

video characteristics, and storage limits can be studied to

further maximize the overall viewing quality. Our work can

also be adopted by several future applications, such as 6-

Degree-of-Freedom (6DoF) streaming [47], which supports

the movements of HMD viewers along x-, y-, and z-axes

by leveraging view synthesis algorithms [48], [49] or multi-

view video coding tools [50], [51], [52]. Another future

application is Extending Reality (XR) gaming [53], which may

be optimized using in-game context [54].

REFERENCES

[1] Cisco Systems, Inc, “2020 global networking trends report,” 2020,
https://www.cisco.com/c/dam/m/en us/solutions/enterprise-networks/
networking-report/files/GLBL-ENG NB-06 0 NA RPT PDF
MOFU-no-NetworkingTrendsReport-NB rpten018612 5.pdf?ccid=
cc001244&oid=rpten018612.

[2] Information technology – Dynamic adaptive streaming over HTTP

(DASH) – Part 1: Media presentation description and segment formats,
International Organization for Standardization Standard, March 2012.

[3] I. Sodagar, “The MPEG-DASH standard for multimedia streaming over
the Internet,” IEEE Multimedia, vol. 18, no. 4, 2011.

[4] D. I. Forum, “Guidelines for implementation: Dash-if interoperability
points,” DASH Industry Forum, November 2018.

[5] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,
“A survey on bitrate adaptation schemes for streaming media over http,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 1, 2018.

[6] Netflix Technology Blog, “Per-title encode opti-
mization,” 2015, https://medium.com/netflix-techblog/
per-title-encode-optimization-7e99442b62a2.

[7] Y. Reznik, K. O. Lillevold, A. Jagannath, J. Greer, and J. Corley,
“Optimal design of encoding profiles for ABR streaming.” in Proc. of

ACM Workshop on Packet Video (PV’18), Amsterdam, The Netherlands,
June 2018.

[8] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou,
“An overview of tiles in HEVC,” IEEE Journal of Selected Topics in

Signal Processing, vol. 7, no. 6, 2013.

[9] C. Fan, W. Lo, Y. Pai, and C. Hsu, “A survey on 360◦ video stream-
ing: Acquisition, transmission, and display,” ACM Computing Surveys,
vol. 52, no. 4, 2019.

[10] C. Ozcinar, A. De Abreu, and A. Smolic, “Viewport-aware adaptive
360 video streaming using tiles for virtual reality,” in Proc. of IEEE In-

ternational Conference on Image Processing (ICIP’17), Beijing, China,
September 2017.

[11] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360ProbDASH:
Improving QoE of 360 video streaming using tile-based HTTP adaptive
streaming,” in Proc. of ACM International Conference on Multimedia

(MM’17), Mountain View, CA, October 2017.

[12] P. Alface, J. Macq, and N. Verzijp, “Interactive omnidirectional video
delivery: A bandwidth-effective approach,” Bell Labs Technical Journal,
vol. 16, no. 4, 2012.

[13] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, “An
HTTP/2-based adaptive streaming framework for 360 virtual reality
videos,” in Proc. of ACM International Conference on Multimedia

(MM’17), Mountain View, CA, October 2017.

[14] D. Nguyen, H. Tran, A. Pham, and T. Thang, “A new adaptation
approach for viewport-adaptive 360-degree video streaming,” in Proc.

of IEEE International Symposium on Multimedia (ISM’17), Taichung,
Taiwan, December 2017.

[15] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
Proc. of International Conference on Mobile Computing and Networking

(MobiCom’18), New Delhi, India, October 2018.

[16] S. Yen, C. Fan, and C. Hsu, “Streaming 360◦ videos to head-mounted
virtual reality using DASH over QUIC transport protocol,” in Proc. of

ACM Workshop on Packet Video (PV’19), Amherst, MA, June 2019.

14

[17] C. Ozcinar, A. De Abreu, S. Knorr, and A. Smolic, “Estimation of
optimal encoding ladders for tiled 360 VR video in adaptive streaming
systems,” in IEEE International Symposium on Multimedia (ISM’17),
Taichiung, Taiwan, December 2017.

[18] C. Fan, J. Lee, W. Lo, C. Huang, K. Chen, and C. Hsu, “Fixation
prediction for 360◦ video streaming in head-mounted virtual reality,”
in Proc. of ACM Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV’17), Taipei, Taiwan, June 2017.
[19] C. Fan, S. Yen, C. Huang, and C. Hsu, “Optimizing fixation prediction

using recurrent neural networks for 360◦ video streaming in head-
mounted virtual reality,” IEEE Transactions on Multimedia, vol. 22,
no. 3, 2019.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[21] G. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, 1998.

[22] Netflix Inc., “VMAF - video multi-method assessment fusion,” 2019,
https://github.com/Netflix/vmaf.

[23] B. Li, D. Zhang, H. Li, and J. Xu, “QP determination by lambda value,”
in 9th Meeting of the JCT-VC, no. JCTVC-I0426, May 2012.

[24] B. Li, H. Li, L. Li, and J. Zhang, “λ domain rate control algorithm for
high efficiency video coding.” IEEE Transactions on Image Processing,
vol. 23, no. 9, 2014.

[25] M. Wang, K. Ngan, and H. Li, “An efficient frame-content based
intra frame rate control for high efficiency video coding,” IEEE Signal

Processing Letters, vol. 22, no. 7, 2015.
[26] W. Lo, C. Fan, J. Lee, C. Huang, K. Chen, and C. Hsu, “360◦ video

viewing dataset in head-mounted virtual reality,” in Proc. of ACM

International Conference on Multimedia Systems (MMSys’17), Taipei,
Taiwan, June 2017.

[27] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and
T. Hämäläinen, “Kvazaar: Open-source HEVC/H.265 encoder,” in Proc.

of ACM International Conference on Multimedia (MM’16), Amsterdam,
The Netherlands, October 2016.

[28] J. Chakareski, R. Aksu, X. Corbillon, G. Simon, and V. Swaminathan,
“Viewport-driven rate-distortion optimized 360◦ video streaming,” in
Proc. of IEEE International Conference on Communications (ICC’18),
Kansas, MO, May 2018.

[29] K.-S. Lu, A. Ortega, D. Mukherjee, and Y. Chen, “Perceptually inspired
weighted mse optimization using irregularity-aware graph fourier trans-
form,” arXiv preprint arXiv:2002.08558, 2020.

[30] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Meth-

ods. Academic Press, 2014.
[31] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the

LambertW function,” Advances in Computational mathematics, vol. 5,
no. 1, 1996.

[32] IBM Corp., “IBM ILOG CPLEX optimizer,” 2018, http://www-01.ibm.
com/software/integration/optimization/cplex-optimizer/.

[33] A. Makhorin, “GLPK (GNU linear programming kit),” 2019, https://
www.gnu.org/software/glpk/.

[34] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski, “Optimal set of
360-degree videos for viewport-adaptive streaming,” in Proc. of ACM

International Conference on Multimedia (MM’17), Mountain View, CA,
October 2017.

[35] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, March 2019.

[36] The MathWorks, Inc., “MATLAB - MathWorks,” 2019, https://www.
mathworks.com/products/matlab.html.

[37] Xavier Corbillon, “Optimal set of 360-degree videos for
viewport-adaptive streaming,” 2019, https://github.com/xmar/
optimal-set-representation-viewport-adaptive-streaming.

[38] Cisco Inc., “Cisco visual networking index: Forecast and trends,
2017-2022 white paper,” 2017, https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html.

[39] M. Graf, C. Timmerer, and C. Mueller, “Towards bandwidth efficient
adaptive streaming of omnidirectional video over HTTP,” in Proc. of

ACM International Conference on Multimedia Systems (MMSys’17),
Taipei, Taiwan, June 2017.

[40] Bert Hubert, “tc,” 2019, https://linux.die.net/man/8/tc.
[41] DeNA Co., Ltd. et al., “H2O the optimized HTTP/1.x, HTTP/2 server,”

2019, https://h2o.examp1e.net/.
[42] Parikshit Juluri, “Astream,” 2019, https://github.com/pari685/AStream.
[43] M. Yu, H. Lakshman, and B. Girod, “A framework to evaluate om-

nidirectional video coding schemes,” in Proc. of IEEE International

Symposium on Mixed and Augmented Reality (ISMAR’15), Fukuoka,
Japan, September 2015.

[44] Z. Li, M. Drew, and J. Liu, Lossy Compression Algorithms. Springer,
2004.

[45] S. Channappayya, A. Bovik, C. Caramanis, and R. Heath, “SSIM-
optimal linear image restoration,” in Proc. of IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP’08), Las
Vegas, NV, March 2008.

[46] C. Ozcinar, J. Cabrera, and A. Smolic, “Visual attention-aware omnidi-
rectional video streaming using optimal tiles for virtual reality,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 1, 2019.

[47] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards low latency
multi-viewpoint 360◦ interactive video: A multimodal deep reinforce-
ment learning approach,” in Proc. of IEEE International Conference on

Computer Communications (INFOCOM’19), Paris, France, April 2019.
[48] D. Tian, P. Lai, P. Lopez, and C. Gomila, “View synthesis techniques

for 3D video,” in Applications of Digital Image Processing XXXII, vol.
7443. International Society for Optics and Photonics, 2009.

[49] K. Mueller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand,
“View synthesis for advanced 3D video systems,” EURASIP Journal on

Image and Video Processing, vol. 2008, 2009.
[50] S. Valizadeh, P. Nasiopoulos, and R. Ward, “Perceptual distortion

measurement in the coding unit mode selection for 3D-HEVC,” in Proc.

of IEEE International Conference on Consumer Electronics (ICCE’16),
Las Vegas, NV, January 2016.

[51] ——, “Perceptual rate distortion optimization of 3D-HEVC using
PSNR-HVS,” Multimedia Tools and Applications, vol. 77, no. 17, 2018.

[52] S. Schwarz and M. Hannuksela, “Perceptual quality assessment of
HEVC main profile depth map compression for six degrees of freedom
virtual reality video,” in Proc. of IEEE International Conference on

Image Processing (ICIP’17), Beijing, China, September 2017.
[53] B. Thomas, “A survey of visual, mixed, and augmented reality gaming,”

ACM Computers in Entertainment, vol. 10, no. 1, 2012.
[54] M. Hegazy, K. Diab, M. Saeedi, B. Ivanovic, I. Amer, Y. Liu, G. Sines,

and M. Hefeeda, “Content-aware video encoding for cloud gaming,”
in Proc. of ACM International Conference on Multimedia Systems

(MMSys’19), Amherst, MA, June 2019.
[55] C. Concolato, J. Feuvre, F. Denoual, E. Nassor, N. Ouedraogo, and

J. Taquet, “Adaptive streaming of HEVC tiled videos using MPEG-
DASH,” IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 28, no. 8, 2017.
[56] R. Skupin, Y. Sanchez, Y. Wang, M. Hannuksela, J. Boyce, and M. Wien,

“Standardization status of 360 degree video coding and delivery,” in
Proc. of IEEE International Conference on Visual Communications and

Image Processing (VCIP’17), Taichung, Taiwan, December 2017.
[57] L. D’Acunto, J. Berg, E. Thomas, and O. Niamut, “Using MPEG DASH

SRD for zoomable and navigable video,” in Proc. of ACM International

Conference on Multimedia Systems (MMSys’16), Klagenfurt, Austria,
May 2016.

[58] J. Feuvre and C. Concolato, “Tiled-based adaptive streaming using
MPEG-DASH,” in Proc. of ACM International Conference on Multi-

media Systems (MMSys’16), Klagenfurt, Austria, May 2016.
[59] T. ParisTech, “MP4Box,” October 2019, https://gpac.wp.imt.fr/mp4box/.
[60] ——, “MP4Client,” October 2019, https://gpac.wp.imt.fr/player/.
[61] A. Zare, A. Aminlou, M. Hannuksela, and M. Gabbouj, “HEVC-

compliant tile-based streaming of panoramic video for virtual reality
applications,” in Proc. of ACM International Conference on Multimedia

(MM’16), Amsterdam, The Netherlands, October 2016.
[62] R. Ju, J. He, F. Sun, J. Li, F. Li, J. Zhu, and L. Han, “Ultra wide

view based panoramic VR streaming,” in Proc. of ACM Workshop on

Virtual Reality and Augmented Reality Network (VR/AR Network’17),
Los Angeles, CA, August 2017.

[63] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-
adaptive navigable 360-degree video delivery,” in Proc. of IEEE Inter-

national Conference on Communications (ICC’17), Paris, France, May
2017.

[64] F. Duanmu, E. Kurdoglu, S. Hosseini, Y. Liu, and Y. Wang, “Prioritized
buffer control in two-tier 360 video streaming,” in Proc. of ACM

Workshop on Virtual Reality and Augmented Reality Network (VR/AR

Network’17), Los Angeles, CA, August 2017.
[65] J. Kua, G. Armitage, and P. Branch, “A survey of rate adaptation

techniques for dynamic adaptive streaming over HTTP,” IEEE Com-

munications Surveys & Tutorials, vol. 19, no. 3, 2017.
[66] D. Nguyen, T. Huyen, and T. Thang, “An evaluation of tile selection

methods for viewport adaptive streaming of 360-degree video,” ACM

Transactions on Multimedia Computing Communications and Applica-

tions, vol. 16, no. 1, 2020.

15

APPENDIX A

RELATED WORK

We survey the literature in this section.

A. Tiled Streaming Standards

The MPEG DASH standard includes an amendment on

Spatial Representation Description (SRD) for clients to request

SRD extends MPD and provides x-axis, y-axis, width, and

height as attributes to DASH clients. Concolato et al. [55]

discuss the latest High-Efficiency Video Codec (HEVC) and

ISO Base Media File Format (ISOBMFF) standards, which

used for encoding and encapsulating tiled videos. They demon-

strate that a client may merge several tiles into a video

stream, and decode it with a single decoder by combining

SRD, HEV, and ISOBMF. Recently, MPEG group develops

Omnidirectional MediA Format (OMAF) standard for the

delivery and storage of 360◦ videos. Skupin et al. [56] present

the application requirements, projection formats, video/audio

codec, and DASH integration of the OMAF standard.

Several papers [57], [58], [39] share their experience of

developing standard-based tiled 360◦ video streaming systems.

In particular, D’Acunto et al. [57] use SRD to realize navi-

gable video streaming. They summarize the design choices

of the SRD-enabled DASH player, such as: (i) definitions

of representations, and (ii) seamless switches among repre-

sentations. Feuvre and Concolato [58] realizing tiled-based

adaptive streaming using several open-source projects, includ-

ing Kvazaar [27], MP4Box [59], and MP4Client [60]. They

demonstrate how interactive navigation and bitrate adaptation

can be achieved using DASH and SRD. Furthermore, they

present their implementation supporting diverse adaptation

policies based on the open-source MP4Client. Graf et al. [39]

implement various evaluation tools to quantify the pros and

cons of different encoding and streaming strategies on tiled-

based 360◦ video streaming systems. They also discuss various

options to enable the bandwidth-efficient adaptive streaming

of 360◦ videos. In their evaluation, 6×4 tiles provide the best

tradeoff between tiling overhead and bandwidth consumption,

which confirm a bitrate saving of 40% compared to the

baseline solutions. The aforementioned studies do not consider

the diverse viewing probabilities of individual tiles.

B. Viewport-Adaptive Tiled Streaming

Several studies propose to stream the tiles in the viewports

at a higher quality, and other tiles at a lower quality, in

order to reduce the bandwidth consumption. For example,

Zare et al. [61] adopt HEVC tiled-streaming and propose three

heuristic schemes for 360◦ video streaming to HMDs. Their

experiment results confirm that their solution utilizes common

patterns of head movements to achieve better coding efficiency.

Ju et al. [62] stream low-resolution tiles for the whole 360◦

videos along with high-resolution tiles for the viewports. They

also propose to consider the heatmap of viewers’ attentions,

and stream tiles with higher viewing probability using broad-

cast. Corbillon et al. [63] take diverse projection models

into considerations, and vary both bitrates and viewports

when encoding 360◦ videos into multiple representations.

HMD viewers then request for the proper presentations via

DASH. Duanmu et al. [64] encode each 360◦ video into a

base and multiple enhancement representations. They adopt

separate buffers for different representations, and give the

highest priority to the base representation for smooth playback.

The residual bandwidth is then used to stream enhancement

representations. The aforementioned studies only differentiate

the quality of tiles in an ad-hoc way without intelligently

allocating resources among tiles.

C. Adaptive BitRate Algorithms

ABR algorithms have been studied for conventional

videos [65]. Recently, several studies [10], [11], [12], [13],

[14], [15], [16] design ABR algorithms for tiled 360◦ videos.

Ozcinar et al. [10] consider unequal-size tiles. In their al-

gorithm, higher quality level is selected for the tiles in the

viewport. The quality levels of the remaining tiles are gradu-

ally reduced as the distance between them and the viewport

increases. Xie et al. [11] formulate the ABR for 360◦ videos

into an ILP problem considering the viewing probability of

each tile. Their objective is to minimize the expected video

distortion in terms of MSE and spatial quality variance.

Besides, a buffer-based rate control mechanism is proposed for

smooth playback. Alface et al. [12] propose a greedy algorithm

to select the quality levels according to the ratio between their

considered utility function and the tile size, where the utility

function is the estimated quality times the viewing probability.

Their considered viewing probability is predicted from the

previous viewport and filtered by a Gaussian filter, where the

standard deviation σ is proportional to the delay.

A few studies [13], [14], [15] group tiles into a number of

classes and assign the same quality level to the tiles in the

same class. Petrangeli et al. [13] group the tiles into three

classes: (i) viewport, (ii) extended area, and (iii) background.

Their algorithm estimates the available bandwidth and select

the highest affordable representations for viewport, extended

area, and background tiles in that order. Similarly, Nguyen et

al. [14] also group the tiles into three classes. The size of

their extended area is proportional to the estimated viewport

prediction error. Their algorithm then searches all possible

quality levels for the maximal estimated viewing quality under

the constraint of the available bandwidth. Qian et al. [15] group

the tiles into four classes. They search for all the possible

quality levels for each class and select the one with the highest

considered utility, which aims for higher viewing quality and

fewer stalls. A measurement study quantitatively compares the

above ABR algorithms under various conditions [66].

D. Bitrate Allocation and Optimal Laddering Algorithms

In addition to the ABR algorithms that select the repre-

sentations stored on the streaming server, some studies [34],

[28] propose algorithms for bitrate allocation that encode

and stream tiles at different bitrates to the clients under the

constraint of a given bandwidth. Corbillon et al. [34] propose

an algorithm to allocate bitrates within a 360◦ video [37].

Their proposed algorithm can be extended for tiled 360◦

16

videos. In particular, they classify the tiles into two categories

based on the viewport and assign even bitrate to the tiles

in each category. A bitrate gap is introduced to restrict the

quality differences between the two categories to avoid sudden

quality changes. Their work only adopts two quality levels

without considering tile characteristics. Chakareski et al. [28]

study an RDO problem for streaming tiled 360◦ videos. They

take viewing probability into account and employ convex

optimization to solve the bitrate allocation problem. They do

not present the detail of convex optimization and practical

concerns, such as discrete and limited QP values. In contrast,

we give detailed proofs and propose a rounding algorithm.

These studies [34], [28] focus on live bitrate allocation that

only consider the constraint of a target bandwidth. Ozcinar et

al. [17] share a similar goal as ours. That is, they study the op-

timal laddering problem for tiled 360◦ videos. They formulate

the problem into ILP and decide the number of representations

for each bandwidth class according to its fraction of clients.

However, they do not develop efficient algorithms to solve the

problem, which incurs extremely long running time. Moreover,

they ignore the characteristics of each video tile, such as the

complexity level and viewing probability, and do not vary the

quality across tiles. In contrast, we propose efficient algorithms

and take the diverse characteristics of tiles into considerations.

These studies [34], [28], [17] are considered as the state-of-

the-art algorithms in our evaluations.

APPENDIX B

PROOFS OF LEMMAS

Lemma 1: The optimal laddering problem is NP-hard.

The optimal laddering problem can be reduced from the NP-

hard Multiple Knapsack Problem (MKP). The MKP problem

puts as many objects as possible into multiple knapsacks with

various capacities to maximize the total value. If we let V = 1,

T = 1, and S = ∞, we can map knapsacks to each class’s

available bandwidth and objects to tiled-segments without the

storage limit. The value and the weight of each tiled-segment

are the reciprocal of expected distortion (1
dv,t,npv,t,nan

) and

bitrate (rv,t,n), respectively. In this way, we reduce the MKP

problem to our optimal laddering problem in polynomial time.

Lemma 2: When the power function in Eq. (1) is adopted

as the distortion model, the objective function in Eq. (5a) is

convex.
Proof. Note that a multivariate function is convex if it is twice
differentiable and its Hessian matrix is positive semidefinite.
We observe that αd

v,t,n ≥ 0, βd
v,t,n ≥ 1, and γd

v,t,n ≥ 0. We
verify the second derivative of the objective function (Eq. (5a))
∂ED

v,t,c

∂2κv,t,n,c
as:

α
d
v,t,nβ

d
v,t,n(β

d
v,t,n − 1)κ

βd
v,t,n−2

v,t,n,c pv,t,nan, ∀n ∈ [1, N] (13)

The sphere area an is positive constant and viewing prob-
ability pv,t,n are non-negative constant. This shows that the

objective function is second differentiable and
∂ED

v,t,c

∂2κv,t,n,c
≥ 0

according to the range of αd
v,t,n and βd

v,t,n. We then verify the

Hessian matrix of the expected distortion:

H
D

=

∂ED
v,t,c

∂2κv,t,1,c

∂ED
v,t,c

∂κv,t,1,c∂κv,t,2,c
· · ·

∂ED
v,t,c

∂κv,t,1,c∂κv,t,N,c

∂ED
v,t,c

∂κv,t,2,c∂κv,t,1,c

∂ED
v,t,c

∂2κv,t,2,c
· · ·

∂ED
v,t,c

∂κv,t,2,c∂κv,t,N,c

· · · · · · · · · · · ·

∂ED
v,t,c

∂κv,t,N,c∂κv,t,1,c

∂ED
v,t,c

∂κv,t,N,c∂κv,t,2,c
· · ·

∂ED
v,t,c

∂2κv,t,N,c

=

∂ED
v,t,c

∂2κv,t,1,c
0 · · · 0

0
∂ED

v,t,c

∂2κv,t,2,c
· · · 0

· · · · · · · · · · · ·

0 0 · · ·
∂ED

v,t,c

∂2κv,t,N,c
.

(14)

We know that if the eigenvalues of a Hermitian matrix are

non-negative, then the Hessian matrix is positive semidefinite.

Let λD be the eigenvalue of HD. Let y be a non-zero vector.

According to the property of eigenvalue:

HDy − λDy = 0; (15a)

(HD − λDI)(y) = 0. (15b)

Note that y is a non-zero vector, which indicates that HD −
λDI = 0:

H
D

− λDI =

∂ED
v,t,c

∂2κv,t,1,c
− λD 0 · · · 0

0
∂ED

v,t,c

∂2κv,t,2,c
− λD · · · 0

· · · · · · · · · · · ·

0 0 · · ·

∂ED
v,t,c

∂2κv,t,N,c
− λD

(16a)

(
∂ED

v,t,c

∂2κv,t,1,c

− λD)(
∂ED

v,t,c

∂2κv,t,2,c

− λD) · · · (
∂ED

v,t,c

∂2κv,t,N,c

− λD) = 0

(16b)

λD =
∂ED

v,t,c

∂2κv,t,1,c

,
∂ED

v,t,c

∂2κv,t,2,c

, · · · ,
∂ED

v,t,c

∂2κv,t,N,c

.

(16c)

Since
∂ED

v,t,c

∂2κv,t,n,c
=

∂dv,t,n

∂2κv,t,n,c
pv,t,nan ≥ 0, the eigenvalue of

HD are non-negative values and HD is then proved to be

positive semidefinite. This shows that our objective function

(Eq. (5a)) is a convex function.

Lemma 3: When the exponential function in Eq. (2) is

adopted as the bitrate model, the constraint in Eq. (5b) is

convex.

Proof. Similar to Lemma 2, we first verify the second deriva-

tive for each κn in Eq. (5b):

∂ER
v,t,c

∂2κv,t,n,c

= αr
v,t,n(β

r
v,t,n)

2eβ
r
v,t,nκv,t,n,c , ∀n ∈ [1, N]. (17)

Eq. (17) shows that the constraint function is second differen-

tiable and
∂ER

v,t,c

∂κ2
v,t,n,c

≥ 0 according to the range of αr
v,t,n and

βr
v,t,n, where αr

v,t,n ≥ 0 and βr
v,t,n ≤ 0. We then verify the

Hessian matrix of the constraint:

H
R

=

∂ER
v,t,c

∂2κv,t,1,c

∂ER
v,t,c

∂κv,t,1,c∂κv,t,2,c
· · ·

∂ER
v,t,c

∂κv,t,1,c∂κv,t,N,c

∂ER
v,t,c

∂κv,t,2,c∂κv,t,1,c

∂ER
v,t,c

∂2κv,t,2,c
· · ·

∂ER
v,t,c

∂κv,t,2,c∂κv,t,N,c

· · · · · · · · · · · ·

∂ER
v,t,c

∂κv,t,N,c∂κv,t,1,c

∂ER
v,t,c

∂κv,t,N,c∂κv,t,2,c
· · ·

∂ER
v,t,c

∂2κv,t,N,c

17

=

∂ER
v,t,c

∂2κv,t,1,c
0 · · · 0

0
∂ER

v,t,c

∂2κv,t,2,c
· · · 0

· · · · · · · · · · · ·

0 0 · · ·
∂ER

v,t,c

∂2κv,t,N,c
.

(18)

Let λR be the eigenvalue of HR. We can then derive λR as:

λR =
∂ER

v,t,c

∂2κv,t,1,c
,

∂ER
v,t,c

∂2κv,t,2,c
, · · · ,

∂ER
v,t,c

∂2κv,t,N,c

. (19)

Thus, we found that the eigenvalue of HR is non-negative

since
∂ER

v,t,c

∂2κv,t,n,c
are non-negative values. This shows that the

constraint function is convex function as well.

Lemma 4: The Lagrangian dual function (Eq. (7)) consti-

tutes a lower bound for the objective value of any feasible

solution to the Lagrangian primal problem (Eq. (6)). In fact,

because the strong duality holds here, the optimal solution of

the Lagrangian dual problem is also the optimal solution of

the original problem.

Proof. Let K
∗
p be the optimal solution set for the primal

problem. For any µ ≥ 0:

g(µ) ≥ K
∗
p (20)

Suppose K̃p = { ˜κv,t,1,c, ˜κv,t,2,c, · · · , ˜κv,t,N,c} is a feasible

solution for Eq. (6)). Then, we have

µ(

N
∑

n=1

rv,t,n(˜κv,t,n,c)− bv,c)) ≤ 0. (21)

Eq. (21) shows the introduction of non-positive constraint.
Therefore,

L(K̃, µ) =

N
∑

n=1

dv,t,n(˜κv,t,n,c)pv,t,nsx + µ(

N
∑

n=1

rv,t,n(˜κv,t,n,c) − bv,c)

≤

N
∑

n=1

dv,t,n(˜κv,t,n,c)pv,t,nan.

(22)

Then, we can have g(µ) =

inf
K
Lc(K, µ) ≤ Lc(K̃, µ) ≤

N
∑

n=1

dv,t,n(˜κv,t,n,c)pv,t,nan (23)

Finding the best lower bound leads to the following optimiza-

tion problem:

max g(µ) (24a)

st : µ ≥ 0. (24b)

We denote the optimal solution set of Lagrangian dual

problem as K
∗
d. Then we hold the following inequality:

K
∗
d ≤ K

∗
p. (25)

To hold the equality of Eq. (25), which indicates the optimal

solution set of the dual problem is also the optimal solution

set of the primal problem, we verify the strong duality. Since

the primal problem is convex problem, the equality condition

is hold if it satisfy Slater’s condition: there exists and feasible

K̃ = { ˜κv,t,1,c, ˜κv,t,2,c, · · · , ˜κv,t,N,c} such that:

µ(

N
∑

n=1

rv,t,n(˜κv,t,n,c)− bv,c) ≤ 0. (26)

holds. Let r−1
v,t,n be the inverse function of rv,t,n function,

which takes bitrate as input and outputs the corresponding

QP. Let r′v,t,n =
bv,c

N+α
, ∀i, where α ≥ 0. Then, the

set K = {r−1
v,t,1(r

′
v,t,n), r

−1
v,t,2(r

′
v,t,n), · · · , r

−1
v,t,N (r′v,t,n)} is

feasible solution that holds the inequality. Therefore, we can

solve the original distortion minimization problem by solving

its Lagrangian dual problem (Eq. (7)).

Lemma 5: The PC-LBA algorithm runs in time O(T2N)
with space complexity of O(N).
Proof. The dominating time complexity occurs in lines 4 and 9:

(i) line 4 solves Lagrangian equations using Newton’s Method

with O(IN3), where I is the iteration times in Newton’s

Method, and (ii) line 9 solves the ILP in O(2N). With T

segments, the time complexity of the PC-LBA algorithm

is T × O(IN3 + 2N) = O(T2N). In addition, the space

complexity is O(N), as each of the N tiles records the selected

QP value.

Lemma 6: The PC-GBA runs in time O(TN(logN)Q)
with space complexity of O(N).
Proof. The dominating time complexity occurs in lines 5–11:

(i) the while-loop starts from line 5 iterates NQ times in

the worst case and (ii) lines 7–8 update θv,t,n,c values and

find out the maximum from them, which can be managed

by a max heap with O(logN) time complexity. Accumu-

lated with T segments, the time complexity of PC-GBA is

T × O(N(logN)Q) = O(TN(logN)Q). Besides, the space

complexity is N tiles recording the selected QP resulting in

O(N) for each segment.

Lemma 7: The GL-ITRA runs in time

O(V TNC(log V TNC)Q
δ
) with space complexity of

O(V TNC).
Proof. The dominating time complexity occurs in lines 9–

14: (i) the while-loop starts from line 9 iterates V TNC Q
δ

times in the worst case and (ii) lines 10–11 update ǫv,t,n,c,q
values and find out the minimum from them, which can be

managed by a min heap with O(log (V TNC)) complexity.

Collectively, the time complexity of the GL-ITRA algorithm

is O(V TNC(log V TNC)Q
δ
). Besides, the dominating space

complexity consists of V TNC QP values, which leads to

O(V TNC).

