
Fixation Prediction for 360° Video Streaming
to Head-Mounted Displays

Ching-Ling Fan1, Jean Lee1, Wen-Chih Lo1, Chun-Ying Huang2, Kuan-Ta Chen3, and Cheng-Hsin Hsu1

1Department of Computer Science, National Tsing Hua University
2Department of Computer Science, National Chiao TUng University

3Institute of Information Science, Academia Sinica

ABSTRACT

We study the problem of predicting the Field-of-Views (FoVs) of

viewerswatching 360° videos using commodityHead-MountedDis-

plays (HMDs). Existing solutions either use the viewer’s current

orientation to approximate the viewed tiles in the future, or extrap-

olate the FoVs using the historical orientations and dead-reckoning

algorithms. In this paper, we develop �xation prediction networks

that concurrently leverage sensor- and content-related features to

predict the viewer �xation in the future, which is quite di�erent

from the solutions in the literature. �e sensor-related features

include HMD orientations, while the content-related features in-

clude image saliencymaps andmotionmaps. We build a 360° video

streaming testbed to HMDs, and recruit twenty-�ve viewers to

watch ten 360° videos. We then train and validate two design al-

ternatives of our proposed networks, which allows us to identify

the be�er-performing design with the optimal parameter se�ings.

Trace-driven simulation results show the merits of our proposed

�xation prediction networks compared to the existing solutions,

including: (i) lower consumed bandwidth, (ii) shorter initial bu�er-

ing time, and (iii) short running time.

1 INTRODUCTION

More and more people share their life and experience with friends,

relatives, and general publics over online social networks any-

where, anytime. Among the media types exchanged in online so-

cial networks, video content is themost appealing andwidely-used

media. Recently, 360° videos are ge�ing popular, because they pre-

serve immersive experience, allowing people to be�er share their

life and experience. A market report predicts that the global mar-

ket of 360° cameras will grow at an annual rate of 35% between

2016 and 2020 [2]. Such an increase is further boosted by the grow-

ing a�entions of consumer-grade HeadMounted Displays (HMDs),

which provide wide Field-of-Views (FoVs), and come with inte-

grated sensors for determining view orientation and head position.

In fact, another market research indicates that the global market of

Virtual Reality (VR) related products will reach 30 billion USD by

2020 [1]. Due to their popularity, the commodity HMDs, such as
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HTCVive, Samsung Gear VR, and Oculus Ri�, are ideal for playing

out 360° videos to viewers for even more immersive experience.

(a) (b)

Figure 1: Using HMDs to watch 360° videos allows viewers to nat-

urally navigate through di�erent parts of the videos. However, it

comes with some challenges: (a) each viewer only sees a small part

of the video at any moment, and (b) existing video codecs dictate

rectangle video inputs, and thus require mapping models, leading

to distorted images.

Leveraging commodity HMDs for 360° video streaming is, how-

ever, very challenging for two reasons illustrated in Fig. 1. Fig. 1(a)

reveals that, while the 360° video is in extremely high resolution,

with HMDs, each viewer only gets to see a small part of the whole

video. �erefore, sending the whole 360° video in full resolution

may lead to waste of resources, such as network bandwidth, pro-

cessing power, and storage space. Another way to stream 360°

videos to HMDs is to only stream the current FoV of the viewer.

We emphasize current, because the FoV changes as the viewer’s

head and eyes move, which leads to the following main challenge:

which FoV should we transfer to meet the viewer’s needs in the next

moment? �is challenge makes designing a real-time 360° video

streaming system to HMDs quite tricky, especially because most

video streaming solutions nowadays deliver videos in segments

lasting for a few seconds [27].

Most existing studies [14, 19, 23] partially cope with this chal-

lenge by a straightforward solution: they stream the current FoV

(could be enlarged a bit by a heuristic factor) in the full resolu-

tion, and also stream the whole 360° video in a reduced resolution.

When a viewermoves his/her head outside of the current FoV (used

by the streaming system), the reduced-resolution video is played to

the viewer, before the full-resolution one comes (in a few seconds).

�is approach results in two drawbacks: (i) jumping between full-

and reduced-resolutions greatly degrades the user experience [12];

and (ii) sending parts of videos that are far away from the FoV (say

at the opposite orientation of the HMD), although in reduced res-

olution, still wastes precious resources.
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Figure 2: Overview of the proposed 360° video streaming server. A tile streaming example is shown.
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Figure 3: �e FoV model.

A be�er solution is to predict the viewer’s �xation, which is

the center of a viewer’s FoV, in the near future, and only trans-

fer the parts of 360° videos that are viewed with high probabil-

ity. Although recent studies [22, 23] a�empt to predict the �xa-

tion, they adopt simple extrapolations, which are less accurate, and

thus result in degraded user experience and wasted resources. In

this paper, we solve the �xation prediction problem using neural net-

works for higher accuracy. �eunique feature of our �xation predic-

tion networks is that we concurrently consider content- and sensor-

related features. Content-related features include image saliency

map [5] and motion map [18], and sensor-related features come

from the orientation and position sensors on HMDs. To the best

of our knowledge, neural networks that incorporate both content-

and sensor-related features, have not been studied in the literature.

Predicting �xation is no easy task. Although Convolutional

Neural Network (CNN) has been widely used in video (and image)

domain [13], most prior studies focus on videos shot by conven-

tional cameras and may not work well with 360° videos. �is is

because the 360° videos are mapped before being encoded, as the

existing video codecs only support rectangle videos. Several map-

ping models, such as cube and pyramid, are explored in both the

industry [3] and the academia [10]. �ese mapping models, unfor-

tunately, cause some distortion on the shape of objects. Take the

well-known equirectangular model as an example, Fig. 1(b) shows

that the objects close to the north and south poles are seriously

distorted, which may negatively a�ect the e�ectiveness of the pre-

trained CNNs [9]. In this paper, we report the performance of our

proposed �xation prediction networks a�er considering such dis-

tortion.

We build a 360° video streaming testbed. We recruit twenty-

�ve viewers to watch ten 360° videos downloaded from YouTube.

We use parts of the collected dataset to train and validate our pro-

posed �xation prediction networks for optimal parameter se�ings.

We then conduct trace-driven simulations to evaluate the perfor-

mance of our solution. Compared to the existing solutions in the

literature, our solution: (i) delivers comparable video quality, (ii)

requires shorter initial bu�ering time (up to 43% reduction), (iii)

consumed less bandwidth (a 22-36% reduction), and (iv) completes

in real time (≤ 50 ms). �e evaluations results show the potential

of our �xation prediction networks on enhancing the 360° video

streaming to HMDs.

2 RELATED WORK

Viewer �xation prediction. For prediction with content-related

features, salient object detection has been studied [5] for still im-

ages. Mavlankar and Girod [23] perform �xation prediction in

videos using features like thumbnails, motion vectors, and navi-

gation trajectory expolation. With the advanced machine learning

technologies, various supervised learning methods including neu-

ral networks are adopted for be�er feature extraction and predic-

tion accuracy in �xation detection [4, 7, 24]. Chaabount et al. [7]

build a CNN architecture and use residual motion as the features

for predicting saliency in videos. Alshawi et al. [4] observe the cor-

relation between the eye-�xation maps and the spatial/temporal

neighbors, which provides another way to quantify viewer a�en-

tion on videos. Nguyen et al. [24] propose to adopt the information

of static saliency (in images) and then take camera motions into

considerations for dynamic saliency (in videos) prediction. �ese

studies [4, 5, 7, 23, 24] do not focus on 360° video streaming to

HMDs, and fail to take sensor-related features into account.

Commodity HMDs. Several commodity HMDs are released

and their applications has go�en increasingly popular. �eir per-

formance has been recently studied in the literature. Young et

al. [30] perform subjective tests using commodity HMDs and �nd

that they work well for playing out videos (one-way) and support-

ing interactive tasks (two-way). Friston and Steed [11] present a

frame counting mechanism for synchronization, in order to mea-

sure the latency of HMDs. Chang et al. [8] propose methodologies

to measure the latency, sensitivity, and precision of HMDs. Several

tradeo�s are observed on commodity HMDs in their study. �ese

studies [8, 11, 30] do not try to identify the viewer’s FoV, let alone

predicting viewer �xations.

3 OVERVIEW

3.1 360° Streaming Systems

Fig. 2 presents our proposed architecture of a 360° streaming server,

in which we focus on the so�ware components related to �xation

prediction. We have identi�ed two types of content-related fea-

tures: image saliency map [5] and motion map [18]; and sensor-

related features, such as orientations and angular speed, from

HMDs. We brie�y describe these components in the following:

• Image saliency network is a deep neural network

trained to predict the image saliency map, which shows

the parts of the image that a�ract viewers the most.

• Motion feature detector analyzes the Lucas-Kanade op-

tical �ow [20] of consecutive frames, because viewers may

be a�racted by moving objects.
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• Orientation extractor derives the viewer orientation

data1, including yaw, pitch, and roll, from HMD sensors.

• Feature bu�er stores the features, including saliency

map, motion map, and view orientation in a sliding win-

dow, which are used for �xation prediction.

• Fixation prediction network uses content-related (im-

age saliency map and motion map) and sensor-related

(viewer orientation) features as inputs to predict future

viewing probability of each tile2.

• Tile rate selector performs rate allocation among video

tiles.

�e interactions among these components are as follows. �e

video frames are sent to the image saliency network and motion

feature detector for generating the image saliencymap and the mo-

tion map, respectively. Generating these two maps is potentially

resource demanding, and we assume that they are created o�ine

for pre-recorded videos. �e HMD sensory data are transmi�ed to

the orientation extractor to derive the viewer orientations. �e fea-

ture bu�er maintains a sliding window that stores the latest image

saliency maps3, motion maps, and viewer orientations as the in-

puts of �xation prediction network. �e video �xation prediction

network predicts the future viewing probability of each tile. �e

tile rate selector optimally selects the rates of the encoded video

tiles 4 �e shadowed components in Figure 2 are the focus of this

paper and will be detailed in Sec. 4.

3.2 Field-of-View and Mapping Models

We conduct experiments of playing a 360° videowith arti�cial grids

to viewers, and collect questionnaires to understand how to model

the FoV of commodity HMDs. We �nd that the FoV of existing

HMDs, including Oculus Ri�, HTCVive, and Samsung Gear can all

be modeled as a circle on sphere5. Fig. 3 presents the FoV model of

HMD.�e viewer stands at the center of the sphere. Let α and β be

the yaw and pitch, which are reported from the sensors equipped

by HMDs. Knowing α and β , we can �nd the center point that

the viewer looks at. Furthermore, we let θ be the radius of FoV

in degree. �erefore, we describe the FoV in the spherical space

as fs = (α , β ,θ ). �e measured θ values are about 100° (Oculus

Ri�), 67° (HTC Vive), and 67° (Samsung Gear). We use 100° in

our experiments if not otherwise speci�ed. We note that this is

a basic model, which does not capture the HMD positions. �is is

not a concern, because most 360° video streaming systems ignore

viewer positions. Moreover, recent HMDs, such as FOVE, start to

support eye-tracking, which may lead to new type of sensory data.

1 We use the word orientation loosely to indicate features that can inferred fromHMD
sensors. Our current implementation only considers, but can be readily extended to
other features.
2For the sake of discussion, we consider tile streaming systems, while our �xation
prediction networks work for real-time transcoding-based systems as well.
3Note that the saliency map we currently considered are the whole frame in equirect-
angular projection. We believe that considering the whole frame provides more global
information than only considering the current view of the viewer.
4In general, the tile rate selector could select the encoded rates of each tile. While in
Sec. 6, we �x the �antization Parameter (QP) and resolution of each tile to 28 and
192x192, respectively, for brevity. A larger-scale simulation will be conducted in the
future.
5�e FoV could be di�erent shapes on 2D planes depending on mapping models. For
example, it would be ellipses on equirectangular plane.

Our approach is readily extensible to such HMDs once they hit the

market.

�ere are several mapping models for 360° videos [10, 29], in-

cluding: (i) equirectangular, (ii) cube, and (iii) rhombic dodecahe-

dron mapping. In this work, we adopt the equirectangular map-

ping model, which is the most popular and widely supported map-

ping model for 360° videos. For example, YouTube only supports

360° videos encoded with the equirectangular mapping model. �e

equirectangular mapping projects the sphere to a cylinder. It in-

troduces large distortion at the areas close to poles (see Fig. 1(b)),

which may result in redundant data transmission and inferior im-

age saliency detection accuracy.

4 FIXATION PREDICTION NETWORKS

Image saliency network. Di�erent methods to generate the

image saliency maps could be classi�ed into two groups. One

group (manually) selects low- and high-level image features, such

as color, intensity, orientation (low-level) and semantic informa-

tion (high-level) [17]. �e other group constructs deep CNNs to

generate image saliency maps [28]. To be data-driven, we adopt

pre-trained CNNs [25] for learning the image features, which were

originally used for object detections and image classi�cations. In

particular, Cornia et al. [9] propose a deep multi-level network

combining weight features from di�erent levels of the CNN, which

achieves superior performance by considering low- to high-level

features. We adopt this deep multi-level network, whose archi-

tecture is based on VGG-16 [25]. �ree layers are extracted from

the VGG-16 model and combined with two additional layers to im-

prove the generalization for the �nal image saliency maps. For

each video frame, we obtain its image saliency map from the out-

put of this deep multi-level network as a feature.
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Figure 4: Our proposed �xation prediction networks: (a)

orientation-based network and (b) tile-based network.

Fixation prediction network. �e function of this network is

to predict where the viewer would most likely to look at in the fu-

ture video frames given a sequence of observed video frames. �e

�xation prediction network is based on a Recurrent Neural Net-

work (RNN), which is suitable to learn useful information from

a time series of video frames. We chose the LSTM (Long Short

Term Memory) network [15] to learn more long-term dependen-

cies among video frames. Fig. 4 presents our two proposed �xation

prediction networks. Both networks take features ofm past video

frames in a sliding window as inputs, and predict the viewing prob-

ability of tiles of n future video frames in a prediction window as

outputs. Let Ff be the features of frame f . �e features include the

image saliency map, motion map, viewer orientation, and viewed
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tiles. Let pt
f
in[0, 1] be the predicted viewing probability of tile t of

frame f . We collectively write probability of all tiles of frame f as

Pf . �e orientation-based network (Fig. 4(a)) takes the view orien-

tation as inputs, and predicts the viewing probability of the next

frame. It then reuse the same prediction for all the n frames in the

prediction windows. In contrast, the tile-based network (Fig. 4(b))

takes the viewed tiles as inputs, and predicts the viewing probabil-

ity of the next n frames. Note that, the viewed tiles in the future

frames are not ground truth; instead the predicted viewed tiles are

used as indicated by the top-down vertical arrows.

5 DATASET COLLECTION AND NETWORK
TRAINING
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Figure 5: Our testbed for dataset collections: (a) system architecture

and (b) a photo of a subject performing experiments.

5.1 Testbed and Datasets

At the time of writing, there exist no public HMD sensory dataset;

the ones used in the literature [21, 29] are proprietary. �erefore,

we set up a complete 360° video streaming testbed and collect our

own dataset as follows. Fig. 5(a) presents the design of our testbed,

which consists of: (i) an Oculus Ri�, (ii) Oculus So�ware Develop-

ment Kit (SDK), (iii) 360° video player (rendering 360° in both HMD

and amirrored screen), (iv) sensor logger based on OpenTrack, and

(v) frame capturer based on GamingAnywhere [16].

When a viewer watches a 360° video as shown in Fig. 5(b), the

rendered video is captured by frame capturer and stored to disk.

�e viewer’s head movements, including position and orientation,

are also recorded by sensor logger. Both of them are timestamped

on the same computer. By aligning sensory data and 360° videos,

we identify where the viewer watches at any moment.

We download 10 360° videos from YouTube, which are in 4K res-

olution with a frame rate of 30 Hz. �e videos can be classi�ed into

three groups: (i) Computer-Generated (CG), fast-paced, (ii) Natu-

ral Image (NI), fast-paced, and (iii) NI, slow-paced. Each video lasts

for one minute. We recruit 25 viewers for dataset collections. Most

of them are in their early twenties, and 64% of them are male. 96%

of the subjects seldom use HMDs, while 60% of them use HMDs for

the �rst time. We play all 10 videos to each viewer, which result in

250 traces in our dataset. By trace, we refer to a combination of a

viewer and a video, in the rest of this paper. Sincemost subjects are

not regular HMD users, collecting the dataset is time consuming:

each subject took us 30 mins on average.

5.2 Network Training and Validation

Table 1: Performance of the Orientation-based Network

Model Parameters Training Set Validation Set

No.

Neu.

LSTM

Layers
Drop.

Rank.

Loss
Accuracy F-Score

Rank.

Loss
Accuracy F-Score

256 2 T 0.12 87.03% 0.65 0.17 84.69% 0.58

256 2 F 0.11 87.68% 0.66 0.17 84.87% 0.59

256 1 F 0.11 87.97% 0.66 0.16 85.42% 0.59

256 1 T 0.1 88.20% 0.67 0.15 85.72% 0.60

512 1 T 0.09 89.25% 0.70 0.14 86.35% 0.62

1024 1 T 0.09 89.28% 0.71 0.14 86.06% 0.62

Table 2: Performance of the Tile-based Network

Model Parameters Training Set Validation Set

No.

Neu.

LSTM

Layers
Drop.

Rank.

Loss
Accuracy F-Score

Rank.

Loss
Accuracy F-Score

256 1 F 0.14 86.09% 0.54 0.20 83.76% 0.50

256 1 T 0.15 86.12% 0.54 0.20 83.84% 0.50

256 2 T 0.14 86.37% 0.55 0.20 83.88% 0.51

256 2 F 0.14 86.58% 0.57 0.20 83.94% 0.52

512 2 F 0.13 86.91% 0.58 0.19 84.11% 0.52

1024 2 F 0.12 87.29% 0.60 0.19 84.22% 0.53

We consider the �xation prediction on tiles as the multi-label

classi�cation problem and have implemented the neural network

using Scikit-Learn and Keras. �e ground truth of the �xation pre-

diction networks are the tiles viewed by the viewers at each frame.

Using the dataset collected above, we sample the points within the

FoV by mapping the orientation on the sphere to equirectangu-

lar model. �en, the viewed tiles are the tiles that are overlapped

with the mapped points. For a single video frame, each tile is either

watched or not, i.e., it has a boolean viewing probability.

We did not retrain the image saliency network. We use the

traces from 12 viewers to train the two proposed �xation predic-

tion networks. Among the traces, we randomly divide them into

80% and 20% for training and validation, respectively. �e net-

works are trained to minimize the logarithmic loss, also known

as cross-entropy loss, using Stochastic Gradient Descent [6] with

a learning rate of 10−2. We let both the sliding window sizem and

prediction window size n to be 30. To obtain the optimal param-

eters, we consider the number of neurons in {256, 512, 1024}, the

number of LSTM layers in {1, 2}, and the dropout in {true, false}.

We �rst �x the number of neurons at 256 and train the networks

with all combinations of the number of LSTM layers and dropout.

A�er the optimal combination of the number of LSTM layers and

dropout is determined, we try di�erent numbers of neurons to �nd

its optimal se�ings.

4



We note that the predicted probability is a real number between

0 and 1, and we use a threshold ρ to round it to a boolean decision.

We refer to pt
f
≥ ρ as predicted tiles, and the actually viewed tiles

as viewed tiles. We let ρ = 0.5 if not otherwise speci�ed. To se-

lect the optimal parameters of the two models, we consider three

metrics: (i) accuracy, which is the ratio of correctly classi�ed tiles

to the union of predicted and viewed tiles, (ii) F-score, which is

the harmonic mean of the precision and recall, where the preci-

sion and recall are the ratios of correctly predicted tiles to the pre-

dicted and viewed tiles, respectively, and (iii) ranking loss, which is

the number of tile pairs that are incorrectly ordered by probability

normalized to the number of tiles.

We give the training and validation results of the two models

in Tables 1 and 2, respectively. We �nd that the optimal model

parameter from them are <512, 1, True> and <1024, 2, False>, re-

spectively. We notice that both models perform reasonably well,

while the orientation-based network performs slightly be�er (e.g.,

∼ 2% higher in accuracy). Hence, we adopt the orientation-based

network as our �xation prediction network in the rest of the paper.

6 POTENTIAL OF OUR FIXATION
PREDICTION NETWORKS

6.1 Simulation Setup

Table 3: Average Statistics of 4-sec H.265 Video Titles

Videos Size (B) PSNR (dB) SSIM PEVQ

CG, Fast-Pace 30662 57.34 0.92 3.55

NI, Slow-Paced 45062 45.02 0.92 3.35

NI, Fast-Pace 21015 47.28 0.96 3.83

We have implemented a simulator in Python to quantify the po-

tential of our �xation prediction networks, where a server supports

V concurrent viewers. Each viewer randomly selects a 360° video

to watch, and all viewers share a bo�leneck link of bandwidth B

Mbps. We assume the streaming system has a latency of D secs,

and divides videos into s-sec segments with a tile size of 192× 192.

Each viewer connects to the server and requests for the tiles pre-

dicted bym past frames, while n is determined by s and D. Each

simulation lasts for 1 min. We consider the �rstm frames aswarm-

up frames, i.e., their statistics are not accounted for.

Our �xation prediction networks are unique, because we jointly

consider content- and sensor-related features. For comparisons,

we also implement three other solutions: (i) Current (Cur), which

uses the current orientation to get the predicted tiles for the next

segment, (ii) Dead Reckoning (DR) [23], which uses the velocity

of viewer orientations to predict the tiles, and (iii) Saliency (Sal),

which chooses tiles with average saliency values higher than a per-

centile of λ. Other than accuracy and F-score, we also consider

the following performance metrics: (i) missing ratio, which is the

fraction of missing tiles over all viewed tiles, (ii) consumed band-

width of each viewer, (iii) initial bu�ering time, which is the mini-

mum bu�ering time for smooth playout, (iv) video quality in Peak

Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM),

and Perceptual Evaluation of Video �ality (PEVQ) [26], and (v)

running time of predicting tiles. For all 360° videos, we cut each

frame into 192× 192 tiles, where each tile lasts for 4 secs. We then

encode each tile using x265 with the default se�ings and a �an-

tization Parameter (QP) of 28. Table 3 reports the average quality

levels and tile size across all tiles and videos in three metrics. �is

table shows the encoded tiles have reasonable quality levels.

Some pilot simulation runs with V = 13 viewers6, B = 150

Mbps, D = 2 secs, andm = 30, reveal that the missing ratios are

nontrivial for our and baseline solutions, when λ = 99% and ρ =

0.5: 30+% missing ratios are observed. To be practical, we augment

our and baseline solution to ensure a sub-10% averagemissing ratio

by adjusting ρ and λ. For Current and DR, we iteratively add new

tiles at the edge of predicted tiles for δ times to accommodate the

inferior missing ratio. �e resulting ρ is 0.05, λ is 5%, and δ ’s for

Current and DR are 4.

6.2 Results
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Figure 6: Compared to the existing solutions, our �xation predic-

tion networks: (a) result in comparable video quality and (b) re-

quires shorter initial bu�ering time.

Service quality of our �xation prediction networks. �e

average missing ratios of our solution and the three baseline solu-

tions (Cur, DR, and Sal) are 9.2%, 5.8%, 8.1%, and 0.2%, respectively.

�ese ratios meet the 10% target, and are comparable. Moreover,

we plot the perceived video quality of all 13 viewers as well as the

average values in Fig. 6(a), which shows that the video quality in

PEVQ of received tiles are also comparable. We note that the same

observation can be made when other video quality metrics (PSNR

and SSIM) are used; their �gures are not shown due to the space

limitations. Fig. 6(b) reports the required initial bu�ering time to

guarantee that all tiles will arrive in time. �is �gure clearly shows

that our solution needs shorter initial bu�ering time. �is can be

a�ributed to the �exibility provided by our proposed solution. In-

stead of only enlarging the range around the predicted tiles (Cur

and DR) and lacking of the information of the current view (Sal),

our proposed solution transmits the tiles that have higher viewing

probabilities More concretely, while other solutions need as high

as 5.57 secs, our solution only needs 3.20 secs; a reduction of 43%.
Overhead of our �xation prediction networks. Fig. 7(a)

plots the bandwidth consumed by individual users and the aver-

age bandwidth consumptions of our and other solutions. �is �g-

ure demonstrates that our solution does not trade high resource

(bandwidth) consumption for good service quality. Instead, our

solution consumes less bandwidth compared to the baseline solu-

tions. More precisely, on average, each user only consumes 7Mbps

in our solution; each user consumes 9 Mbps with Cur and DR, and

6We use all the testing viewers in our dataset.
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Figure 7: Our �xation prediction networks: (a) consume less band-

width than the existing solution and (b) runs in real-time.

11 Mbps with Sal; that is our solution reduces the bandwidth con-

sumption by 22-36% on average. Fig. 7(b) gives the running time

of generating the tile predictions. �is �gure clearly show that the

tile prediction can be done in 50 ms, which is negligible compared

to the segments that last for several (say 4) seconds.

7 CONCLUSION

In this paper, we address the problem of �xation prediction for 360°

video streaming to HMDs using two neural networks. �e nov-

elty of our solution is that we concurrently leverage content- and

sensor-related features, which has never been proposed to our best

knowledge. To develop our �xation prediction networks, we build

a real testbed and recruit 25 viewers to watch 10 real 360° videos.

We clean up the logged sensory data and analyzed video data into

a dataset, and use it to train our proposed �xation prediction net-

works for optimal parameter se�ings. �rough trace-driven simu-

lations, we �nd that compared to the existing solution, our solution

consumes less bandwidth, requires shorter initial bu�er time, and

runs in real-time.

We acknowledge that the current work can be extended in sev-

eral dimensions. For example, more extensive simulations are

needed to be�er understand the merits and limitations of our �x-

ation prediction networks. �ose simulation results may help us

to enhance the design of our solution, but couldn’t be included

in the current paper due to the space limitations. A larger-scale

dataset could provide more reliable results. Furthermore, training

and testing data can be improved by spli�ing them depending on

the video types. �is could further prove our network works well

given new video content. Another open issue is to understand how

other 360° video mapping models, such as the cube and rhombic

dodecahedron [10, 29], (negatively) a�ect the performance of the

pre-trained CNNs (whichwere trained using pictures from conven-

tional cameras). Last, the viewer orientation should be estimated

more precisely using eye-tracking HMD.
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