
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

High performance traffic classification based on message size sequence and
distribution

Chun-Nan Lua,⁎, Chun-Ying Huanga, Ying-Dar Lina, Yuan-Cheng Laib

a Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
b Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan

A R T I C L E I N F O

Keywords:
Traffic classification
Packet size
Message size
Distribution
Sequence

A B S T R A C T

Classifying network flows into applications is a fundamental requirement for network administrators.
Administrators used to classify network applications by examining transport layer port numbers or application
level signatures. However, emerging network applications often send encrypted traffic with randomized port
numbers. This makes it challenging to detect and manage network applications. In this paper, we propose two
statistics-based solutions, the message size distribution classifier (MSDC) and the message size sequence
classifier (MSSC) depending on classification accuracy and real timeliness. The former aims to identify network
flows in an accurate manner, while the latter aims to provide a lightweight and real-time solution. The proposed
classifiers can be further combined to build a hybrid solution that achieves both good detection accuracy and
short response latency. Our numerical results show that the MSDC can make a decision by inspecting less than
300 packets and achieve a high detection accuracy of 99.98%. In contrast, the MSSC classifier can respond by
only looking at the very first 15 packets and have a slightly lower accuracy of 94.99%. Our implementations on a
commodity personal computer show that running the MSDC, the MSSC, and the hybrid classifier in-line
achieves a throughput of 400 Mbps, 800 Mbps, and 723 Mbps, respectively.

1. Introduction

Classifying a network flow into its source application is essential for
application-aware network management. By associating network flows
with source applications, network administrators can enforce various
access control policies to better utilize the available network resources.
However, it is not an easy task to correctly classify network flows into
the corresponding applications because the use of obfuscation techni-
ques such as port number randomization, payload encryption, and
network tunneling. As a result, characterization of Internet traffic has
become one of the major challenging issues in communication net-
works over the past few years (Azzouna and Guillemin, 2003).

A number of approaches have been proposed to classify network
flows. The most primitive solution is port-based classification, which
builds mappings from transport layer port numbers to applications.
For example, map port 53 to DNS flows, port 20 and 21 to FTP flows,
and port 25 to SMTP flows. The advantage of this solution is simple.
However, it has an obvious flaw because an application is able to
bypass the detection by using an unmapped port number or even
masquerading an irrelevant well-known port number. One common
case is the HTTP-tunneling, which is used to carry non-HTTP network

flows over regular HTTP network flows using port 80. Therefore, port-
based classification often fails to provide an accurate and reliable
solution.

To overcome the drawback of port-based classification, researchers
have proposed to detect network flows by finding specific signatures in
payloads (Sen et al., 2004). Signature-based classification is considered
to be more reliable. However, it did not solve all the issues. First, an
application can employ encryption or encapsulation techniques to
intentionally obfuscate packet contents; second, this solution requires
precise and up-to-date signatures, which might not be applicable for
proprietary applications; third, it is computation-intensive to compare
characters in each payload against all the available signatures. These
unresolved issues pushed research communities to seek for better
solutions without inspection payloads.

Many recent approaches classify network flows based on statistical
features. These solutions assume that an application would have
certain unique statistical properties that can be obtained from empiri-
cal data and then used to classify flows into corresponding applications.
Common statistical features include the volume, the duration, the
burstiness, the payload size, and the jitter of network flows. Statistical-
based traffic classification becomes a good alternative because it is

http://dx.doi.org/10.1016/j.jnca.2016.09.013
Received 29 September 2015; Received in revised form 21 April 2016; Accepted 29 September 2016

⁎ Corresponding author.
E-mail addresses: cnlu.cs95g@nctu.edu.tw (C.-N. Lu), chuang@cs.nctu.edu.tw (C.-Y. Huang), ydlin@cs.nctu.edu.tw (Y.-D. Lin), laiyc@cs.ntust.edu.tw (Y.-C. Lai).

Journal of Network and Computer Applications 76 (2016) 60–74

1084-8045/ © 2016 Elsevier Ltd. All rights reserved.
Available online 15 October 2016

crossmark

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.09.013
http://dx.doi.org/10.1016/j.jnca.2016.09.013
http://dx.doi.org/10.1016/j.jnca.2016.09.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.09.013&domain=pdf

possible to classify encrypted or obfuscated network flows.
Roughan et al. (2004) statistically abstracted application features

based on application layer protocol attributes and used the features to
classify network flows into a specific class-of-service, while Moore and
Zuev, 2005 combined statistical analysis with the Bayes theorem to
classify network flows. Selected features for the classifiers include the
transport layer port number, the flow duration, the packet inter-arrival
time, the payload size, and the effective bandwidth. Bernaille et al.
(2006) adopted unsupervised clustering techniques to identify an
application by using the sizes of the first five data packets of each
TCP flow. The solution can make a decision in a pretty short time.
However, the solution is sensitive to packet loss and out-of-order
delivery.

Other researchers attempt to classify network flows based on
observed application behaviors. They monitored and modeled applica-
tion behavior profiles and then used the profiles to classify flows.
Karagiannis et al. (2005) presented BLINC, which analyzed the
communication patterns of transport layer host behavior at three levels
of details: social, functional, and application, and then used these
application features to classify network flows into groups.

However, the classification accuracy directly based on statistical
features or observed behaviors are not satisfactory because of sophis-
ticated application behaviors. Network behavior of one application may
be similar to that of another application. For example, the behavior of
an HTTP file transfer could be similar to that of an FTP transfer. In
contrast, not all flows generated by an application behave similar. A
BitTorrent client may simultaneously establish flows to retrieve the list
of servers, look up resources, check peer status, and exchange files.
Making good use of the scattered information can also help classifica-
tion. Thus, to have a better classification accuracy, an approach, namely
message size distribution classifier (MSDC) (Lu et al., 2012), was
proposed to classify network flows into sessions and further obtain a
complete picture of application behaviors.

MSDC contains two phases, i.e., flow classification and flow group-
ing. The former classifies network flows into applications by packet size
distribution (PSD) and the latter groups related flows as a session by
port locality. A flow is identified by the five-tuple information, which
includes source IP, destination IP, source port, destination port, and
transport layer protocol. When the PSD of one flow is determined, it is
compared against the representative of each pre-selected application to
decide which application the flow belongs to. Besides, flows are
grouped as a session by checking port locality because underlying
operation systems often allocate consecutive port numbers for flows of
an application. If flows of a session are classified into different
applications, an arbitration algorithm based on majority votes is then
invoked to make corrections. Evaluations and online benchmarks show
that MSDC can obtain accurate results and make a decision by
inspecting at most 300 packets and the overall throughput exceeds
400 Mbps on a mainstream computer. Although MSDC can classify
network flows accurately, it works in a not-so-fast manner. Therefore,
we propose another lightweight and real-time solution called message
size sequence classifier (MSSC).

MSSC classifies network flows into applications by message se-
quences observed during the activities between a pair of two endpoints.
The packets exchanged between the two endpoints can be used to
derive a sequence based on packet directions and packet sizes. Data
exchanged between two endpoints must follow the protocol state
machine and the protocol messages defined by involved network
applications. MSSC compares the message size sequences (MSSes) of
a flow among the representatives of all pre-selected applications to
decide which application it belongs to. We also attempted to build a
hybrid classifier by combing MSDC and MSSC to provide a balanced
solution in terms of classification accuracy and response latency. Based
on our analysis and evaluation, MSSC is able to respond by looking
only at the very first 15 packets and have a better throughput of
800 Mbps and the hybrid classifier can achieve 723 Mbps.

The rest of this paper is organized as follows. In Section 2, we
survey and review relevant researches on network flow classification.
Section 3 describes the features that the proposed solutions used to
classify network flows. The proposed MSDC and MSSC algorithms are
then presented in Section 4. Section 5 provides an analysis for the
proposed algorithms. Performance of the proposed solutions is dis-
cussed in Section 6. Finally, a conclusion is given in Section 7.

2. Related work

Various statistical-based network flow classification approaches
have been proposed in recent years (Gomes et al., 2013). The
advantage of these methods is the ability to classify an application
without the need to inspect packet payloads. We classify all the
approaches into two classes, i.e., the flow-level classification and the
session-level classification. The former classifies each flow indepen-
dently while the latter attempts to group network flows as sessions and
then classifies network flows in a session-based manner.

2.1. Flow-level classification

Classifying network flows based on application behaviors is not
new. Researchers assume that application behaviors are differentiable
and the behaviors can be used to distinguish one application from
another. Paxson (1994) modeled and analyzed individual connection
characteristics, such as the number of bytes and packets transferred,
connection duration, and packet inter-arrival time for different appli-
cations. The authors (Este et al., 2009) showed that the amount of
information carried by the main packet-level features of Internet traffic
flows, such as packet size and inter-arrival time, tends to remain rather
constant irrespective of the point of observation and to the capture
time.

Hereafter, more works endeavor to classify exclusively network
traffic using statistics. They generally consist of two phases: training
and classification. A representative model is first built using extracted
statistical attributes of flows by learning the inherent structural
patterns of datasets and the model is then used to classify network
flows. Dewes et al (2003) analyzed and classified different Internet chat
traffic using multiple flow characteristics such as flow duration, packet
inter-arrival time, packet size, and bytes transferred. Roughan et al.
(2004) used nearest neighbor and linear discriminant analysis to map
applications to different Quality of Service classes using features such
as average packet size, flow duration, bytes per flow, packets per flow,
and root mean square packet size. Although Lin et al. (2009) also used
the feature of packet size to classify network flows, they paid more
attention on those packet sizes with larger proportions in a flow. When
the packet size distribution and packet size change cycle of a flow is
determined, it is compared against the representatives of all pre-
selected applications and the flow is classified as the application having
a minimum distance.

Some proposals utilized Machine Learning techniques to classify
network traffic. The idea of applying Machine Learning techniques for
traffic classification was introduced in (Frank, 1994). Machine
Learning techniques are often divided into two phases, i.e., the training
phase and the classification phase. Different Machine Learning tech-
niques may perform different and often require distinct parameter
configurations.

A number of works adopted probability models to identify and
classify network traffic. With training data, probability models are
derived for pre-selected applications, and flows are classified as the
application having the maximum likelihood. These works assume that
the application protocols exhibit consistent and observable structure
and patterns in the series of packets they send. Wright et al. (2004)
uses the left-right Hidden Markov Models (HMMs) with a large
number of states and discrete emission probability distributions to
identify TCP connections. Packet sizes and inter-arrival time are

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

61

defined as the states of the HMMs. Diainotti et al. (2008) built ergodic
HMMs and Gamma-distributed emission probabilities for unidirec-
tional TCP and UDP traffic. Munz et al. (2010) classified TCP
connections with help of observable Markov models. Each state reflects
certain packet attributes, such as the payload length, the packet
direction, and the position within the TCP connection. Peng et al.
2015 applied mutual information and correlation analysis to analyze
and find out the feature redundancies, and used machine learning
classifiers to verify the classification accuracies. They showed that 5–7
packets are the best packet numbers for early stage traffic identifica-
tion.

2.2. Session-level classification

A few works analyzed traffic at the session-level. Kannan et al.
(2006) used a flow-level trace to derive abstract descriptions of the
session-structure for different applications present in the trace. Based
on flows' statistical information, Kannan's approach can discover and
characterize flow/session causality relationship and further infer
applications' internal session structures. Zhang et al. (2013a, 2013b,
2013c, 2015) incorporated flow correlation into the Naïve Bayes (NB)
based classifiers with feature discretization, including number of
transferred packets, volume of transferred bytes, packet size, and
inter-packet time. Flow correlation can be discovered by the 3-tuple
heuristic: destination IP, destination port and transport layer protocol.
If the flows share the same 3-tuple information, they would be regarded
as correlated flows. Besides, the authors employed comprehensively
theoretical and empirical study to demonstrate the performance and
extend the power to the classification of unknown zero-day application
traffic. Besides, Lu et al. (2012) proposed a session-level flow classi-
fication algorithm. It measures the packet size distribution to classify
traffic, and it can achieve higher accuracy rates and better online
speedup effect without human intervention.

Karagiannis et al. (2005) introduced a traffic classification approach

based on the analysis of host behavior. It associates Internet host
behavior patterns with one or more applications, and refines the
association by heuristics and behavior stratification. However, it cannot
classify a single TCP connection because it has to collect aggregated
information from multiple flows for each host before it can make a
decision.

3. Features

The proposed solution classifies network flows based on message
size features of network flows. We assume that network application
protocols can be classified as control protocols, data protocols, and
control-data mixed protocols. Each application protocol would have
several types of protocol messages. The messages carried in a protocol
message would have fixed, limited, or similar formats and sizes. In
addition, the order of delivering protocol messages would follow the
state machine defined by the corresponding application protocol. Based
on the assumption, we made several observations to inspect whether
protocol messages have the aforementioned characteristics.

3.1. Packet size variation (PSV) and Packet size distribution (PSD)

We first observe packet sizes sent from different network applica-
tions. The packet sizes throughout this work means the payload of a
packet. We manually capture traces of a single application in a crafted
environment to collect the traffic of a specific application. The major
advantage of manual collection is that all collected traffic belongs to the
same application. Each application is executed in turn, and the
generated traffic is recorded when it passes through a network inter-
face. Flows generated by a network application often contain numerous
packets of different sizes. Fig. 1(a) shows three instances of SMTP
protocol, namely S1, S2, and S3, with different email addresses and
mail bodies; Fig. 1(b) shows the first 17 packets of the three instances
of Fig. 1(a). The horizontal axis is the packet sequence number and the

Fig. 1. The same type of packet has different sizes of parameters. (a) Three instances of SMTP protocol. (b) The first 17 packets of the three instances of (a).

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

62

vertical axis is the size of packets. Packets belong to the same
application protocol have similar profiles, as shown in Fig. 1(a).
From Fig. 1(b), although packets were generated from different
instances, most of them have similar sizes. Those packets with different
sizes are commands with different parameters. For example, the “MAIL
FROM” command with different senders and recipients provided.

The steps to initiate an SMTP mail transaction are regulated, but
the length of parameters carried by commands can be various. If the
variation of parameter lengths, which affect packet sizes, can be
bounded, packets of the same application would have similar size
distribution.

Fig. 2(a), (b), and (c) show the sequences of packet sizes of three
different applications, Shoutcast, FTP, and eMule, respectively. The
horizontal axis is the packet sequence number and the vertical axis is
the corresponding packet size. It shows that different applications have
different PSDs. In addition, PSV and PSD can be gathered to provide
quantitative information about packet sizes shown within flows gener-
ated in a session.

3.2. Message sequence (MS)

We then attempted to identify the relationships between packet
sizes and the network application state machine. A network application
usually involves with two end points. The two end points can be a client
and a server or two peers. Data exchanged between the two ends must
follow the protocol state machine and the protocol message format
defined by involved network applications. Suppose that we are able to
monitor network flows between two end points. Packets of a flow can
be used to generate a size sequence based on packet directions and
packet sizes. Based on our assumption, a protocol often has limited
number of message formats and sizes. Therefore, sequences retrieved
from different flows of an application would be similar. Hence, it is
possible to differentiate and classify network applications based on the
identified packet size sequences.

To verify the assumption, we started from analyzing SMTP. SMTP,
initially defined by RFC 821, is a standard for delivering emails on
Internet. Suppose that we have a client C and a SMTP server S. The
client sends e-mails via the server S and Fig. 3 shows activities of a
sample SMTP session for sending an email.

A lot of messages are involved in the sample session. In the client-
server model, messages sent from a client to a server are often called
request messages and messages responded from the server are called
response messages. In the sample SMTP session, request messages
often consist of a command and optionally followed by one or more
arguments. A command is often composed of four printable ASCII
characters, and the total length of the arguments could be up to 40
printable characters. In contrast, a response message usually consists
of a three-digit status indicator, a keyword, and optionally followed by
a brief description. We further examined the sizes of request and
response messages. Although some message sizes vary greatly, there
are still several messages having quite stable sizes. We believe that
messages with stable sizes can be used to classify a network application.

Fig. 4 shows the observed packet size sequences for six different
applications. The horizontal axis shows the packet sequence numbers
and the vertical axis shows the packet sizes. Negative packet sizes
indicate that the packets are transmitted in a reverse direction. It is
obviously that different applications generate dissimilar message
sequences. Readers should notice that many applications adopt a
mixed control-data protocol design. This means that the resulted
packet size sequences would contain sizes for both control and data
messages. Size variations for control messages are usually limited, but
variations for data messages are unpredictable.

Fig. 4(a) shows the packet sizes of an SMTP session. At the
beginning, several control messages and responses are exchanged
and then followed by the mail body if the server allows the client to
send an email. We can clearly observe that the packet size variations at
the beginning are limited but a great gap is shown when the mail body
is being sent.

Fig. 2. Different types of applications have distinct PSD. (a) PSD of one Shoutcast instance. (b) PSD of one FTP instance. (c) PSD of one eMule instance.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

63

3.3. Summary

The above observations show that (1) packet sizes of the same
application may be various because of different lengths of parameters,
(2) flows of the same application have similar PSDs, but flows of
different applications have diverse PSDs, and (3) message sequences of
flows sent from an application can be used to identify flows of the
application because protocol messages are generated following the
state machine of the application.

4. Classification approaches

With the selected features, we propose the MSDC and MSSC
solution. The design objectives for the two classifiers are different.
The former aims to provide an accurate output while the latter aims to
provide a lightweight and real-time solution. In addition, we also
combined the two classifiers to build a hybrid solution. Both MSDC and
MSSC need to collect application network flows to develop application
representatives. There are two ways that can be used: (1) capture all
network flows generated while an application is running, and manually
filter out irrelevant traces. We describe details of MSDC and MSSC in
Sections 4.1 and 4.2, respectively. A brief comparison of MSDC and
MSSC is presented in Section 4.3. Section 4.4 illustrates the design of
the hybrid solution composed of the two classifiers.

4.1. Message size distribution classifier (MSDC)

MSDC runs in two phases: an offline training phase to obtain
application representatives and an online session classification phase.
Fig. 5 shows the overview of MSDC. The left block shows the steps of
training phase and the right block shows the classification phase, which
includes three stages: the flow classification stage, the session grouping
stage, and the application arbitration stage.

The goal of the offline training phase is to find out application
representatives, which are unique to an application. Hence, the training
phase collects a set of network flows and extracts the representatives
from the five-tuple information (source IP, source port, destination IP,
destination port, transport layer protocol) as well as the PSDs of all
captured flows. The more application network flows are collected, the
better application representatives can be obtained. After extracting the
PSDs of flows, the online flow classification stage compares the flows
against obtained application representatives and classifies them into
the application having a minimum similarity distance. Meanwhile, the
session grouping stage attempts to group flows as a session based on

port locality. After the above two stages, each flow is classified as an
application and flows having adjacent ports are grouped into the same
session. If flows belong to the same session are classified into different
applications, the application arbitration stage is invoked to resolve
conflicts and all flows in the session are then classified into the
application having the largest number of flows in that session.

The details of MSDC are introduced in the following sections.
Section 4.1.1 describes how packet size sequences of flows are
transformed into a representative. The similarity distance metric and
the approach used to develop the application representatives are
described in Section 4.1.2. Sections 4.1.3 and 4.1.4 introduce the stage
of flow classification and session grouping, respectively. The applica-
tion arbitration stage is finally described in Section 4.1.5.

4.1.1. Flow representation – Dominating sizes (DS) and dominating
sizes' proportion (DSP)

MSDC groups IP packets having the same five-tuple information
into a flow. To determine whether two flows are similar, MSDC counts
a packet size distribution for packets of each flow. If two flows are
similar, their packet size distributions would be similar. To compute a
distribution, it is impossible to store all packet sizes of each flow due to
limited storage spaces. Thus, only sizes of dominating packets are kept
as the feature of the flow.

Assume a number of packets are examined for a flow f. First,
packets with payload sizes equal to zero or maximum segment size of
the links are discarded. The max segment size can be detected on
setting up a connection. Second, the number of valid packets for each
distinct packet size is counted and stored as a pair of (psf(i),
pro(psf(i))), where psf(i) is the ith distinct packet size sent in flow f
and pro(psf(i)) is the proportion of psf(i) over the total number of valid
packets of flow f. All pairs (psf(i), pro(psf(i))) are sorted in descending
order by pro(psf(i)) and split into two vectors, DSf and DSPf, which
present the dominating size vector and the corresponding dominating
sizes’ proportion vector for flow f, respectively. For example, if flow f
contains packets of h distinct packet sizes, we would have a set of h
pairs {(psf(1), pro(psf(1))), (psf(2), pro(psf(2))), …, (psf(h),
pro(psf(h)))}, and the DS and DSP vectors for the flow f are denoted
as DSf= < psf(1), psf(2), …, psf(h) > and DSPf= < pro(psf(1)),
pro(psf(2)), …, pro(psf(h)) > . For the ease of discussion, we use
DSf(g) and DSPf(g) to indicate the g-th entry in DSf and DSPf vector,
respectively. The obtained DS and DSP vectors are also called the PSD
feature of a flow. Table 1 summarized the notations of MSDC.

MSDC is designed to extract the unique characteristics of the packet
size distribution of an application and uses them to classify network

Fig. 3. Messages generated within a sample SMTP session.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

64

Fig. 4. Different message sequences of six applications.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

65

flows into applications. The premise of MSDC is that we have no access
to the payload of the captured packets. The more common size payload
packets we employ, the worst accuracy we have because not only an
application can be the final decision. Therefore, the common size
payload packets would be removed first to avoid confusion, which is
why MSDC discards zero and maximum segment size payload packets.

4.1.2. Application representatives
In order to measure the similarity for two different flows, a distance

metric is defined. However, special handling must be taken when the
lengths of DS vectors are not equal. Suppose that there are two distinct
flows f1, f2, and the number of entries in DS vectors of f1 and f2 are n
and m respectively (n≧m). The similarity distance between f1 and f2 is
defined as

∑

∑

DS DS DSP DSP

DS DSP

similarity = (−) + (−) +

+ .

g

m

f g f g f g f g

g m

n

f g f g

=1
() ()

2
() ()

2

= +1
()

2
()

2

1 2 1 2

1 1
(1)

The method used to group related flows is called automatic
clustering. Based on previous observations, we assume that flows of
the same behavior would have similar PSD features. Hence, a deviation
is defined to tell whether two flows should be grouped together or not.
If the PSD distance between two flows is equal to or less than one pre-
defined tolerant threshold (TT), they are grouped together. Otherwise,
they are classified into two different groups.

After classifying all flows into groups, a representative averaging
(RA) algorithm is used to derive the representative feature from a
group of flows. The RA algorithm is applied to each group and averages
PSD features of all flows in group G,
i.e.Rep DS K DSP K= {∑ (/), ∑ (/)}G f fi i for 1≦i≦K, where DSfi and
DSPfi are the DS and DSP vectors of flow fi which contributes to the

corresponding feature values within group G, and K is the total number
of flows in the group. The final representative for the application is
composed of all group-representatives.

4.1.3. Flow classification
To classify a flow, the PSD of the flow is computed first. The PSD is

then compared against each application representative derived in the
offline training phase using Eq. (1). The flow is finally classified into the
application that owns a representative having the shortest distance to
the PSD of the flow.

4.1.4. Session grouping
We also attempt to group flows into sessions. We assume flows

having the same source IP address and adjacent source port numbers
are in the same session. Similarly, flows have the same destination IP
addresses and adjacent destination ports are also grouped into the
same session. To reduce the possibility of incorrect session grouping,
we limit two parameters, port range and flow inter-arrival time, to
prevent irrelevant sessions from being grouped together. Port range is
used to limit the maximum difference between the lowest port number
and the highest port number in a group. Flow inter-arrival time ensures
that flows in a grouped have temporal locality.

4.1.5. Application arbitration
When multiple flows are grouped as a session, it is possible that

flows within a session are classified into different applications. This is
because the flow classification and session grouping is done indepen-
dently. A classification conflict happens if a grouped session contains
flows of two or more different applications. Although an application
may show several communication behaviors in a session, flows within
this session should be classified into the same application. MSDC
currently uses a majority voting strategy to resolve conflicts. If flows of
two or more different applications are grouped together, all flows are
treated as the application having the largest number of flows in the
session.

4.2. Message size sequence classifier (MSSC)

MSSC also runs in two phases: an offline training phase to obtain
application representatives and an online flow classification phase.
Fig. 6 shows the overview of the MSSC. The left and the right blocks
represent the stages of the offline training phase and the online
classification phase, respectively.

The offline training phase uses a set of network flows and extracts
applications’ representatives from the five-tuple information, the size
and the direction of each packet, and the message sequences (MSes) of
all captured flows. It is common that a protocol message can be sent in
a single packet, and hence packet sequences are another form of MSes.
After extracting the message size sequences (MSSes) of incoming flows,
the online flow classification mechanism compares the flows with pre-
selected application representatives and classifies them into the
application having a maximal likelihood.

Fig. 5. Components and operation flows of the MSDC solution.

Table 1
Notations used in MSDC.

Notations Description

ps i()f , where 0≦ps i()f ≦Max segment size The ith distinct packet size
of flow f

pro ps i(()),f where 0 < pro ps i(())f ≦100% The proportion of ps i()f

over the total number of
packets of flow f

DS ps ps ps h={ (1), (2),…, ()}f f f f The corresponding
dominating size vector of
flow f based on DSPf

DSPf ={ pro(psf(1)), pro(psf(2)), …, pro(psf(h))},
where (1) pro ps i((− 1))f ≧pro ps i(())f , and (2)

pro ps i∑ (())i
h

f=1 ≧ 90%

The dominating sizes’
proportion vector of flow f

DSf(g) The gth entry in the DSf
DSPf(g) The gth entry in the DSPf
f = <DSf, DSPf > Flow f

Fig. 6. Components and operation flows of the MSSC solution.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

66

The details of MSSC are introduced in the following sections.
Section 4.2.1 describes how a series of messages of flows are
transformed into message size sequences (MSSes). The method used
to measure the similarity of two different sequences is depicted in
Section 4.2.2. Section 4.2.3 explains how to derive application repre-
sentatives from flows. The flow classification is explained in Section
4.2.4.

4.2.1. Flow representation – Message size sequence (MSS)
We first define how a flow is represented in MSSC. We define a flow

as the collections of packets having the same five-tuple information.
Since a network flow is bi-direction, packets sent in a reverse direction
are considered as the same flow. Assume a number of packets have
been collected for a flow. First, packets with full-sized payloads or zero-
length payloads are skipped. We pay attention to those packet payload
sizes varied between zero-length and max segment size. All applica-
tions generate packets of full-sized and zero-sized payloads, and these
packets do not benefit classification tasks.

Second, the preserved packets are converted into a form of MSS by
extracting the packet sizes and packet directions. To simplify the
notation, packet sizes for packets sent in forward directions and reverse
directions are denoted as positive and negative numbers, respectively.
For example, if a flow fi contains packets of h distinct packet sizes, we
can derive the MSS of flow fi as MSS ps ps ps= < ± , ± ,…, ± >f f f

h
f

1 2i i i i
,

where psh
fi is the payload size of the h-th packet of flow fi and “ ± ”

denotes the packet direction. To ensure that the positive and negative
sign would not flip-flop for network flows of the same application, we
always use positive numbers for packets having the same direction to
the very first packet in a flow. Table 2 summarized the notations used
in MSSC.

4.2.2. Similarity computation – Loose Longest Common Subsequence
(LLCS)

The similarity measurement used in MSSC is based on the longest
common subsequence (LCS) algorithm. It is common that MSSes
generated by the same application have partial equal values in the
sequences, but these equaled values may be not observed at the same
position. It is then straightforward to compare these sequences using
the LCS algorithm. In general, the longer the common subsequence we
find, the more similar the two sequences are. In other words, given two
sequences X= < x1, x2, …, xm > and Y= < y1, y2,…, yn > , we expect to
find the longest common subsequence Z= < z1, z2, …, zk > for X and Y
and the length of Z is used as the degree of similarity for X and Y. The
LCS problem is already solved efficiently in the literature (Cormen
et al., 2003).

Although there are general LCS solutions available, it may not fit
perfectly in the proposed scenario. Based on the packet size variation
observed in Section 3.1, packet sizes for the same protocol command
message could be diverse because of variable-length parameters. The
diversity may affect the performance of classical LCS algorithms
because a payload size generated by the same command could have a
slight difference. Therefore, we propose a modified version called Loose
Longest Common Subsequence (LLCS) algorithm to better measure the
degree of similarity between two MSSes.

LLCS takes three inputs: two subsequences and one tolerant
threshold (TT). Suppose the LLCS algorithm compares two flows fi
and fj. The first two inputs are the MSSes of the two flows, MSS fi and

MSS fj, where MSS fj, where MSS ps ps ps= < ± , ± ,…, ± >f f f
m
f

1 2i i i i and

MSS ps ps ps= < ± , ± ,…, ±f f f
n
f

1 2j j j j > . If the numerical difference be-

tween two different packet sizes psg
fiand psh

fjfrom two MSSes, MSS fiand

MSS fj, is equal to or smaller than TT, i.e., ps ps TT| − | ≤g
f

h
f

i j , the two
payload sizes are considered to be equal. The LLCS algorithm returns:
(1) the longest common size subsequences (LSS), and (2) the length of
LSS to represent the degree of similarity. During the computation
process, the LLCS algorithm not only tracks the occurrence order of
specific messages but also tolerate limited variation on comparing two
messages. Let Xm= < x1, x2,…, xm > and Yn= < y1, y2, …, yn > be two
sequences of length m and n respectively. X0 and Y0 are empty
sequences. Let Zk= < z1, z2, …, zk > be a LSS of length k of X and Y.
The LLCS algorithm has the following recursive structure:

1. If |xm-yn|≦TT, zk=xm=yn and Zk-1 is a LSS of Xm−1 and Yn−1.
2. If |xm-yn| > TT, zk‡xm implies Z is a LSS of Xm−1 and Y.
3. If |xm-yn| < TT, zk‡yn implies Z is a LSS of X and Yn−1.

Fig. 7 shows the detailed procedure of the proposed LLCS algo-
rithm. If there is only one LSS Z found by the algorithm, Z is the answer
and the length of Z is the similarity for X and Y. If multiple equal-
length LSSes are found and the LSSes are pairwise similar, i.e., |xi-
yi|≦TT for all the ith value in two sequences X and Y, we further
generate a new LSS by setting the i-th value to the median of the i-th
values from all the sequences. A precise tolerant threshold is then
computed for each value in the new LSS and stored in a vector TT′.
Last, either the maximum-length LSS Z or the resulted vector TT′are
returned.

The concept of LLCS can be illustrated more intuitively with the
example of SMTP protocol. Given two independent SMTP protocol
handshakes, there are two message sequences both send the following
commands in the order of “Mail From” request, “Mail From” response,
“RCPT To” request, “RCPT To” response, “DATA” request, and “End
DATA” request. The resulted MSSes are {75, −51, 72, −51, 46, −77}
and {75, −61, 46, −77} respectively. The longer one with six values can
generate up to 26 subsequences and Fig. 8 shows one possible diagram
of converting subsequences into a state machine. In the state machine,
each state is denoted as a request/response message, and MSi means
the observed i-th distinct message size. The LLCS algorithm attempts
to find out one state machine that is able to generate both the two
MSSes without violating the tolerant threshold TT. If the LLCS
algorithm succeeds, the two MSSes can be considered as the same. In
this example, if TT is set to 5, the LLCS algorithm can find the state
machine, which is composed of the commands “MAIL From” request,
“DATA” request, and “End DATA” request.

4.2.3. Application representatives
In order to collect application-specific traffic, we capture training

traces for a single application in a dedicated network. Collecting in a
dedicated network guarantees that all collected traces belong to the

Table 2
Notations used in MSSC.

Notations Descriptions

ps± h
fi, where ‘+’：c→s and ‘-‘：c←s The hth distinct packet size of flow fi

MSS ps ps ps= < ± , ± ,…, ± >fi fi fi
h
fi

1 2
The message size sequence (MSS) of flow
fi

Fig. 7. The LLCS algorithm.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

67

same application. Each selected application is executed in turn, and the
traces generated are captured when it passes through network inter-
faces. Likewise, packets with payload sizes equal to zero or maximum
segment size are treated as invalid packets and hence omitted. The rest
packets are grouped by five-tuple information and then used for
generating the MSSes based on the size and the direction of each
packet. The MSSes of all flows belong to an application are fed to the
LLCS algorithm in pair to find the LSSes. The longest LSS is the
representative for the application.

4.2.4. Flow classification
With the obtained representative for each application, a network

flow is then classified by comparing its MSS against all application
representatives to measure the similarities. If the tolerant threshold for
a representative is in the form of a vector, comparing against the ith
value in the representative requires checking the ith value in the
tolerant threshold vector. For example, suppose we have to compare a
MSS for a flow MSS fiagainst a representative having a LSS named
MSS fjand a vector-based tolerant threshold TT fj. Given two different

packet sizes psg
fi(gth packet size in MSS fi) and psh

fj(hth packet size in

MSS fj), psg
fiand psh

fjare considered equal if and only if

ps ps TT| − | ≤g
f

h
f

h
f

i j j. In contrast, if tolerant threshold is a singular value,
the threshold value is used to determine whether two packet sizes are
equal or not. A flow is always classified into the application that has the
longest LLCS.

4.3. Summary

MSSC and MSDC have three major differences: (1) Similarity
measurement: MSDC uses Euclidean-like distances while MSSC uses
the length of the loosely longest common subsequence. (2) Selection of
application representative: MSDC uses the RA algorithm to average all
PSD features of flows while MSSC keeps all refined MSSes. (3) Strategy
to make a decision: MSDC chooses the application having the minimal
distance while MSSC chooses the application having the longest
common subsequence. Table 3 summarized the differences.

4.4. The hybrid solution

MSDC provides a good accuracy, but it has a lower throughput
because of its statistical computation overheads. In contrast, MSSC
attempts to track the application states of flows to make the classifica-
tions. As long as the states can be clearly identified, MSSC can quickly
make a decision. As a result, MSSC has better throughput. However,
MSSC may be not that accurate because there could be short
representatives that lead to false positives. Incorrect classifications
may happen due to incomplete packet captured or similar protocol
states between different applications. Therefore, we attempted to
combine MSSC and MSDC and seek for a balanced solution in terms
of classification accuracy and performance.

Fig. 9 shows the overview of the hybrid solution. At the beginning,
MSDC and MSSC run in parallel and maintain all the required
information including the five tuples, the PSD, the DS vector, the
DSP vector, and the MSS. MSSC compares the MSS against all trained
application representatives and MSDC also computes the similarity
distance against all application representatives. A flow that matches
more than 90% MSSC representatives of an application is immediately
classified into that application. MSSC usually can make a decision in a
very short time, but if it failed to make a classification, the decision is
later made by MSDC.

5. Modeling and analysis

We discuss the estimated complexity and accuracy of the proposed
MSSC and MSDC solutions in this section.

5.1. The worst-case complexity

The design of MSDC and MSSC both contain two phases: the offline
training phase and the online classification phase. MSSC attempts to
develop application representatives from the MSS within an applica-
tion session while MSDC attempts to derive representatives from all
PSD feature values within the session. The complexities for the two
phases are discussed separately.

5.1.1. Offline Training Phase – MSDC vs. MSSC
In the offline training phase, MSSC uses LLCS to find out the

application representatives from all trained MSSes. For any two flows,
fi and fj, suppose that the corresponding MSSes, Xm= < x1, x2, …, xm
> , Yn= < y1, y2, …, yn > , and Z= < z1, z2, …, zk > is a common
subsequence of X and Y. If there exists a strictly increasing sequence
< t1, t2, …, tk > of indices of X such that for all r=1, 2, …, k, we have
x z=t rr . Z can be derived from LLCS(X, Y) and can be classified into the
following four cases,

1. ∅, if i=0 or j=0.
2. LLCS(Xi−1, Yj−1)∪{xi}, if |xi-yi| ≦ TT.
3. LLCS(Xi, Yj−1), if |xi-yi| > TT and |LLCS(Xi, Yj−1)| > |

Fig. 8. The example state machine of SMTP protocol converted from the MSS.

Table 3
Comparisons between MSDC and MSSC.

MSDC MSSC

Similarity Sum of Euclidean-like
distance

The length of the longest
common subsequence

Application
representatives

{ ∑ , ∑ }i
K DS fi

K i
K DSP fi

K=1 =1
LSS TT{{ } , ′}t t n<

Decision Minimum distance Maximum length

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

68

LLCS(Xi−1, Yj)|.
4. LLCS(Xi−1, Yj), if |xi-yi| > TT and |LLCS(Xi, Yj−1)| < |

LLCS(Xi−1, Yj)|.

The complexity of LLCS(Xi, Yj) is O(|fi|*|fj|) for any two flows fi
and fj, where |fi| is the total number of packets in flow fi. Assume the
flow fi is the flow having the longest length in an application session.
The overall worst complexity of the offline training phase of MSSC can
be obtained by O(T)*O(|fi|)+O(T)*O(T)*O(|fi|*|fj|)=O(T

2*|fi|*|fj|),
where T is the total number of flows in the application session,
O(T)*O(|fi|) is the complexity of filtering packets and converting all
flows into the MSS format and O(T)*O(T)*O(|fi|*|fj|) denotes the total
number of combination of any two flows contained.

MSDC uses automatic clustering method to group relevant flows
into a group and measure the similarity distance using Euclidean-like
distance. For any two distinct flows fi and fj with different length in DS
and DSP vectors. Suppose that |fi|=n, |fj|=m, and n≧m, the similarity
distance of fi and fj can be obtained by Eq. (1). The complexity of Eq.
(1) is O(|fi|*|fj|) for any two distinct flows fi and fj, and the complexity
of the RA algorithm is O(T)*O(|fi|) if flow fi has the longest length for
DS and DSP vectors among all flows in the application session. Finally,
the overall worst-case complexity of the offline training phase is
O(T)*O(|fi|)+O(T)*O(|fi|log|fi|)+O(T)*O(T)*O(|fi|*|fj|)=O(T

2*|fi|*|
fj|), where T is the total number of flows in an application session,
O(T)*O(|fi|) is the complexity of filtering packets, O(T)*O(|fi|log|fi|) is
the complexity of sorting packets, and O(T)*O(T)*O(|fi|*|fj|) is the
complexity of calculating similarity distance. Although the complexities
for MSDC and MSSC are equal, MSSC has smaller overhead because
MSSC computes similarity distances by using simpler arithmetic
operations while MSDC computes Euclidean-like equation with high-
dimension vectors.

5.1.2. Online Classification Phase – MSDC vs. MSSC
In the online classification phase, MSSC transforms an incoming

flow into a MSS first and then compare it against all application
representatives to find out the application sharing the loosely longest
common subsequence with the flows. Assume there are total T
application representative sequences. For a new flow ft, the complexity
would be O(|ft|+|fi|) to verify if the shorter one is the subsequence of
the longer one. Therefore, the complexity to verify if flow ft matches
one of the T sequences would be O(T)*O(|ft|+|fi|), where |ft| is the
number of entries of flow ft and fi is the application representative
sequence having the longest length among the T representatives. For c
flows waited to be classified, the overall worst-case complexity of online
classification of MSSC is O(c)*O(T)*O(|ft|+|fi|).

For the online classification phase of MSDC, a new flow is
transformed into a set of points in a multi-dimension space and then
compared against representatives. The complexity of filtering and
sorting packets is O(|fi|+|fi|log|fi|). The flow is recognized as the
application that is closest to the flow in terms of similarity distance.
Therefore, for a new flow ft having the number of message sizes, |ft|,
the complexity would be O(|ft|*|fi|) to measure their similarity using
Eq. (1). Therefore, the complexity would be O(T)* O(|ft|*|fi|), where fi
is an application representative with the longest length of DS and DSP
vectors among all T representatives. For c flows waited to be classified,
the overall complexity of online classification of MSDC is
O(c)*O(T)*O(|ft|*|fi|).

For classification complexities, MSSC has much less overhead
because the single comparison overhead of MSSC is less than that of
MSDC and hence the cumulated overheads are also smaller than that of
MSDC.

5.2. Accuracy simulation

We then estimate the classification accuracy of the proposed
solutions. Before a classification is made, both MSSC and MSDC have
to be trained with selected applications in a dedicated network. To
work with the proposed solution, we assume that (1) the protocol
headers of network layer and transport layer protocols are not
encrypted, and (2) the packet sizes are not obfuscated. Although it is
not necessary to parse the packet payload, we still need to obtain the
information of the initiator, the responder, and the payload length.
These two assumptions are reasonable because intermediate routers or
hosts also need the information to relay packets.

In order to comprehensively evaluate the classification accuracy of
MSDC and MSSC, we need application-specific flows to build MSDC
and MSSC models respectively. We used hidden Markov model to
generate individual application flows. We used the implementation
from the General Hidden Markov Model (GHMM) library (GHMM) to
generate the models. To work with the GHMM library, application-
specific information must be provided first. The information includes a
set S of n states over time S={s1, s2, …, sn}, a vector I of initial state
probabilities I= < i1, i2, …, in > , a transition probability matrix
T t= { }s s,1 2 , where ts s,1 2 denotes the transition probability from state si
to state sj, and a emission probability matrix E e= { }s o,i k , where
es o,i kdenotes the probability of emitting observation (symbol sequence)
ok given that the model is in state si. In our case, each distinct state
only has one specific symbol. With the help of the official documents of
applications, related RFCs, and traffic analyzers such as Wireshark, we
manually captured unencrypted application traces generated from each

Fig. 9. The hybrid solution comprised of MSSC and MSDC.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

69

selected application in a dedicated environment, identify individual
flows, derive the states during the entire application activities, and
compute the transition probabilities and emission probabilities from all
states.

The initial state and transition probabilities can be estimated from
our captured data by the equations

i
f s

f s
andt

f s s
f s s

=
()

∑ ()
=

(,)
∑ (,)

,s
j

k
n

k
s s

i j

k
n

i k=1
,

=1
j i j

(2)

where f(sj) is the number of appearances of state i and f(si, sj) denotes
the number of transitions from state si to state sj. For each selected
application, we develop its HMM application profile and generate
application-specific flows, which can be further divided into two
different data sets. One is for training phase, and another is for
classification. In the following analysis, each application model gener-
ated 240 flows, in which 150 flows are used for training and the other
90 flows are used for testing.

5.2.1. The MSDC model
With the MSDC model, each flow is transformed into a spatial

representation based on the PSD and regarded as a point of < DS, DSP
> in a high-dimensional space. To limit the length of DS and DSP, both
DS and DSP are cut to of length k so that argmax (pro ps∑ ()i

k
i=1) is

larger than a user-defined threshold, e.g., 90% in our case. Each flow is
regarded as a point in a multi-dimensional space, and the distance
between every two flows is measured by Eq. (1).

For developing application representatives, MSDC uses automatic
clustering approach, which computes the similarity distance between
every pair of flows and groups the flows whose distances are equal to or
smaller than the pre-defined tolerant threshold. We assume that flows
having similar behavior have smaller similarity distance. The final
application representatives are obtained by averaging PSDs of flows
within the same group.

To classify a flow, we compute the individual similarity distance
between the flow and each application representative obtained in the
offline training phase. If an application has more than one representa-
tive, the final distance between the flow and the application is the sum
of all similarity distances between the flow and each representative in a
group. After all similarity distances are obtained, the flow is classified
as the application having the minimum similarity distance.

MSDC pays more attention to the domination of related packets
generated from flows of a session. The more dominant related packets
or the more number of packets would disclose more information and
help MSDC to make a decision.

5.2.2. The MSSC model
With the MSSC model, each flow is transformed into a message size

sequence (MSS). The measurement of similarity between two MSSes is
to find out the longest common size subsequences (LSS) between a pair
of two MSSes belong to the same application. For developing applica-
tion representatives, MSSC uses the LLCS algorithm for every two
MSSes in a set of manually captured application flows. We assume that

the more number of similar packet sizes contained in the compared two
MSSes, the more similar the two MSSes are. The MSSes of all flows of
an application are fed to LLCS in pair to find the LSSes and remove
shorter size sequences if they can be derived from any longer one. The
final LSSes are the representative for the application.

To classify a flow, we compute the individual similarity distance
between the flow and each application representative obtained in the
offline training phase. The flow is classified as the application that
shares the longest common subsequence. MSSC pays more attention to
the occurrence order of packets of flows within a session. Flows are
generated according to behavior of an application, and packets of a flow
are generated based on the state machine of the application behavior. A
longer common subsequence would reveal more information and help
MSSC to make a decision.

5.2.3. Summary
Fig. 10 lists the comparisons of classification accuracy between

MSSC and MSDC based on simulated network flows. The average
accuracy rates are 94.99% and 96.72% respectively.

The results show that MSSC and MSDC have higher accuracy for
traditional protocols like FTP, SMTP, and POP3, but lower for P2P
applications like BT, eMule, and Skype. This is because traditional
network application protocols such are simpler and well documented.
In contrast, P2P application protocols are often much more complex
and are proprietary. In general, MSDC performs better than MSSC in
terms of detection accuracy, especially when there are packet losses or
out-of-order deliveries.

6. Experimental study

We further evaluated the performance of the proposed solutions
using real traces. Two different data sets were used. Both were captured
from the operational instances running in campus networks, not from a
traffic generator or a lab. Data sets were split into two parts. One was
for training and another was for testing. The training data contained all
selected application traffic and it was only used to develop application
representatives. The testing data was only used for the purpose of
application classification. Table 4 shows the profile of the two data sets
of each application.

The rest of this section is organized as follows. The parameters used
for evaluating the classifiers are introduced in Section 6.1. Section 6.2
shows the classification accuracy. Section 6.3 shows the detection
errors in terms of false positive rates and false negative rates. The
comparisons against relevant works are shown in Section 6.4. Section
6.5 shows the throughput and Section 6.6 compares the experimental
results and the simulation results.

6.1. Parameters

The parameter tolerant threshold (TT) required by LLCS affects the
length of common subsequences and the accuracy of application
classifications. Fig. 7 in Section 4 shows the detailed procedure of

70

75

80

85

90

95

100

)f(CDSM)f(CSSM

A
cc

ur
ac

y
(%

)

MSSC(f) vs. MSDC(f)

BT eMule Skype FTP POP3 SMTP

Fig. 10. Classification accuracy: MSDC vs. MSSC.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

70

LLCS algorithm. A precise tolerant threshold vector of TT′ can be
trained and returned. An alternative tolerant threshold vector of
different application flow groups can be obtained in the same way.
Considering the computation complexity in on-line classification phase,
only the effect of a fixed TT was shown in this work. Fig. 11 shows the
classification accuracy with various TT values.

The horizontal axis is the chosen TT value and the vertical axis is
the accuracy of traffic classification. From the figure, MSSC has the best
classification accuracy when TT is 2. Compared to other TT values, TT
of 2 is a moderate choice between being too strict or too loose.
Therefore, the value of TT is set to 2 for the rest of experiments. Two
other parameters of MSDC, port range and flow inter-arrival time, are
set to 4 and 500 s according to suggestions recommended by (Zhang
et al., 2013) and (Lu et al., 2012).

6.2. Classification accuracy

This subsection shows the classification accuracy of MSDC and
MSSC. In addition to the flow-level classification, we also evaluated the
performance for the session-level classification. The accuracy for the
flow-level classification indicates the percentage of correctly recognized
application flows. For the session-level classification, we further
classify an unknown flow into a classified network flow by using the
rules introduced in (Lu et al., 2012). Fig. 12 shows the classification
accuracy for the six classification configurations: MSSC(f), MSDC(f),
Hybrid(f), MSSC(s), MSDC(s), and Hybrid(s). A configuration ending
with a “(f)” suffix indicates the use of flow-level classification and a
configuration ending with “(s)” suffix indicates the use of session-level
classification. We found that some applications have similar accuracies
regardless of the use of session grouping and application arbitration. It
might be caused by two reasons. First, those applications usually use
only a single flow to communicate. Second, the correlations between
the flows of those applications are very low.

For traditional protocols like FTP, POP3, and SMTP, MSSC(f) and
MSDC(f) have similar classification accuracy. These protocols often
have fixed-length requests and responses. For P2P applications and the
HTTP protocol, MSDC and MSSC perform differently. For P2P
applications, each P2P participant is not only a client but also a server.

The operations of a P2P participant can be divided into three phases: 1)
server registration; 2) resource indices exchanging; and 3) file ex-
changing. Different behaviors and peer responses generate distinct
message sequences. MSSC is not good at classifying the HTTP protocol.
This is because the HTTP protocol does not have fixed-length requests
and responses. A lot of variable-length parameters including URL, the
headers, the GET or POST parameters, and the response content affect
the request and response lengths. Therefore, it is difficult to extract
sufficient common subsequences for MSSC to classify the HTTP flows.

Classification accuracy for session-level classifiers is evaluated by
the percentage of sessions that are correctly classified. In most cases,
the classification accuracy can reach 100% except for the HTTP
protocol. For MSSC and MSDC, the session-level classification accuracy
for HTTP sessions is 96.4% and 99.98%, respectively. This is because
connections of an HTTP session can have scattered port numbers due
to redirection requests and incorrect decisions would propagate if most
flows within a session were not classified correctly. The accuracy of
Hybrid(f) and Hybrid(s) sits in-between MSSC and MSDC because
MSDC is used to make the final decision if MSSC is unable to make a
decision.

6.3. False positive rates and false negative rates

We discuss the classification error rates in terms of false positive
rates and false negative rates. A false positive indicates that a flow is
classified into an incorrect application, while a false negative indicates
a flow belong to a known application cannot be identified. Classification
errors are caused by two major reasons. First, if the representatives of
two different applications were very similar, an incorrect classification
could be made. Second, if the packets collected for a flow were
incomplete, an erroneous classification could be made. For the former
one, appropriate representatives that are not similar should be picked
up to increase the accuracy of the classification. For the latter one, the
classifier is able to collect more packets for a flow to avoid incomplete-
ness situations and hence improve the accuracy. False negatives may
happen because an application has very diverse behavior, which are far
from those used to train the application representatives.

Table 5 presents false positive rates and false negative rates of each
trained applications using MSSC(f), MSDC(f), MSSC(s), and MSDC(s)
configurations. From Table 5, it is obvious that when flows are grouped
into sessions, the false positive rates can be dramatically reduced
because incorrect classification can be fixed by application arbitration.

6.4. Compared with relevant solutions

We also compared the proposed solutions against relevant flow
classification techniques, including (GHMM; Bernaille et al., 2006),
and (L7-filter). They use similar features including packet train lengths
and packet sizes. L7-filter (L7-filter) is a traffic classifier extension to
work with Linux Netfilter. It classifies packets based on packet
payloads. The version of L7-filter we used is v2.22. By default, L7-

Table 4
Summarized profile of pre-selected application traces.

Application
Name

Application-
Layer
Protocol

TCP flows
(training)

TCP
packets
(training)

TCP
flows
(testing)

TCP
packets
(testing)

BitTorrent P2P 4172 194,036 2241 104,481
eMule P2P 18,569 920,951 9994 453,607
Skype P2P 941 11,943 508 5889
FTP FTP 1965 361,302 1308 230,997
POP3 POP3 210 24,158 140 15,479
SMTP SMTP 210 24,407 140 14,335
HTTP HTTP 150 129,866 100 93,267

60

65

70

75

80

85

90

95

100

TT=1 TT=2 TT=5 TT=7 TT=10

Ac
cu

ra
cy

 (%
)

Various TT values

BT eMule skype FTP POP3 SMTP

Fig. 11. Accuracy rates for different TT.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

71

filter looks at the very first 2KB payloads of each flow. Users can modify
the “maxdatalen” configuration on loading the module. However, a
longer inspection length could degrade the overall performance.
Bernaille et al. (2006) used the size of the first five data packets of
each TCP flows to identify the application associated with a TCP flow.
Divakaran et al., (2006) used clustering techniques based on vector

quantization (VQ) and Gaussian mixture models (GMM) to identify
network flows. The two techniques are labeled as VQ and GMM
respectively in the figure. Except our hybrid solution, all classifiers
are run in flow-level classification mode. Fig. 13 shows the results for
all the compared solutions.

Note that we used two different configurations for L7-filter. One is

40

45

50

55

60

65

70

75

80

85

90

95

100

MSSC(f) MSDC(f) MSSC(s) MSDC(s) Hybrid(f) Hybrid(s)

A
cc

ur
ac

y
(%

)

Six different classifiers

BT eMule Skype FTP POP3 SMTP HTTP

Fig. 12. Accuracy rates for six classification methods.

Table 5
False positive and false negative rates.

MSSC (f) MSDC (f) MSSC (s) MSDC (s)

Application FP (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%) FN (%)

BitTorrent 16.62 0 20 0 0 0 0 0
eMule 10.3 0 13.64 0 0 0 0 0
Skype 12.31 0 9.09 0 0 0 0 0
FTP 2.95 0 5 0 0 0 0 0
POP3 3.5 0 4.8 0 0 0 0 0
SMTP 3 0 3.9 0 0 0 0 0
HTTP 41.4 0 2.67 0 3.6 0 0.16 0

40

45

50

55

60

65

70

75

80

85

90

95

100

MSSC(f) MSDC(f) Hybrid(f) L7-filter (64KB) L7-filter (2KB) 5-packet VQ GMM

A
cc

ur
ac

y
(%

)

Eight different solutions

BT eMule Skype FTP POP3 SMTP HTTP

Fig. 13. Accuracy rates for different classification methods.

40
45
50
55
60
65
70
75
80
85
90
95

100

MSSC(f) MSDC(f) Hybrid(f) L7-filter (64KB) L7-filter (2KB) 5-packet VQ GMM

A
cc

ur
ac

y
(%

)

FTP POP3 SMTP

Fig. 14. Accuracy rates for all methods using DARPA data sets.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

72

configured to use a longer inspection length up to 64KB and another is
configured to use a shorter inspection length up to only 2KB. It is
obviously that a longer inspection length would get better classification
accuracy. Readers should also note that in Fig. 13, L7-filter could not
classify Skype flows because our evaluated Skype flows were trans-
ported by TCP protocol, which is not supported by L7-filter. Among
unencrypted applications, L7-filter with a 64KB inspection length has
the best results. All the solutions work better with traditional protocols
than with P2P protocols. Except L7-filter with 64 KB data length,
MSSC(f), MSDC(f), and the hybrid solutions have better accuracy rates
than the others.

6.5. DARPA trace

We also use public data sets from DARPA (DARPA) to benchmark
the performances of our solutions. The application traffic captured
between the first and the third weeks were used as training data, and
the application traffic captured between the fourth and the fifth weeks
were used as testing data. Three applications were chosen in this
experiment, including FTP, POP3, and SMTP protocols. Fig. 14 shows
the results for all the compared solutions using DARPA data sets. The
results showed that MSSC(f), MSDC(f) and Hybrid(f) all get better

accuracies.

6.6. Throughput

Fig. 15 shows the overall throughput for five different classification
solutions. MSSC has the best performance than the other solutions and
the overall throughput exceeds 800 Mbps. The hybrid solution
performed slightly slower than MSSC because the performance of the
hybrid solution is counted in two parts: one is the classification results
both agreed by MSDC(s) and MSSC(f), and the other is the classifica-
tion results given by MSDC(s) if MSSC(f) is unable to classify or makes
a decision different from MSDC(s). L7-filter with a 2 KB inspection
length performs faster than that with a 64 KB inspection length
because the lengths of inspected data are much shorter for the 2 KB
case.

Table 6 shows the latency comparisons for MSSC(f), MSDC(s), and
L7-filter. The latency is measured by using the number of inspected
packets before a correct decision can be made. All packet payloads of
the evaluated network flows are not encrypted because L7-filter is not
able to work with encrypted payloads. Both MSSC(f) and L7-filter can
make a decision within 10 packets. However, MSDC(s) did not perform
well because it has to collect sufficient numbers of packets to compute
the statistical features before it can make a decision.

6.7. Experimental results vs. simulation results

Fig. 16 shows the comparisons of experimental results and simula-
tion results. Experimental results are labeled with an “E-” prefix and
simulation results are labeled with an “S-” prefix. From the compar-
isons, we can conclude that: (1) classifying traditional protocols has
higher accuracy than classifying P2P applications for both experimen-
tal and simulation results; (2) the simulation results are consistent with
the experimental results, which means we can have an easier way to
evaluate the classification accuracy of the proposed approaches without
conducting real experiments.

Fig. 15. Overall throughputs for five classification methods.

Table 6
Latency results for three methods.

Application Latency (in packets)

MSSC (f) MSDC (s) L7-filter

BitTorrent ≦8 ≦ 300 ≦10 (except Skype)
eMule ≦ 8
Skype ≦ 8
FTP ≦15
POP3 ≦ 8
SMTP ≦ 8

40

45

50

55

60

65

70

75

80

85

90

95

100

E-MSSC(f) S-MSSC(f) E-MSDC(f) S-MSDC(f)

A
cc

ur
ac

y
(%

)

BT eMule Skype FTP POP3 SMTP HTTP

Fig. 16. Comparisons among experiments and simulations.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

73

7. Conclusion

We proposed MSDC, MSSC, and a hybrid solution to classify
network flows into their corresponding applications. The solutions
are built based on features retrieved from packet sizes and port locality.
MSDC solution is able to make a decision by inspecting less than 300
packets and achieve a high session-level classification accuracy of
99.98%. However, it has a relatively lower throughput of 400 Mbps
on a commodity PC. To shorten the classification latency, we also
explored the possibility of classifying based on application protocol
states, which is inferred from the message size sequences. Although the
revised MSSC solution has 5% loss on classification accuracy, it is able
to make a decision by inspecting less than 15 packets and achieve a
doubled throughput of 800 Mbps.

The hybrid solution combines MSSC and MSDC solutions and
provide a balanced solution for flow classification. A flow classification
is made by MSSC solution at first. If MSSC solution is not able to make
a decision, the classification is postponed until MSDC is able to make a
decision. The hybrid solution therefore achieves a classification accu-
racy of 99.97% and an overall system throughput of 723 Mbps. We
believe that the proposed three solutions are able to help a network
administrator to well manage a complex network in a timely and
accurate manner.

References

Azzouna, N.B., Guillemin, F., 2003. Analysis of ADSL traffic on an IP backbone link. In:
Proceedings of the IEEE global Telecommunication Conference (GLOBECOM’03),
pp. 3742–3746.

Bernaille, L., Teixeira, R., Akodjenou, I., Soule, A., Salamatian, K., 2006. Traffic
classification on the fly. Proc. ACM SIGCOMM Comput. Commun. Rev. 36 (2),
23–26.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2003. Introd. Algorithms, 350–355.
DARPA Intrusion Detection Evaluation Data Set, Available at: 〈http://www.ll.mit.edu/

mission/communications/cyber/CSTcorpora/ideval/data/1999data.html〉.
Dewes, C., Wichmann, A., Feldmann, A., 2003. An analysis of internet chat systems. In:

Proceedings Third ACM SIGCOMM Conference Internet Measurement (IMC’03), pp.
51–64.

Diainotti, A., de Donato, W., Pescape, A., Salvo Rossi , P., 2008. Classification of network
traffic via packet-level hidden markov models. In: Proceedings of IEEE Global
Telecommunication Conference (GLOBECOM’08), pp. 1–5.

Divakaran, D.M., Murthy, H.A., Gonsalves, T.A., 2006. Traffic modeling and classification
using packet train length and packet train size. In: Proceedings Sixth IEEE
Conference IP Operartional Management (IPOM’06), pp. 1–12.

Este, A., Gringoli, F., Salgarelli, L., 2009. On the stability of the information carried by

traffic flow features at the packet level. In: Proceedings of the ACM SIGCOMM
Computer Communication Reviews, 13–18.

Frank, J., 1994. Machine learning and intrusion detection: current and future. In:
Proceedings of the 17th National Computer Security Conference.

GHMM General Hidden Markov Model Library, Available at 〈http://bioinformatics.
rutgers.edu/Software/GHMM/〉

Gomes, Joao V., Inacio, Pedro R.M., Pereira, Manuela, Freire, Mario M., 2013. Detection
and classification of peer-to-peer traffic: a survey. ACM Comput. Surv. (CSUR) 45
(3).

Kannan, J., Jung J., Paxson, V., Koksal C.E., 2006. Semi-automated discovery of
application session structure. In: Proceedings of the Sixth ACM SIGCOMM
Conference on Internet Measurement (IMC’06), pp. 119–132.

Karagiannis, T., Papagiannaki, K., Faloutsos, M., 2005. BLINC: multilevel traffic
classification in the dark. In: Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM’05), pp. 229–240.

L7-filter, Available at 〈http://l7-filter.clearfoundation.com〉.
Lin, Y.-D., Lu, C.-N., Lai, Y.-C., Peng, W.-H., Lin, P.-C., 2009. Application classification

using packet size distribution and port association. J. Netw. Comput. Appl. 32 (5),
1023–1030.

Lu, C.-N., Huang, C.-Y., Lin, Y.-D., Lai, Y.-C., 2012. Session level flow classification by
packet size distribution and session grouping. Comput. Netw. 56 (1), 260–272.

Moore, A., Zuev, D., 2005. Internet traffic classification using bayesian analysis
techniques. In: Proceedings of the ACM SIGMETRICS Conference on Measurement
Modeling and Computer System (SIGMETRICS’05), 55–60.

Munz, G., Dai, H., Braun, L., Carle, G., 2010. TCP traffic classification using markov
models. [April]Proceedings Second Conference Traffic Monitoring and Analaysis
(TMA’10), 127–140.

Paxson, V., 1994. Empirically derived analytic models of wide-area TCP connections.
IEEE/ACM Trans. Netwon (TON) 2 (4), 316–336.

Peng, L., Yang, B., Chen, Y., 2015. Effective packet number for early stage internet traffic
identification. Neurocomputing 156, 252–267.

Roughan, M., Sen, S., Spatscheck, O., Duffield, N., 2004. Class-of-service mapping for
QoS: a statistical signature-based approach to IP traffic classification. In:
Proceedings of the Fourth ACM SIGCOMM Conference on Internet Measurement
(IMC’04), 135–148.

Sen, S., Spatscheck, O., Wang, D., 2004. Accurate, scalable in-network identification of
P2P traffic using application signatures. In: Proceedings of the 13th Conference on
World Wide Web (WWW’04), 512–521.

Wright, C., Monrose, F., Masson, G.M., 2004. HMM profiles for network traffic
classification. In: Proceedings of the ACM Workshop Visual Data Mining Computer
Security (VizSEC/DMSEC’04), 9–15.

Zhang, J., Xiang, Y., Wang, Y., Zhou, W., Xiang, Y., Guan, Y., 2013. Network traffic
classification using correlation information. IEEE Trans. Parallel Distrib. Syst. 24
(1).

Zhang, J., Chen, C., Xiang, Y., Zhou, W., Xiang, Y., 2013. Internet traffic classification by
aggregating correlated naïve bayes predictions. IEEE Trans. Inf. Forensics Secur. 8
(1), 5–15.

Zhang, J., Chen, C., Xiang, Y., Zhou, W., Vasilakos, A.V., 2013. An effective network
traffic classification method with unknown flow detection. IEEE Trans. Netw. Serv.
Manag. 10 (2).

Zhang, J., Chen, X., Xiang, Y., Zhou, W., Wu, J., 2015. Robust network traffic
classification. IEEE/ACM Trans. Netw. 23 (4), 1257–1270.

C.-N. Lu et al. Journal of Network and Computer Applications 76 (2016) 60–74

74

http://refhub.elsevier.com/S1084-16)30220-/sbref1
http://refhub.elsevier.com/S1084-16)30220-/sbref1
http://refhub.elsevier.com/S1084-16)30220-/sbref1
http://refhub.elsevier.com/S1084-16)30220-/sbref2
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/1999data.html
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/1999data.html
http://refhub.elsevier.com/S1084-16)30220-/sbref3
http://refhub.elsevier.com/S1084-16)30220-/sbref3
http://refhub.elsevier.com/S1084-16)30220-/sbref3
http://bioinformatics.rutgers.edu/Software/GHMM/
http://bioinformatics.rutgers.edu/Software/GHMM/
http://refhub.elsevier.com/S1084-16)30220-/sbref4
http://refhub.elsevier.com/S1084-16)30220-/sbref4
http://refhub.elsevier.com/S1084-16)30220-/sbref4
http://l7ilter.clearfoundation.com
http://refhub.elsevier.com/S1084-16)30220-/sbref5
http://refhub.elsevier.com/S1084-16)30220-/sbref5
http://refhub.elsevier.com/S1084-16)30220-/sbref5
http://refhub.elsevier.com/S1084-16)30220-/sbref6
http://refhub.elsevier.com/S1084-16)30220-/sbref6
http://refhub.elsevier.com/S1084-16)30220-/sbref7
http://refhub.elsevier.com/S1084-16)30220-/sbref7
http://refhub.elsevier.com/S1084-16)30220-/sbref7
http://refhub.elsevier.com/S1084-16)30220-/sbref8
http://refhub.elsevier.com/S1084-16)30220-/sbref8
http://refhub.elsevier.com/S1084-16)30220-/sbref8
http://refhub.elsevier.com/S1084-16)30220-/sbref9
http://refhub.elsevier.com/S1084-16)30220-/sbref9
http://refhub.elsevier.com/S1084-16)30220-/sbref10
http://refhub.elsevier.com/S1084-16)30220-/sbref10
http://refhub.elsevier.com/S1084-16)30220-/sbref11
http://refhub.elsevier.com/S1084-16)30220-/sbref11
http://refhub.elsevier.com/S1084-16)30220-/sbref11
http://refhub.elsevier.com/S1084-16)30220-/sbref11
http://refhub.elsevier.com/S1084-16)30220-/sbref12
http://refhub.elsevier.com/S1084-16)30220-/sbref12
http://refhub.elsevier.com/S1084-16)30220-/sbref12
http://refhub.elsevier.com/S1084-16)30220-/sbref13
http://refhub.elsevier.com/S1084-16)30220-/sbref13
http://refhub.elsevier.com/S1084-16)30220-/sbref13
http://refhub.elsevier.com/S1084-16)30220-/sbref14
http://refhub.elsevier.com/S1084-16)30220-/sbref14
http://refhub.elsevier.com/S1084-16)30220-/sbref14
http://refhub.elsevier.com/S1084-16)30220-/sbref15
http://refhub.elsevier.com/S1084-16)30220-/sbref15
http://refhub.elsevier.com/S1084-16)30220-/sbref15
http://refhub.elsevier.com/S1084-16)30220-/sbref16
http://refhub.elsevier.com/S1084-16)30220-/sbref16
http://refhub.elsevier.com/S1084-16)30220-/sbref16
http://refhub.elsevier.com/S1084-16)30220-/sbref17
http://refhub.elsevier.com/S1084-16)30220-/sbref17

	High performance traffic classification based on message size sequence and distribution
	Introduction
	Related work
	Flow-level classification
	Session-level classification

	Features
	Packet size variation (PSV) and Packet size distribution (PSD)
	Message sequence (MS)
	Summary

	Classification approaches
	Message size distribution classifier (MSDC)
	Flow representation – Dominating sizes (DS) and dominating sizes' proportion (DSP)
	Application representatives
	Flow classification
	Session grouping
	Application arbitration

	Message size sequence classifier (MSSC)
	Flow representation – Message size sequence (MSS)
	Similarity computation – Loose Longest Common Subsequence (LLCS)
	Application representatives
	Flow classification

	Summary
	The hybrid solution

	Modeling and analysis
	The worst-case complexity
	Offline Training Phase – MSDC vs. MSSC
	Online Classification Phase – MSDC vs. MSSC

	Accuracy simulation
	The MSDC model
	The MSSC model
	Summary

	Experimental study
	Parameters
	Classification accuracy
	False positive rates and false negative rates
	Compared with relevant solutions
	DARPA trace
	Throughput
	Experimental results vs. simulation results

	Conclusion
	References

