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ABSTRACT

360° videos and Head-Mounted Displays (HMDs) are ge�ing in-

creasingly popular. However, streaming 360° videos to HMDs is

challenging. �is is because only video content in viewers’ Field-

of-Views (FoVs) is rendered, and thus sending complete 360° videos

wastes resources, including network bandwidth, storage space, and

processing power. Optimizing the 360° video streaming to HMDs

is, however, highly data and viewer dependent, and thus dictates

real datasets. However, to our best knowledge, such datasets are

not available in the literature. In this paper, we present our datasets

of both content data (such as image saliency maps and motion

maps derived from 360° videos) and sensor data (such as viewer

head positions and orientations derived from HMD sensors). We

put extra e�orts to align the content and sensor data using the

timestamps in the raw log �les. �e resulting datasets can be used

by researchers, engineers, and hobbyists to either optimize exist-

ing 360° video streaming applications (like rate-distortion optimiza-

tion) and novel applications (like crowd-driven cameramovements).

We believe that our dataset will stimulate more research activities

along this exciting new research direction.
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1 INTRODUCTION

Augmented Reality (AR) and Virtual Reality (VR) are ge�ing pop-

ular, e.g., a market research says that the AR/VR market will drive

108 billion USD annual revenue by 2021 [1]. Di�erent 360° videos

can be viewed with Head-Mounted Displays (HMDs), including
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Computer-Generated (CG) and Natural Image (NI) videos. Us-

ing conventional displays to watch 360° videos is o�en less intu-

itive, while recently released HMDs, such as Oculus Ri� [3], HTC

Vive [4], Samsung Gear VR [6], o�er wider Field-of-Views (FoVs)

and thus more immersive experience.

While service providers like YouTube [7] and Facebook [2], have

put some 360° videos online, streaming these videos to HMDs is ex-

tremely challenging. One of the challenges is that 360° videos are

in very high resolution, such as 4K, 8K, and higher. When watch-

ing a 360° video, a viewer wearing an HMD rotates his/her head

to change the viewing orientation, which can be described by the

angles along the x ,y, and z axes. �ese three angles are called yaw,

pitch, and roll. Based on the orientation, the HMD displays the cur-

rent FoV, which is a �xed-size region, say 100°x100° circle. Since a

viewer never sees a whole 360° video, streaming the 360° video in

its full resolution wastes resources, including bandwidth, storage,

and computation.

�erefore, each 360° video is o�en split into grids of sub-images,

called tiles [13, 14]. With tiles, an optimized 360° video streaming

system to HMDs would strive to stream only those tiles that fall

in the viewer’s FoV. By doing so, the system satis�es the viewer’s

needs and consumes less resources than streaming thewhole video

at its full resolution. However, ge�ing to know each viewer’s FoVs

at anymoment of every 360° video is not an easy task. �e complex

interplay among too many factors increases the di�culty. More

speci�cally, both content (360° videos) and sensors (HMDsworn by

viewers) a�ect the viewers’ FoVs in the future moments. Hence, to

be�er address the challenge, a large set of the content and sensor

data from viewers watching 360° videos with HMDs is crucial.

Unfortunately, there are no public content and sensor datasets,

e.g., datasets used in [11, 24] are from the industry and proprietary.

To overcome such limitation, and promote reproducible research,

we build up our own 360° video testbed for collecting traces from

real viewers watching 360° videos using HMDs. We then use the

testbed to collect content and sensor dataset. �e resulting dataset

can be used to, for example, predict which parts of 360° videos at-

tract viewers to watch the most. �e dataset, however, can also be

leveraged in various novel applications in a much broader scope.

For example, using our dataset, content provider could get to com-

pute the most common FoVs among viewers, and derive the crowd-

driven camera movements, which may be used to guide viewers

through 360° videos via innovative user interfaces. Deeper investi-

gations could even identify the essential elements for gaining view-

ers’ a�entions in 360° videos streamed to HMDs.



MMSys’17, June 20-23, 2017, Taipei, Taiwan W. Lo et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: (a), (d), (g), (j): sample 360° video frames; (b), (e), (h), (k): image saliency maps; and (c), (f), (i), (l): motion maps.

Samples from Chariot Race: (a), (b), (c); from Roller Coaster: (d), (e), (f); fromHog Rider: (g), (h), (i); and fromKangaroo Island:

(j), (k), (l).

Our dataset contains content and sensor data from ten videos

available on YouTube1 and 50 viewers between ages of 20 and 48.

More precisely, we analyze the 10 videos to extract the crucial fea-

tures: the image saliencymap [9] that identi�es the objects a�ract-

ing the viewers’ a�ention the most; and the motion map [16] that

high-lights the moving objects. We also log the sensor readings

from the HMDs, and process them (along with the 360° videos) to

derive viewer orientation and viewed tile numbers. Our dataset is

unique because we collect both content and sensor data.

2 RELATED WORK

To our best knowledge, content and sensor traces of 360° video

streaming to HMDs are not available to the publics. In this section,

we survey some partially related content and sensor datasets.

1We use these videos for research purpose only.

Content traces. To know the impacts of video content on view-

ers’ a�entions, there are several content datasets that can be used

for user studies. Riegler et al. [20] promote context of experience,

which captures how well people percept video content, and con-

sider the relation between video content and viewer intent. Ah-

madi et al. [8] focus on gamers of side-scrolling gamers, and study

the interplay between visual object regions and user a�entions.

While these papers [8, 20] include content traces, they are not for

360° videos, nor for viewers with HMDs.

Sensor traces. Di�erent viewing conditions a�ect viewer at-

tentions of video content. Vigier et al. [23] focus on eye tracking

when viewers watching HD and UHD videos on larger screens,

with wider visual angles. Ahmadi et al. [8] present an eye track-

ing dataset based on game-speci�c visual a�ention models. �ey

consider the players’ gaze points and mouse/keyboard commands.

However, these papers [8, 23] do not consider 360° video streaming
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to HMDs. Yu et al. [11] and Corbillon et al. [24] use a 360° dataset

from a company, which is not publicly available.

3 CONTENT TRACE COLLECTION

In this section, we describe our content traces. Fig. 1 gives sample

video frames, image saliency maps, and motion maps from four

360° videos.

3.1 Video Traces

We collect ten 360° videos with diverse characteristics from

YouTube [7]. Table 1 summarizes the 360° videos. All the videos

are in 4K resolution at 30 frame-per-second (fps). �e videos come

in di�erent lengths, so we extract 1-min segment from each of

them for experiments. �e 360° videos are divided into 3 cate-

gories: (i) CG, fast-paced (ii) NI, fast-paced, and (iii) NI, slow-paced.

�e 360° videos are encoded in H.264 and stored in MP4 container

�les. We do not re-encode the videos, but report their size in Ta-

ble 1. We note that H.264 codecs only support rectangular video

frames. �erefore, YouTube adopts the equirectangular projection

thatmaps the longitude and latitude of the sphere videos to the hor-

izontal and vertical coordinates of the rectangular video. Although

equirectangular projection leads to serious shape distortion (espe-

cially when close to the two poles), it’s still widely used due to its

simplicity.

3.2 Image Saliency Maps

Image saliency maps (see Figs. 1(b), 1(e), 1(h), 1(k)) indicate the at-

traction levels of the video frames. We process the ten 360° videos

and generate the image saliency map (as videos) using Convolu-

tional Neural Network (CNN) [21], which is widely used on im-

ages and videos. We use a deep neural network [12] based on

the pre-trained VGG-16 network [21], which is combined with

the weighted features from di�erent levels of the CNN. �e image

saliency map is a gray-scale image (from 0 to 255), varying from

black indicating the least interesting pixels to white indicating the

most interesting pixels. For each 360° video, we �rst split each

video into 1,800 images. We then apply the Keras-based [10] script

developed in Cornia et al. [12] to generate the image saliency map.

Last, we concatenate the 1,800 image saliency maps into a 1-min

video, and encode it using H.264 in MP4 format.

3.3 Motion Maps

We analyze the optical �ow [17] of the consecutive video frames

from each 360° video. Optical �ows indicate the relative motions

between the objects in 360° videos and the viewers. �ey can be at-

tributed to either local motions (individual objects move) or global

motions (the camera moves), which may catch viewers’ a�entions.

We generate the motion maps (see Figs. 1(c), 1(f), 1(i), 1(l)) using

OpenCV [22]. �e motion maps are black-and-white images (0 or

1), where a white pixel indicates the pixel is on one of the opti-

cal �ows. In particular, we split each 360° video into 1,800 images,

and generate 1,800 black-and-white images using OpenCV-based

script. Last, we concatenate these motion maps into a 1-min video,

and encode it using H.264 in MP4 format.

4 SENSOR TRACE COLLECTION

In this section, we describe howwe collect sensor data fromHMDs

while viewers are watching 360° videos.

4.1 Testbed

Figure 2: A photo of our 360° video streaming testbed. Dur-

ing the experiments, most subjects prefer to stand when

watching videos.

We�rst give an overview on the architecture of our testbed. �e

360° video testbed contains four major components: HMD, 360°

video player, frame capturer, and sensor logger. Fig. 2 shows a

photo of our testbed with the four components highlighted. We

detail these components in the following.

• HMD. We use Oculus Ri� DK2 [3] to be our HMD. We

follow the o�cial installation guide from Oculus to set up

the hardware and install the So�ware Development Kit

(SDK). �is is done on a PC workstation with an Intel E3

CPU, 16 GB RAM, and an NVIDIA GTX 970 GPU.

• 360° video player. Oculus Video [5] is an o�cial app

from Oculus. We con�gure it to render 360° videos in

both HMD and a mirrored screen. We note that Oculus

Video supports equirectangular 360° videos (projected to

sphere surface) if the �lenames have a su�x of 360, e.g.,

coaster 360.mp4. Otherwise, the videos are played as

conventional videos instead of 360° ones.

• Frame capturer. We use GamingAnywhere [15] as our

frame capturer, in order to record the videos rendered

to the viewer. �e frame capturer stamps each recorded

framewith the timestamp, whichwill be used to align data

from various sources. We con�gure GamingAnywhere to

save YUV �les at 30 fps.

• Sensor logger. We use OpenTrack [19], an open-source

head tracking tool, to record the viewer orientations, in-

cluding yaw, pitch and roll in the range of [-180, 180] from

the HMD sensors. Moreover, we also record and times-

tamp the viewer positions, including the x , y, and z co-

ordinates. We, however, notice that the 360° video player

ignores the viewer positions; hence, most viewers in our

dataset stay at roughly the same position in the dataset.
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Table 1: Speci�cations of Ten 360° Videos from YouTube

Category Videos Used Segment Size (MB) Link

NI, fast-paced

Mega Coaster 1:30 - 2:30 160 h�ps://youtu.be/-xNN-bJQ4vI

Roller Coaster 0:20 - 1:20 153 h�ps://youtu.be/8lsB-P8nGSM

Driving with 0:48 - 1:48 117 h�ps://youtu.be/LKWXHKFCMO8

NI, slow-paced

Shark Shipwreck 0:30 - 1:30 114 h�ps://youtu.be/aQd41nbQM-U

Perils Panel 0:10 - 1:10 60 h�ps://youtu.be/kiP5vWqPryY

Kangaroo Island 0:01 - 1:01 126 h�ps://youtu.be/MXlHCTXtcNs

SFR Sport 0:16 - 1:16 51 h�ps://youtu.be/lo5N90TlzwU

Hog Rider 0:00 - 1:00 138 h�ps://youtu.be/yVLfEHXQk08

CG, fast-paced
Pac-Man 0:10 - 1:10 50 h�ps://youtu.be/p9h3ZqJa1iA

Chariot Race 0:02 - 1:02 149 h�ps://youtu.be/jMyDqZe0z7M

Several enhancements have been added by us into Open-

Track project. For example, we enhance the code to save

timestamped logs by increasing the granularity of timers

to meet our needs.

When a viewer watches a 360° video as shown in Fig. 2, the

viewer can watch at any orientation by rotating his/her head. �e

rendered videos on the mirrored screen are captured by frame cap-

turer and stored to disk. �e sensor logger records and stores the

viewing orientations. Note that the timestamps added by frame

capturer and sensor logger are from the same PC workstation.

Hence, they can be readily used for alignments.

4.2 Procedures and Subjects

We collect sensor traces from 50 subjects. �e subjects are asked

to watch all the ten 360° videos (see Table 1), where each video

lasts for 1 minute. All subjects are told to stand and then are given

enough space to turn aroundwhenwearing the HMD. A�er watch-

ing the 360° videos, subjects are asked to �ll out a questionnaire.

Since most participants are not familiar with HMD, collecting the

dataset is time consuming. On average, it takes us 30 minutes to in-

troduce our system to a subject, guide him/her to watch ten 1-min

videos, and collect the questionnaires.

Most subjects are in their early twenties, and 52% of them are

male. Around 94% of the subjects seldom use HMDs, and about

56% of them use HMDs for the �rst time. �e responses from all

subjects indicate the most interesting topic of 360° videos are gam-

ing, simulations, and landscapes. Fig. 3 gives an overview on the

popularity of three video categories from our subjects. Because of

the motion sickness and discomfort of watching video in HMDs,

about 51% of viewers prefer not to wear HMD for more than 30

minutes at a time.

5 DATA FORMAT AND BASIC STATISTICS

In this section, we present the data format and some statistics

of both content and sensor datasets. �e content dataset is com-

pressed using H.264, while the sensor dataset is stored as Comma-

Separated Values (CSV) �les in ASCII.

5.1 Content Dataset

�e content dataset contains twenty H.264 videos in MP4 con-

tainer, where each 360° video is analyzed for two content �les: (i)

CG (Fast) NI (Fast) NI (Slow)

Category

0

10

20

30

40

50

V
o
te
s

Figure 3: �e popularity of three video categories.

the image saliency map and (ii) the motion map. Table 2 gives the

�lenames and sizes of these 20 video �les.

Table 2: Content Data Files of Ten 360° Videos

Video Filename Size (MB)

Mega Coaster
coaster2 saliency.mp4 45.43

coaster2 motion.mp4 42.90

Roller Coaster
coaster saliency.mp4 52.19

coaster motion.mp4 23.83

Driving with
driving saliency.mp4 43.51

driving motion.mp4 71.57

Shark Shipwreck
diving saliency.mp4 21.99

diving motion.mp4 7.99

Perils Panel
panel saliency.mp4 27.07

panel motion.mp4 1.98

Kangaroo Island
landscape saliency.mp4 60.39

landscape motion.mp4 57.62

SFR Sport
sport saliency.mp4 28.58

sport motion.mp4 19.65

Hog Rider
game saliency.mp4 45.94

game motion.mp4 27.70

Pac-Man
pacman saliency.mp4 33.95

pacman motion.mp4 5.43

Chariot Race
ride saliency.mp4 49.28

ride motion.mp4 45.17
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1: timestamp, raw x, raw y, raw z, raw yaw, raw pitch, raw roll

2: 1487571103.944, 26.289, 28.063, -15.581, -5.246, -4.298, -1.315

3: 1487571103.953, 26.291, 28.063, -15.567, -5.297, -4.287, -1.333

4: 1487571103.957, 26.292, 28.063, -15.559, -5.323, -4.284, -1.341

5: 1487571103.961, 26.293, 28.063, -15.552, -5.350, -4.277, -1.348

6: 1487571103.965, 26.294, 28.063, -15.545, -5.378, -4.270, -1.354

7: . . .

Figure 4: Sample lines of a raw sensor data log �le.

1: no. frames, raw x, raw y, raw z, raw yaw, raw pitch, raw roll, cal. yaw, cal. pitch, cal.
roll

2: 00001, 16.458 ,30.032, -19.276, -9.661, 5.853, -3.068, -4.65473888889, 4.06641388889, -3.068
3: 00002, 16.458 ,30.032, -19.276, -9.661, 5.853, -3.068, -4.65473888889, 4.06641388889, -3.068
4: 00003, 16.449 ,30.02, -19.362, -9.763, 5.746, -3.184, -4.75673888889, 3.95941388889, -3.184
5: 00004, 16.449 ,30.02, -19.362, -9.763, 5.746, -3.184, -4.75673888889, 3.95941388889, -3.184
6: 00005, 16.433 ,30.007, -19.473, -9.676, 5.659, -3.308, -4.66973888889, 3.87241388889, -3.308
7: . . .

Figure 5: Sample lines of a view orientation log �le.

1: no. frames, tile numbers
2: 00001, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92
3: 00002, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92
4: 00003, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92
5: 00004, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92
6: 00005, 9, 28, 29, 30, 31, 47, 48, 49, 50, 51, 67, 68, 69, 70, 71, 72, 87, 88, 89, 90, 91, 92
7: . . .

Figure 6: Sample lines of a viewed tile log �le.

5.2 Sensor Dataset

�e sensor dataset contains 500 raw sensor log �les, since we have

50 subjects and ten 360° videos. Fig. 4 gives a sample raw sen-

sor log �le, which contains 7 �elds: (i) timestamp, (ii) raw x, (iii)

raw y, (iv) raw z, (v) raw yaw, (vi) raw pitch, and (vii) raw roll. In

our pilot experiments, we �nd that di�erent HMD viewers tend to

introduce di�erent amount of bias. We then introduce a calibra-

tion procedure before each viewer starts watching 360° videos. In

particular, we insert a 35-sec calibration video at the beginning of

each 360° video. �e calibration video sequentially displays an ob-

ject (cartoon sheep) at (1920, 960), (2880, 480), (2880, 1440), (3840,

960), (960, 480), (960, 1440), and (1920, 96) of coordinates. We show

the object at each position for 5 seconds, and we ask the subject

to rotate his/her head in order to place the object at the center of

their FoV. We then average the bias between the captured sensor

data and the ground truth from calibration video. Using the bias,

we compensate the raw sensor readings (yaw, pitch, and roll) for

calibrated (cal.) sensor readings (yaw, pitch, and roll).

We note that the sensor data are collected (by OpenTrack [19])

at 250 Hz, and the captured video frames are saved (by Gamin-

gAnywhere [15]) at 30 Hz. Users of the raw sensor log �les need

to align the raw sensor log �les with the captured video frames. To

simplify the usage of our dataset, we generate view orientation log

�les at 30 Hz by aligning the timestamps in the raw sensor log �les

and captured video frames. Moreover, we include the calibrated

sensor readings derived above in view orientation log �les. Fig. 5

gives a simple view orientation log �le, which contains 10 �elds:

(i) no. frames, (ii) raw x, (iii) raw y, (iv) raw z, (v) raw yaw, (vi) raw

pitch, (vii) raw roll, (viii) cal. yaw, (ix) cal. pitch, and (x) cal. roll.

While view orientation log �les give the center of viewer’s FoVs,

determining which tiles are needed to render the FoVs require ex-

tra calculations. We assume the FoVs are modeled by 100°x100°

circles. �erefore, we process the view orientation log �les, and

generate viewed tile log �les to further simplify the usage of our

dataset. For all 360° videos, we divide each frame, which is mapped

in equirectangular model, into 192x192 tiles, so there are 200 tiles

in total. �en we number the tiles from upper-le� to lower-right.

Fig. 6 gives a sample viewed tile log �le, which contains 2 �elds:

(i) no. frames and (ii) tile numbers. Each tile number determines

a unique tile of the whole 360° video, and an FoV overlaps with

multiple tiles as shown in this �gure.

Last, Table 3 gives �lenames of sensor data. For each video and

each user, there are three sensor data �les for: (i) raw sensor, (ii)

view orientation, and (iii) viewed tiles. Filenames from user 0 are

given as examples, while �les from other users are also available

in our dataset. �is table also reports the total size of these log �les

stored in ASCII format.

Table 3: Sensor Data Files of 50 Subjects

Video Sample Filename (User 0) Total Size (MB)

Mega Coaster

coaster2 user00 raw.csv 224.93

coaster2 user00 orientation.csv 16.22

coaster2 user00 tile.csv 20.16

Roller Coaster

coaster user00 raw.csv 228.66

coaster user00 orientation.csv 16.14

coaster user00 tile.csv 19.75

Driving with

drive user00 raw.csv 226.99

drive user00 orientation.csv 15.89

drive user00 tile.csv 19.78

Shark Shipwreck

diving user00 raw.csv 224.69

diving user00 orientation.csv 16.19

diving user00 tile.csv 19.03

Perils Panel

panel user00 raw.csv 229.45

panel user00 orientation.csv 16.13

panel user00 tile.csv 20.42

Kangaroo Island

landscape user00 raw.csv 228.71

landscape user00 orientation.csv 16.29

landscape user00 tile.csv 20.41

SFR Sport

sport user00 raw.csv 225.77

sport user00 orientation.csv 15.86

sport user00 tile.csv 21.97

Hog Rider

game user00 raw.csv 230.10

game user00 orientation.csv 15.79

game user00 tile.csv 19.78

Pac-Man

pacman user00 raw.csv 218.60

pacman user00 orientation.csv 16.02

pacman user00 tile.csv 20.32

Chariot Race

ride user00 raw.csv 230.65

ride user00 orientation.csv 15.79

ride user00 tile.csv 19.55

6 SAMPLE APPLICATIONS

Our collected dataset can be used in various 360° video applica-

tions with viewers using HMDs. More speci�cally, researchers,

engineers, and hobbyists can: (i) analyze our dataset for some in-

sights before designing their systems and algorithms, (ii) employ

our dataset to train and �ne-tune their systems and algorithms,
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and (iii) adopt our dataset in their trace-driven simulations and em-

ulations. In the rest of this section, we brie�y present three sample

applications of our dataset.

Viewed tile predictions for 360° video streaming to HMDs.

�e de-facto DASH (Dynamic Adaptive Streaming over HTTP) ap-

proach divides each video into segments, and every segment lasts

for a few (say 10) seconds. �e DASH client requests for the seg-

ments over HTTP/TCP connections. Compared to the UDP-based

RTP (Real-time Transport Protocol) approach, DASH is less sensi-

tive to network dynamics, but more vulnerable to long response

time. For example, when a viewer with HMD rotates his/her head

to new tiles that have not been requested, it may take the stream-

ing system several seconds to deliver these new tiles. �e state-of-

the-art viewed tile prediction work [18] employs simple extrapola-

tions, which may be less accurate as only sensor (no content) data

are leveraged. Our comprehensive dataset can be used for devel-

oping and evaluating new algorithms for viewed tile predictions,

so as to mitigate the limitations of DASH streaming in 360° video

streaming to HMDs.

Rate-distortion optimization. Our dataset also contains

video content with diverse characteristics, and can be used for

Rate-Distortion (R-D) optimization for 360° video streaming to

HMDs. Compared to traditional video streaming, viewers of 360°

videos only see portions (FoVs) of the whole videos. Hence, the

room for R-D optimization is even larger and is worth to investi-

gate.

Crowd-driven camera movements. Some novel applications

may be proposed based on observations on our dataset, which con-

tain sensor data from many viewers, or crowds. For example, com-

mon camera movements could be identi�ed among the view orien-

tation log �les among viewers of the same 360° videos. �e result-

ing camera movements can be then used to guide viewers through

the 360° videos, providing a new interaction model, which may

be appealing to viewers who do not want to make too many de-

cisions on where to look. Our dataset can be used to understand

how homogeneous the viewer orientations are, so as to quantify the

potential of this (and other) novel application.

7 CONCLUSION

In this paper, we presented our dataset collected from ten YouTube

360° videos and 50 subjects. Our dataset is unique, because both

content data, such as image saliency maps and motion maps, and

sensor data, such as positions and orientations, are provided. Extra

e�orts are put into aligning the content and sensor data based on

the timestamps in raw log �les. To our best knowledge, there ex-

ists no similar datasets in the literature. �e resulting dataset can

be leveraged by researchers, engineers, and hobbyists in di�erent

development phases: from design, to �ne-tuning, to evaluations.

Many 360° video streaming applications, both traditions ones (like

R-D optimization) and novel ones (like crowd-driven cameramove-

ments) can bene�t from our comprehensive dataset. Our current

work can be extended in several ways. For example, the eyes move-

ment are good hints of future head movement. Adding eye track-

ing data to our dataset will further broaden the applications of our

dataset. Last, we thank the subjects who volunteered in our user

study.
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