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Abstract—We study the problem of optimally adapting ongoing
cloud gaming sessions to maximize the gamer experience in dy-
namic environments. The considered problem is quite challenging
because: (i) gamer experience is subjective and hard to quantify,
(ii) the existing open-source cloud gaming platform does not
support dynamic reconfigurations of video codecs, and (iii) the
resource allocation among concurrent gamers leaves a huge room
to optimize. We rigorously address these three challenges by: (i)
conducting a crowdsourced user study over the live Internet for
an empirical gaming experience model, (ii) enhancing the cloud
gaming platform to support frame rate and bitrate adaptation
on-the-fly, and (iii) proposing optimal yet efficient algorithms to
maximize the overall gaming experience or ensure the fairness
among gamers. We conduct extensive trace-driven simulations to
demonstrate the merits of our algorithms and implementation.
Our simulation results show that the proposed efficient algo-
rithms: (i) outperform the baseline algorithms by up to 46% and
30%, (ii) run fast and scale to large (≥ 8000 gamers) problems,
and (iii) achieve the user-specified optimization criteria, such
as maximizing average gamer experience or maximizing the
minimum gamer experience. The resulting cloud gaming platform
can be leveraged by many researchers, developers, and gamers.

Index Terms—Cloud gaming, real-time streaming, crowdsourc-
ing, user study, resource allocation, optimization

I. INTRODUCTION

C
LOUDS provide abundant and elastic resources for offer-

ing various online services, and have made tremendous

impacts on our daily life in many ways. Computer games,

along with many other applications, have been pushed into the

clouds [1] in two models: file streaming and video streaming.

The first, more conservative, model leverages the clouds to

distribute computer games, because modern computer games

often take more than one DVD to distribute. File streaming

allows gamers to start playing games after a small subset

of files has been downloaded, while the remaining files are

streamed in the background. File streaming allows the game

developers, such as Blizzard, to reduce their costs on man-

ufacturing the physical media, and delivering patches using

the same clouds. However, all these computer games still run

on gamers’ computers, and thus gamers: (i) need high-end
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computers for good graphics effects and (ii) can only play

games on the installed computers.

The second, more aggressive, model offloads intensive

computations, such as rendering, physics, and artificial in-

telligence, to the clouds, in order to deliver more visually-

appealing effects on less powerful computers anywhere, any-

time over the Internet. Using video streaming, game service

providers, such as OnLive [2], GaiKai [3], and Ubitus [4],

deliver instantaneous gaming experience to gamers using dif-

ferent client computers (including mobile devices). This is

done by implementing and installing a thin client on PCs,

laptops, tablets, smartphones, and set-top boxes. While the

recent game-specialized cloud infrastructures [5] support both

cloud gaming models, we only consider the more challenging

video streaming model throughout this paper.

Delivering high-quality cloud gaming experience is chal-

lenging [6], mainly because: (i) modern computer games are

mostly resource hungry, (ii) the real-time nature of games

imposes stringent deadline, and (iii) gamers have high expec-

tations on different aspects of gaming experience [7]. More

specifically, gamers ask for both high-quality game scenes and

low response delay, where the: (i) quality of game scenes is

measured by metrics like resolutions, frame rates, fidelities,

and 3D effect levels, and (ii) the response delay refers to the

time difference between the time when a gamer triggers an

input and the time when the client renders the corresponding

effect. Concurrently achieving both high-quality scenes and

fast responses consumes a huge amount of computation and

network resources [8]. Our prior work [9] copes with the

problem by optimally selecting the most suitable data centers

for incoming gamers to maximize a configurable objective

function, such as overall gaming experience. The data center

selection problems are solved on a portal server, so as to

optimize the gaming experience in large time scales (in the

order of tenths of minutes). However, the cloud systems and

network resources change in small time scales (in the order of

seconds), which cannot be compensated by optimal data center

selection alone, and thus a finer-grained adaptation mechanism

is required for each game session.

In this paper, we study the problem of adapting cloud

gaming sessions to maximize the gamer experience in dynamic

systems and networks. Without adaptations, cloud gaming

platforms continuously deliver the cloud games to gamers

at the highest possible quality even when the resources are

insufficient. This may overload the network because a large

part of the network resources is consumed by the downstream

traffic (game videos) [10]. Thus, the video bitrate of an
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ongoing cloud gaming session should be reduced if the end-to-

end bandwidth is insufficient. Moreover, when the bandwidth

is significantly reduced, the video frame rate may have to be

reduced to maintain a satisfying graphics quality. Otherwise,

gamers would suffer from degraded gaming experience due to

late and lost frames, and may quit the games prematurely.

Achieving optimal adaptations is no easy task because

gamers are picky, and love to have both high graphic quality

and short interaction delay. However, concurrently optimizing

both gamers’ demands is impossible. Therefore, in order

to solve the cloud gaming bitrate adaptation problem, we

carefully study the following three main challenges:

• Quantifying gamer experience via crowdsourcing. The

metrics of higher-level gamer experience and lower-level

system performance are quite different, and the mapping

between them is affected by many factors. Conducting

a user study in a lab to exercise all the factors requires

many participants, and is tedious and expensive. Hence,

we leverage crowdsourcing for a user study with many

more online participants in Section IV, and derive em-

pirical gamer experience, or Mean Opinion Score (MOS)

model. Crowdsourcing also allows us to conduct the user

study using gamers’ actual client computers for more

realistic results, compared to user studies done in a lab.

• Reconfiguring video codecs. Compared to audio

streams, encoding and transmitting video streams con-

sume much more computation/network resources, and

thus video codec is the main control knob for adapting an

ongoing cloud gaming session to the available resources.

Changing the codec configuration on-the-fly is challeng-

ing, and we report the lessons learned in Section V.

• Adapting videos in dynamic networks. With the gamer

experience model and codec reconfiguration mechanism,

we then develop a suite of techniques to quickly adapt

the video codec configurations to dynamic networks. The

techniques range from optimal resource allocation algo-

rithms to real-time heuristics to maximize the gamer ex-

perience without excessive resource consumption. These

techniques are presented in Section VI.

The derived models and developed techniques have to be

implemented in a real cloud gaming platform to facilitate

experiment-based evaluations. However, we cannot rely on

the commercial cloud gaming platforms [2–4], because they

are closed and proprietary. Hence, this paper is built upon

GamingAnywhere (GA) [11, 12], which is an open-source

cloud gaming platform designed (see Figure 1) for researchers,

engineers, and gamers. The design philosophy of GA includes

extensibility, portability, configurability, and openness, and

thus is very suitable to cloud gaming research. At the time

of writing, the GA system does not include the game portal,

and we present our game portal design in this paper. The

game portal hosts several optimization algorithms, including

the data center selection algorithm [9] and the adaptation

algorithm. The adaptation algorithm is developed in the current

work, which enhances the GA system to support video codec

reconfiguration in order to adapt to dynamic networks. More

details on the original GA are given in [12].

More precisely, we add four software components in GA

client/server, as illustrated in Figure 2, to support adaptation.

Bandwidth estimator monitors the sending/receiving times-

tamps of video packets at GA client, so as to estimate the

effective bandwidth1. GA client sends the estimated effective

bandwidth to GA server, where codec parameter selector

determines the optimal encoding bitrate and frame rate to max-

imize the user experience. Such decisions are made based on

an MOS model, which converts each pair of bitrate and frame

rate into a game-dependent MOS score. The optimal encoding

bitrate and frame rate are sent into codec reconfigurator for on-

the-fly video adaptation. We present the codec reconfigurator

and bandwidth estimator in Section V, and the MOS model

and codec parameter selector in Section VI.
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Fig. 1. The overview of cloud gaming platforms.
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Fig. 2. The new components in the proposed adaptive cloud gaming system.

II. RELATED WORK

A. Cloud Gaming Platforms

In cloud gaming platforms, there are several approaches

to divide the tasks between the cloud servers and clients.

With graphics streaming [13, 14], the cloud servers send

all graphics commands to the clients, which then render the

graphics commands using the clients’ GPUs. This approach

dictates more powerful GPUs to render high-quality game

scenes in real time, which is less applicable for resource-

limited mobile devices and set-top boxes. With post-rendering

operations [15, 16], the 3D rendering is done at the cloud

servers, and part of the post-rendering operations are done on

clients. Such post-rendering operations on the clients include

augmenting motions, lights, and texture [17]. This approach

complicates the game development and increases the develop-

ment cost, which may drive the game developers away from

the cloud gaming platforms. With video streaming [18, 19], the

cloud servers render the game scenes and stream videos to the

1Packet losses and delays are considered when estimating the effective

bandwidth.
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clients. The clients decode and display videos, which is a much

lighter weight operation compared to the other two approaches.

Comparatively, the video streaming approach: (i) demands the

least resources at the clients, (ii) is easier to implement, (iii)

is easier to port to heterogeneous clients, and (iv) requires the

minimum augmentations on game code.

Hence, the mainstream commercial cloud gaming platforms,

such as OnLive [2], GaiKai [3], and Ubitus [4], all adopt the

video streaming approach. Similar approaches are taken by

several cloud gaming platforms [12, 18, 19] in the literature.

Among these platforms, GA [12] is open, modularized, cross-

platform, and efficient. It is the first complete open-source

platform of its kind. GA has been leveraged by several research

projects on cloud gaming, such as mobile cloud gaming [20,

21], e-learning applications [22], GPU consolidation [23], and

cloud resource allocation [9].

B. Resource Allocation in Cloud Gaming Platforms

The resource allocation problem in the clouds has been stud-

ied for some game genres. For example, Lee and Chen [24]

study the resource allocation problem for Massively Multi-

player Online Role-Playing Game (MMORPG), and propose

a zone-base algorithm to reduce the hardware requirements

of the servers. However, these game servers handle short

state update messages, and thus are different from cloud

gaming servers that stream high-quality real-time videos to

the clients. Duong et al. [25] and Wu et al. [26] focus on

the admission control problem, to minimize the queueing

delay of cloud gaming platforms. In particular, Duong et

al. [25] develop algorithms to selectively admit incoming users

for the highest profit, and Wu et al. [26] propose a similar

algorithm to quickly serve users in the waiting queue. Wang

and Dey [27] propose an adaptive algorithm to dynamically

adjust the rendering parameters, such as lighting modes and

texture details, to adaptively allocate resources. Cai et al. [28]

study the resource allocation problem between a cloud server

and a client computer. They divide a game into several soft-

ware components and intelligently dispatch the components

among multiple cloud servers and client computers. Our earlier

works [9] consider a different problem of maximizing the

gaming Quality of Experience (QoE) of all admitted users, by

placing virtual machines in the best data centers under diverse

network conditions, such as network delay. The current paper,

in contrast, addresses the problem of dynamic adaptations in

ongoing game sessions.

III. SYSTEM ARCHITECTURE OF THE EXTENDED CLOUD

GAMING PLATFORM

We extend GA for a complete cloud gaming service, and

the system architecture is illustrated in Figure 3. The proposed

architecture consists of four entities: a manger, portals, servers,

and clients. This figure depicts the working flows among the

entities with numbered steps. The manager is a logically-

centralized entity running on a server or server farm, and is

responsible for pointing servers to portals. Multiple portals

can be deployed for the sake of scalability, although only

one portal is shown in the figure for brevity. Each server is
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Fig. 3. The working flows among the portal, manager, servers, and clients.

associated with and managed by a portal, and the server may

run on a virtual or physical machine. Heartbeat messages (not

shown in the figure) are periodically exchanged between a

pair of associated server and portal, in order to maintain the

awareness of the existence of the other party. The server is

associated with a portal as follows. When the portal is up, it

registers with the manager (step 1). When the server is up,

it asks the manager for available portals (step 2), and then

reports to one of the available portals (step 3). After this, the

server, which runs the actual game, is associated with and

managed by the portal. The server repeats steps 2 and 3 if the

connection to the portal is broken.

When a client attempts to use the cloud gaming service, it

executes a launcher to interact with the portal (steps 4 and 5).

The launcher retrieves a list of available games on the portal,

lets a player select a game, and gets an available server for

the selected game from the portal. Then the launcher requests

the server to launch the GA server and the selected game

(step 6), and downloads required client setup information from

the server (step 7). Last, the launcher launches the GA client

to connect to the server and starts the game play (step 8).

During a game play, the launcher monitors the GA client and

periodically sends a heartbeat message to the portal to indicate

that the game play is still ongoing (step 9). The launcher sends

a terminating signal to the server if the user quits the game

(step 10). In case that the client is not shutdown normally,

the portal detects the issue by missing heartbeat messages.

When an abnormal shutdown is detected, the portal sends a

cleanup message (step 11) to the corresponding server of the

abnormal user, in order to release the resources, such as CPU,

memory, and disk occupied by the client. The extended system

architecture will be released to the public [11], and can be

leveraged by more researchers, developers, and gamers.

IV. QUANTIFYING GAMER EXPERIENCE VIA

CROWDSOURCING

We present a crowdsourcing system built on GA, a crowd-

sourced user study, and several new findings.

A. Online Questionnaire System

We first design an automatic online questionnaire system

to collect user experience in playing games via GA under

diverse configurations. There are several proposals to quantify
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TABLE I
SUMMARY OF THE CROWDSOURCED STUDY

Game Batman, FGPX, CoD

Bitrate 0.5, 1, 2 Mbps

Frame Rate 10, 20, 30 fps

# of Subjects 101

# of Experiments 167

# of Game Sessions 3,020

Mean (std) Session Time 173 (59) seconds

Total Session Time 132.2 hours

Mean (std) Graphics Quality 4.13 (1.66)

Mean (std) Interactivity Quality 4.44 (1.50)

Mean (std) Overall Score 4.16 (1.51)

user experience in cloud gaming platforms [29–31]; interested

readers are referred to the survey [31] for a complete list of

these quality metrics. In this work, we adopt Mean Opinion

Score (MOS), which is a subjective score from 1 (worst)

to 7 (best), as the performance metric of our questionnaire

system2. The system design is consistent with the architecture

given in Figure 3. An invited participant first launches the

questionnaire client using his/her computer, which connects

to the portal server and shows a welcome message to describe

the experiment. If the invitee agrees to participate in the

experiment, he/she clicks a button to start the experiment.

The questionnaire client then finds an available GA server

registered on the portal, randomly picks a server configura-

tions, launches the game on the game server, and runs the GA

client for the subject to start the game play. We vary bitrate,

frame rate, and game in different configurations and the details

are summarized in Table I. Each game session lasts for 2–

4 minutes; specifically: (i) a game needs to be played for 2

minutes before the client can be manually terminated, and (ii)

the client will be forcefully terminated after 4 minutes. After

a game session is finished, the questionnaire client shows an

online questionnaire form for the subject to fill in. The subject

then plays the same game under 8 other configurations (9

configurations in total, which are in a random order). Each

subject needs to play one game (with 9 configurations), but

may opt for more games (3 games in total). If a subject quits

before finishing the 9 configurations for a game, his/her inputs

of the gaming experience are not considered.

The questionnaire client is implemented as a Windows

program with an embedded Internet Explorer object. Both

the portal and GA server are wrapped as web services. The

questionnaire client leverages libcurl to interact with the

portal server and launches the selected GA server with a

specific configuration. The online questionnaire form is created

using Google spreadsheet and is presented to the user in the

embedded Internet Explorer object. To prevent the spreadsheet

from being abused by attackers or malicious users, we generate

a keyed Message Authentication Code (MAC) for each game

play and pre-fill it into corresponding questionnaire form.

2In our pilot tests, some subjects reported that it’s hard to make decisions
in a typical score range between 1 and 5 as the differences between
the video quality in different rounds are sometimes subtle. Thus, we are
suggested to increase the range of scores such that subjects can report minor
differences [32]. On the other hand, the range cannot be too large as it is
limited by psychometric properties of humans. Therefore, we choose the
maximum suggested range of seven [32] in our questionnaires.

1. Input the width and height of your screen

2. Input the width and height of the rectangular area

W: CM

H: CM

W: CM

H: CM

Next

Start experiment

Fig. 4. The instructions and interface for users to input the physical dimension
of their computer monitors.

Only forms with valid keyed MACs are considered in our

evaluations.

One tricky part of carrying out the crowdsourced user study

is: subjects use their own home/office computers, and thus the

physical monitor dimensions and display resolutions may be

quite diverse. Therefore, we add an additional test to estimate

the monitor characteristics as follows. We first present a user

interface in full screen as illustrated in Figure 4, which asks

the subject to fill in the physical dimension of the monitor.

The subjects may not know the exact sizes, and thus we ask

them to measure the viewable area of the monitor with rulers.

To filter out erroneous information, a rectangle is displayed on

the screen and the subjects are also asked to measure the size

of the rectangle on their monitors with rulers. By comparing

both inputs, i.e., the dimensions of the monitors and those

of the rectangle, we filter out erroneous inputs and exclude

these subjects from the user study. The display characteristics,

including monitor size, screen resolution, and pixel density, are

later analyzed to see how they affect game play experience.

B. Overall Results

We conduct the crowdsourced user study online between

July and September 2014. Upon filtering out subjects who

made problematic inputs (such as all the ratings for all the

configurations are consistently 1 or 7), we end up with 101

subjects and 167 experiments. Among the subjects, 51% of

them are females and 49% are males; the ages of subjects

are on average 27 years old with a standard deviation of 5.5

years (ranging from 19 to 41 years old); 30% of them are

students and the remaining subjects have diverse professions,

including salesperson, accountant, government officer, and so

on. The subjects have quite diverse experience in computer

game play, as their gaming history spans from 4 to 34 years

(with an average of 12 years); in addition, they are also

dissimilar in terms of the average time spent in computer

gaming per day: The daily game play time ranges from 15

minutes to 6 hours with an average and standard deviation

of 2 and 1.5 hours respectively. These figures indicate that

our subjects are from different background; thus, though the

number of subjects is not significantly large, but they should

constitute of a relatively representative sample of the Internet
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Fig. 6. Impacts of games on aggregated MOS scores.

users. The overall statistics of the dataset we collected from

the experiments are summarized in Table I.

We first compute the aggregated MOS scores under different

bitrates and frame rates, and plot them in Figure 5 with

several observations. First, when the frame rate is fixed, higher

bitrates always result in higher MOS scores, demonstrating

the importance of allocating the available bandwidth among

gamers. Second, higher frame rates lead to lower graphics

quality, because higher frame rates essentially mean more

video frames to encode. Third, higher frame rates result in

higher interactivity, because the games are more responsive.

Fourth, and most interesting, when the bitrate is high (2

Mbps), higher frame rates lead to better overall scores; when

the bitrate is low (0.5 Mbps), higher frame rates lead to

lower overall scores. Such difference may be attributed to the

already inferior graphics quality when bitrate is low: further

degradation on graphics quality due to higher frame rates is

not acceptable. This finding reveals that increasing frame rates

not necessarily improves overall MOS scores, and therefore

carefully choosing the best configuration is critical.

C. Impacts of Games on MOS Scores

Next, we study the implication of different games on MOS

scores. The three considered games are from different game

genres. Lego Batman (Batman) is a 3D adventure game, Sin

Cyber Grandprix 2 (FGPX) is a car racing game, and CoD:

Modern Warfare 2 (CoD) is a first-person shooter game.

Among the three games, Batman’s game screens consist of

rendered cartoon characters and are easier to compress. The

game screens of CoD and FGPX are more complex and they

are in faster pace (especially FGPX). Such difference can

be observed in the per-game overall MOS scores reported

in Figure 6. First, in terms of graphics quality, Batman
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Fig. 8. Impacts of display settings on overall MOS scores.

outperforms CoD, which in turn outperforms FGPX. This can

be attributed to the less complicated game screens in Batman,

and faster game screen changes in FGPX. Second, in terms of

interactivity, subjects are less picky to the slower-pace Batman.

Last, the overall scores show similar trends as the graphics

quality and interactivity scores.

Next, we plot the per-game MOS scores under different con-

figurations in Figure 7, which leads to important observations.

First, across the considered games, we see consistent pattern,

similar to the aggregated MOS scores reported in Figure 5.

Second, and more importantly, under the same configuration,

subjects playing different games report different MOS scores.

This observation, along with earlier ones, concludes that the

MOS scores depend on bitrate, frame rate, and game. We use

the detailed user study results to derive an empirical MOS

model in Section VI, which is used to estimate the gaming

experience under different configurations.

D. Impacts of Display Settings on MOS Scores

We also report the implication of the display settings on the

overall MOS scores in Figure 8. First, higher screen resolu-

tions result in lower MOS scores. This is counter-intuitive as

it is a common belief that higher resolutions result in better
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Fig. 10. Decomposition of overall MOS scores on display settings.

user experience. We attribute this observation to the tendency

of subjects to deduct MOS scores when seeing flaws [33]; in

other words, higher resolutions amplify the imperfection if any.

Second, larger display sizes also result in worse MOS scores,

which can also be attributed to the amplified imperfection.

Last, if we normalize the screen resolution and display size

into pixel density, we find that higher pixel densities result

in better interactivity and overall MOS scores. However, the

graphics quality suffers when the pixel density is very low

(≤ 153 dpi) or very high (≥ 296 dpi). To the best of our

knowledge, such observation on cloud gaming platforms has

not been made in other user studies.

E. Decomposition of Overall Scores

Last, we study the mapping among the graphics quality,

interactivity, and overall scores. We find that the overall scores

can be written as a weighted linear function of those of

graphics quality and interactivity scores. Figure 9 reports the

overall decomposition for individual games, with adjusted

R2 values annotated. This figure shows that the graphics

quality and interactivity are approximately equally important

for all games. FGPX, as a fast-pace game with complex

game screens, leans toward the graphics quality a bit, but the

difference is minor.

However, the variation in overall score decomposition is

significant if we consider the effect of display settings, which

we plot in Figure 10. This figure reveals that higher resolutions

and larger display sizes lead to more weights on the graphics

quality scores. This is consistent with our observations made

in Figure 8: the imperfection is easier to be noticed by the

subjects under higher screen resolutions and larger display

sizes. In addition, Figure 10 also shows that when the pixel
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Fig. 11. Comparison between the original and the enhanced module designs.

density is low or high, the subjects are more sensitive to the

graphics quality.

V. RECONFIGURING VIDEO CODECS IN RUN TIME

We enhance GA to support dynamic video codec reconfig-

urations. The improvement covers several aspects, which are

elaborated in this section.

A. Migration from ffmpeg to live555

We replace ffmpeg, which supports several codecs and

RTSP/RTP features, with live555 for three major reasons: (i)

It is difficult to add a customized codec into the complicated

ffmpeg. (ii) Using ffmpeg cannot dynamically reconfigure video

codecs. (iii) The RTP feature provided by ffmpeg is tightly

coupled with its implementation. Hence, making a customized

non-ffmpeg codec to work with ffmpeg’s RTP stack is not easy.

Unlike ffmpeg, live555 has a built-in RTSP server imple-

mentation. We can use the RTSPServer class to create an

RTSP server object instead of implementing it on our own.

However, we need to create our own RTSP sub-sessions for

audio and video streams and provide corresponding live audio

and video sources. Our current live555-based implementation

supports a number of codecs, namely, MP3, AC3, OPUS (au-

dio codecs) and H.264, H.265, VP8 (video codecs). Moreover,

live555 offers a more comprehensive RTCP implementation,

which allows us to measure and collect the network statistics,

including packet loss rate, bitrate, round-trip time, and jitter.

These numbers can be used as inputs for optimization algo-

rithms. Live555 still achieves comparable performance than

the ffmpeg-based GA in terms of game playing latency.

B. Enhanced Module Design

Figure 11 compares the original and the enhanced module

design. The left half of Figure 11 shows the working flow

of the ffmpeg-based server. The encoder module provides an

interface to the server to retrieve its corresponding codec

context. A codec context is used to generate a SDP (session
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description protocol) description, which contains the detailed

configuration for an RTP session, including the adopted codec

and associated codec parameters. In addition, the original

design leaves the management of encoder threads in the RTSP

server. Consequently, the server has to create corresponding

encoder threads, and terminate any running encoder threads

when no clients are connected. Leaving thread management at

the server complicates the implementation of the RTSP server.

The right half of Figure 11 shows the working flow of the

live555-based server. In order to loose the tight relationship

between the server and the modules, we add a new ioctl

interface for GA modules. Therefore, all the GA components

are able to interact with a module using the ioctl interface.

With the new design, the server now retrieves the required

SDP parameters via the ioctl interface on receipt of a RTSP

DESCRIBE command. Moreover, the generic ioctl interface

also simplifies the task for codec reconfiguration.

C. Codec Reconfiguration

On top of the revised architecture, we implement three

H.264 encoder modules that support dynamic codec reconfig-

uration. One is software-based implemented with libx264 and

the other two are hardware-based. The hardware-based codecs

work with the Video Processing Unit (VPU) on Freescale’s

ARM-based i.MX6 CPU and the Quick Sync Video (QSV)

technology on Intel’s HD Graphics and recent Intel CPUs.

Software-based module. The software-based module is

highly flexible to reconfigure the codec anytime using

x264 encoder reconfig function. libx264 provides three rate

control modes: ABR, CRF, and CQP. The ABR mode gener-

ates video streams at a given average bitrate, but the bitrate

cannot be changed once the encoder is initialized. Hence, we

stick with either the CRF or the CQP modes, configured via

the crf and qp parameters, respectively. The generated video

bitrate using CRF and CQP largely depends on the complexity

of a frame and the degree of changes between adjacent frames.

We can nevertheless limit the maximum bitrate by specifying

both the vbv-maxrate and vbv-bufsize parameters. To

understand the effect of the CRF parameter, we measured the

relationship between the CRF parameter and the bitrate of the

generated video stream. In the experiments, we stream a 720P

music video at different frame rates from a GA server to a

client over a wireless network. The valid CRF value ranges

from 0 (lossless) to 51 (very lossy), where a lower CRF value

generates a better quality video in principle. Since we are

working with H.264’s main profile, the minimum valid CRF

value is 1 and the default CRF value adopted by libx264 is

23. Table II shows that when the vbv-maxrate parameter

is much lower than the required CRF setting, some mosaic

blocks appear on video frames while the rest part of the

frames is clear. This may be because the rate control algorithm

runs out of the available bits specified by vbv-maxrate

in the middle of encoding a frame, it has to switch to

low-quality configurations for un-encoded parts. Such quality

degradations happen when the two parameters (i.e., CRF and

vbv-maxrate) are largely mismatched, which indicates that

a careful tuning of such parameters is required.

TABLE II
MEASURED BITRATE UNDER VARIOUS CRF SETTINGS

Measured bitrate Measured frame loss rate

Frame rate CRF Min Max Min Max Avg.

24 1 2.5Mbps 36Mbps 0% 0% 0%

12 2.2Mbps 12Mbps 0% 0% 0%

23 1.3Mbps 4.1Mbps 0% 0% 0%

37 600Kbps 1.1Mbps 0% 0% 0%

51 150Kbps 450Kbps 0% 0% 0%

30 1 2.9Mbps 41Mbps 0% 0% 0%

12 2.6Mbps 13Mbps 0% 0% 0%

23 1.6Mbps 4.5Mbps 0% 0% 0%

37 750Kbps 1.2Mbps 0% 0% 0%

51 169Kbps 476Kbps 0% 0% 0%

50 1 4.9Mbps 43Mbps 0% 34.49% 10.19%

12 4.0Mbps 16Mbps 0% 0.42% 0.12%

23 2.3Mbps 5.4Mbps 0% 0.23% 0.04%

37 991Kbps 1.5Mbps 0% 0.12% 0.0003%

51 221Kbps 602Kbps 0% 0.13% 0.0000%

Hardware-based module. The other two hardware-based

encoder modules are based on VPU and QSV technologies,

respectively. They generally achieve shorter encoding latencies

and incur lower CPU loads than software-based modules.

However, such efficiency may sacrifice the flexibility.

The VPU implementation supports H.264 hardware codecs

with the baseline, main, and high profiles. VPU requires the

YUV420 format and supports the dynamic reconfiguration of

the bitrate, frame rate, GOP number, and slice mode, via the

vpu EncGiveCommand API. Such reconfiguration can be done

in either the frame level or the macroblock level.

The QSV implementation supports several hardware-based

codecs. Meanwhile, they provide quite a few Video Pre-

Processing (VPP) operations, such as color space conversion,

resizing, and de-interlacing. The encoders provided by QSV

only support the NV12 pixel format; thus we use its VPP

feature to convert the original pixel format of the source frames

to NV12. QSV also supports codec reconfiguration in run time,

but it is less flexible. From its SDK reference manual, it sup-

ports at least the run-time reconfiguration of the video bitrate

without resetting an encoder. In case an encoding parameter

cannot be dynamically reconfigured, the encoder will be reset.

QSV supports several rate control modes, including CBR,

VBR, CQP, and AVBR. If the bitrate capping is required, one

can choose CBR, VBR, or AVBR mode. In CBR and AVBR

mode, only the target bitrate (TargetKbps) can be reconfigured,

where both the target bitrate and max bitrate (MaxKbps) can

be reconfigured in VBR mode at run time. We have integrated

both hardware encoders into GA.

D. Effective Bandwidth Estimation

We implement a bandwidth estimator inspired by

WBest [34] to estimate the effective bandwidth. Different from

other proposals [34–36], we leverage existing video packets

for effective bandwidth estimation, without incurring network

overhead. We can do this for two reasons: (i) the workload

of sending video packets is high (for 30-fps videos, we send

a frame every 33 ms) and (ii) the size of a video frame

is typically higher than MSS (Maximum Segment Size), so

each video frame is split into multiple back-to-back packets.

Our bandwidth estimator keeps track of the dispersion time
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of the video packets. To cope with fluctuations, we select

the median value as the estimated capacity from every W
packets. We then send video packets at the estimated capacity

to measure the effective bandwidth with W video packets.

The value of W is empirically selected by experiments, and

we consider W ∈ {100, 200, 300, 400, 500}. The estimation

accuracy with W = 100 is 50% in the worst case. In other

cases (200 ≤ W ≤ 500), the accuracy is as high as 80+% and

the differences among different W values are smaller than 5%.

Hence, we let W = 200 as default for shorter reaction time.
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Fig. 12. The measured: (a) effective bandwidth and (b) frame rate.

E. Experiments on a Real Testbed

We conduct real experiments to show the effectiveness of

our reconfiguration feature. We set up a testbed with a GA

server and a GA client, and connect them via a Dummynet

box. GA’s off-the-shelf video codecs allow us to adaptively

reconfigure video bitrate and frame rate. The bitrate is recon-

figured to be the estimated effective bandwidth and the frame

rate is chosen using Eq. (4) in Section VI.

Next, we evaluate the adaptive GA platform running CoD

as follows. We write a script on the Dummynet box to

repeatedly switch the bandwidth among 2048, 1024, and 512

kbps once every 60 secs. We then adaptively reconfigure

the video bitrate and frame rate. Figure 12(a) reveals that

our bandwidth estimator successfully detects the bandwidth

changes. Figure 12(b) shows that the codec parameter selector

quickly recovers from sudden frame rate drops due to throttled

bandwidth, by adjusting the video coding parameters (bitrate

and frame rate). Our experiments demonstrate how our cloud

gaming platform adapts to network dynamics for a single

gamer. We consider the adaptation problem across multiple

gamers sharing a bottleneck link in the next section.

VI. ADAPTING VIDEOS OF MULTIPLE GAMERS IN

DYNAMIC NETWORKS

We solve the resource allocation problem among multiple

gamers. Our proposed algorithm runs on the portal server.

A. Notations and Model

We consider a data center serving U gamers as illustrated in

Figure 13, where each gamer is connected to a GA server. All

U GA servers share an outgoing link of the data center, and

we let R be the current available link bandwidth. The value of

R is fluctuating due to the background traffic, and we employ
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Fig. 13. Adapting videos of GA servers in a data center.

Exponentially Weighted Moving Average (EWMA), or similar

techniques, to estimate the R value. We let f (1 ≤ f ≤ F )

and b (1 ≤ b ≤ B) be frame rate and bitrate, respectively and

they are specified by the system administrators. We let g (1 ≤
g ≤ G) be the game supported by the cloud gaming platform,

and pu be the game played by gamer u, where 1 ≤ u ≤ U
and 1 ≤ pu ≤ G. We let mg,f,b be the MOS score of playing

game g at frame rate f and bitrate b, which can be derived

via off-line user studies or online regression.

For concrete discussions, we adopt the user study reported in

Section IV-C in general, and in Figure 7 in specific, to empir-

ically model the MOS scores. We note that our MOS model is

designed to drive the codec reconfiguration decisions at the GA

server, rather than estimate the actual user experience at the

GA client. The MOS model implicitly considers the available

bandwidth, and ignores the network latency. This is because

the network latency is not controllable by GA server/client

during ongoing cloud gaming sessions. When a game session

is affected by higher packet loss rate or longer end-to-end

delay, our bandwidth estimator (Section V-D) reports lower

effective bandwidth. Then, the codec parameter selector picks

a new target bitrate (as a function of effective bandwidth),

using the MOS model that converts the bitrate and frame rate

into the expected MOS score. Different from our MOS model,

there are full-fledged QoE models in the literature for precise

user experience. For example, Game Mean Opinion Score

(GMOS) [29–31] is an objective quality metric, which is a

function of codec, frame rate, resolution, PSNR (Peak Signal-

to-Noise Ratio), network latency, and packet loss rate. Com-

pared to our simple MOS model, GMOS is too complicated

for video codec reconfiguration purpose. More importantly, the

additional complexity comes from factors that are not directly

controllable by the GA server/client.

We tried several popular functions, and decided to use the

following quadratic MOS model:

m(g, f, b) = αg,1f+αg,2b+αg,3f
2+αg,4b

2+αg,5fb+αg,6,
(1)

where αg,1–αg,6 are game-specific model parameters. The

goodness-of-fit statistics are summarized in Table III, which

demonstrates that the model closely follows the results of our

user study. The derived models are visualized in Figure 14,

which are consistent with the ground-truth reported in Fig-

ure 7. We note that, deriving the model parameters may not be
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TABLE III
THE MOS MODELS FOR INDIVIDUAL GAMES

Batman FGPX CoD

(1) (2) (3)

fps, αg,1 0.010 (0.036) 0.038 (0.041) −0.011 (0.037)
rate (Mbps), αg,2 2.940∗∗∗ (0.484) 2.297∗∗ (0.553) 2.529∗∗ (0.491)
I(fpŝ 2), αg,3 −0.001 (0.001) −0.002 (0.001) −0.001 (0.001)
I(ratê 2), αg,4 −1.150∗∗∗ (0.176) −0.868∗∗ (0.201) −0.939∗∗ (0.178)
fps:rate, αg,5 0.043∗∗ (0.008) 0.036∗∗ (0.009) 0.037∗∗ (0.008)
Constant, αg,6 2.248∗∗ (0.428) 2.369∗∗ (0.490) 2.621∗∗∗ (0.434)

R2 0.988 0.981 0.987

Adjusted R2 0.968 0.949 0.966

F Stat. (df = 5; 3) 49.518∗∗∗ 31.040∗∗∗ 46.130∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Fig. 14. Illustration of the resulting per-game QoE models.

trivial, and there are a number of ways to ease the burden. For

example, one may classify the computer games into a few gen-

res such that games in the same genre share similar video and

game play characteristics or therefore are similarly friendly

to cloud gaming QoE [7]. In addition, a service provider can

continuously and probabilistically collects users’ experience

ratings via simple questions to derive game-specific models.

Such post-session questionnaires are frequently adopted by

various online services.

Next, we let k̂u and ǩu be the maximal and minimal bitrates

of gamer u, respectively. The minimal ǩu is assigned by

the system administrator based on some practical concerns.

For example, a rule-of-thumb may indicate any bitrates less

than 50 kbps do not produce meaningful reconstructed videos,

leading to ǩu = 50 kbps. k̂u, on the other hand, comes from a

common property of hybrid video coders: the video quality sat-

urates when the bitrate is increased [37]. Hence, it yields less

significant improvements while the bitrate is increased beyond,

e.g., k̂u = 5 Mbps. Moreover, the gamer’s access link may be

narrow and shared by multiple users/applications, leading to

a bandwidth limitation on u’s access link. k̂u is also used to

accommodate this bandwidth limit: the administrator can set

k̂u to be the minimum between the link bandwidth limitation

and the quality-saturating bitrate, so that the allocated bitrate

to u will not be wasted.

B. Problem Statement

Our adaptation problem is to select the best frame rate and

bitrate for each gamer, in order to maximize the overall gaming

quality under the bandwidth constraints. We consider two op-

timization criteria: (i) maximizing the average MOS score and

(ii) maximizing the minimum MOS score across all gamers.

We refer to these two optimization problems as: (i) quality-

maximization and (ii) quality-fairness problems, respectively

throughout this article. We let xu and yu (∀ 1 ≤ u ≤ U ) be

the decision variables, where 1 ≤ xu ≤ F (frame rate) and

1 ≤ yu ≤ B (bitrate). With the defined notations, we write

our problem with the quality-maximization objective as:

maximize

U∑

u=1

mpu,xu,yu
(2a)

s .t . :

U∑

u=1

yu ≤ R; (2b)

ǩu′ ≤ yu′ ≤ k̂u′ , ∀ 1 ≤ u′ ≤ U ; (2c)

1 ≤ xu ≤ F, 1 ≤ yu ≤ B, ∀ 1 ≤ u ≤ U. (2d)

For the quality-fairness objective, we replace Eq. (2a) with:

maximize

U

min
u=1

mpu,xu,yu
. (3)

The optimization problems are solved periodically, say once

every T seconds in order to accommodate to the system

and network dynamics. In the next two sections, we present

optimal and efficient algorithms to solve the problems.

C. Optimal Algorithms
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Fig. 15. The best MOS scores under different bitrates.

Solving the quality-maximization and quality-fairness prob-

lems is challenging due to the complex relations among the

frame rates, bitrates, games, and MOS scores. The problems

can be solved using commercial problem solvers, such as

CPLEX [38]. The CPLEX comes with two solvers: the CPLEX

solver and the CP solver. In our problems, because of the

min(imum) operation in Eq. (3), we have to use the CP solver.
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Fig. 16. Benefits of choosing optimal frame rate of different games: (a) Batman, (b) FGPX, and (c) CoD.

We refer to the CPLEX based algorithms for the quality-

maximization and quality-fairness problems as OPTavg and

OPTmm, respectively.

D. Efficient Algorithms

While the OPTavg and OPTmm algorithms give the optimal

bitrate allocation, they suffer from exponential running time,

and are not suitable to real-time systems like cloud gaming

platforms. Next, we develop two efficient algorithms. The

intuition behind the efficient algorithms is iteratively allocating

some bandwidth to the gamer that can boost the objective

function value the most. Given that we iteratively add more

bitrate to each gamer, the bitrate of any gamer is known at each

step. By taking the partial derivative of Eq. (1) with respect

to f , we have the optimal frame rate as:

f∗(b, g) =
−(αg,1 + αg,5b)

2αg,3
, (4)

which selects the optimal coding parameter for a gamer

playing game g at the accumulated bitrate b. Next, we write

the MOS scores under f∗(b, g) as mos∗(g, b), where:

mos∗(g, b) =αg,1f
∗(g, b) + αg,2b+ αg,3(f

∗(g, b))2

+αg,4b
2 + αg,5f

∗(g, b)b+ αg,6. (5)

We plot the best MOS scores mos∗(g, b) derived from the

model parameters (given in Table III) in Figure 15. This figure

shows that mos∗(g, b) curves are monotonically increasing and

saturate at ∼ 2 Mbps. We also plot the optimal, mean, and

worst MOS scores of different games in Figure 16. This figure

reports that how much benefit we can get when choosing the

bitrates using Eq. (4). The gaps between the optimal and the

worst MOS scores in Batman, FGPX, and CoD are up to 1.885,

1.410, and 1.122, respectively. Such gaps are nontrivial, and

thus show the effectiveness of our approach.

Using Eqs. (4) and (5), we essentially transform the problem

of choosing the best xu (frame rate) and yu (bitrate) into

selecting the best yu. For the efficient algorithms, we start

from setting ŷu = ǩu for all 1 ≤ u ≤ U , and iteratively

add bitrate to the gamer that needs additional bitrate the most.

We let w be the unit of allocating additional bitrate, and set

w = 1 kbps if not otherwise specified. At each step, we define

an MOS score improvement function cu as:

cu = mos∗(pu, ŷu + w)−mos∗(pu, ŷu), (6)

which quantifies the benefits of investigating bandwidth w to

gamer u. We also use R̂ to denote the residue bandwidth on

the bottleneck link.

For the quality-maximization problem, we iteratively allo-

cate w to the gamer with the highest MOS improvement cu
that has not exceeded the bandwidth limitation and quality-

saturating bitrate (Eq. (2c)). More specifically, we first put all

U gamers in a heap sorted on their cu in the descending order.

We then follow this order to allocate the residue bandwidth

until we reach the limitation of the constraint
∑U

u=1 ŷu ≤ R.

The pseudocode of our proposed EFFavg is given in Figure 17.

For the quality-fairness problem, we iteratively allocate w
to the gamer playing with the lowest MOS score. More

specifically, we first put all the gamers in a heap sorted on

their current MOS scores mos∗(pu, ŷu) in the ascending order.

We then follow the order to allocate w to gamer u, as long as

the allocation does not violate the limitation of the constraint∑U

u=1 ŷu ≤ R. The pseudocode of our proposed EFFmm is

given in Figure 18.

1: let R̂ = R

2: store gamers in a heap on quality improvement cu(·) in the dsc.
order

3: while R̂ > 0 do
4: pop and remove the gamer u with the maximal cu(·) from

the heap
5: if allocating ŷu + w on u satisfies (2c) then
6: let ŷu = ŷu + w

7: let R̂ = R̂− w

8: insert the gamer u to the heap
9: else

10: remove gamer u from the heap

11: let y∗

u = ŷu ∀ 1 ≤ u ≤ U

12: return all y∗

u

Fig. 17. The pseudocode of the EFFavg algorithm.

Lemma 1 (Optimality of EFFmm). The EFFmm algorithm

produces optimal bitrate allocation.

Proof. The EFFmm algorithm always allocates residue band-

width w to gamer u with the lowest MOS score at each step.

Consider any alternative allocation of w to a gamer u′ 6= u.

We note that adding w to yu′ does not improve the objective

function value in Eq. (3). Compared to allocating w to u, this

alternative allocation must be followed by allocating another
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1: let R̂ = R

2: store gamers in heap on MOS scores mos∗(·) in the asc. order

3: while R̂ > 0 do
4: pop and remove the gamer u with the minimal mos∗(pu, ŷu)

from the heap
5: if allocating ŷu + w on u satisfies (2c) then
6: let ŷu = ŷu + w

7: let R̂ = R̂− w

8: insert the gamer u to the heap
9: else

10: remove gamer u from the heap

11: let y∗

u = ŷu ∀ 1 ≤ u ≤ U

12: return all y∗

u

Fig. 18. The pseudocode of the EFFmm algorithm.

w bandwidth to u to reach the same objective function value,

as gamer u is the gamer with the lowest MOS score. Hence, no

alternative allocation can lead to better solution when R̂ = 0.

This yields the lemma.

Lemma 2 (Optimality of EFFavg). The EFFavg algorithm

produces optimal bitrate allocation if the slope of mos∗(g, b)
monotonically decreases when the bitrate is increased.

Proof. The MOS score improvement cu defined in Eq. (6)

is proportional to the slope. Since EFFavg allocates residue

bandwidth to the gamer with the highest cu, the algorithm

always finds the steepest slope at the current step (locally) and

across all future steps (globally). This yields the lemma.

Next, we check whether the slope of mos∗(g, b) is mono-

tonically decreasing under the empirically-derived model pa-

rameters. First, we take double derivative of mos∗(g, b) in

Eq. (5), which leads to:

mos∗(g, b)′′ =2αg,4 − α2
g,5/2αg,3. (7)

mos∗(g, b) is monotonically decreasing if the value of this

equation is negative. The model parameters in Table III satisfy

the condition. Hence EFFavg is optimal.

Lemma 3 (Time Complexity). The EFFavg and EFFmm

algorithms terminate in polynomial time.

Proof. We first create the max heap and min heap for EFFavg

and EFFmm, respectively. For the outer loop, we go through all

residue bandwidth R̂. We also make sure that in each iteration,

the value of R̂ is decreased at least w kbps, which is a small

integer. Hence, the complexity of the outer loop is O(R).
Inside the loop, we first pop and remove the first gamer. In

this step, the time complexity is O(log(U)). Next, we check

the condition and try to modify the bitrate of the gamer u. If

the bitrate is changed, we insert u to the heap and decrease

the value of R̂, which also costs O(log(U)). Hence, the

complexity of the two efficient algorithms is O(Rlog(U)).

VII. EVALUATIONS

A. Setup

We build our simulator using Java and implement the pro-

posed efficient algorithms in the simulator. For comparisons,

we also implement two baseline adaptation algorithms called

Baseeq and Basenorm. The Baseeq algorithm equally allocates

the available network resources to the gamers. Basenorm
algorithm allocates the available network resources to gamers

proportional to the average MOS scores of the games played

by individual gamers (cf. Figure 7). For example, the overall

MOS score of Batman is higher, and Basenorm allocates more

network resources to Batman for better overall MOS scores.

For brevity, Baseeq and Basenorm set the frame rate to be 30

fps if not otherwise specified.

For realistic simulations, we drive the simulator using real

traces. Each new gamer u is randomly assigned a band-

width k̂u based on the worldwide bandwidth dataset collected

between January and October 2014 [39]. Each gamer also

randomly selects a game from Batman, FGPX, and CoD. We

use Amazon EC2 and PlanetLab nodes to collect traces of data

center bandwidth R. We create an EC2 instance in Virginia,

and select four PlanetLab nodes at the US East Coast. We

use iperf to measure the bandwidth from the EC2 to each

PlanetLab node once every 15 minutes for a whole day on

October 12, 2014. Then, for each sample, we pick the maximal

bandwidth across all four nodes, and use it as the data center

bandwidth R. The average R over the 96 samples is 760 Mbps.

simulator to solve the adaptation problem once every T =
60 seconds if not otherwise specified. We vary the number

of gamers U ∈ {250, 500, 1000, 2000, 4000}. We run the

simulations on a PC with a 2.8 GHz i7 processor and 16 GB

memory. The considered metrics are:

• MOS: the overall MOS score. We report both average

MOS scores across all gamers, and the worst MOS scores

among them. They align with objective functions of the

quality-maximization and quality-fairness problems.

• Bitrate: the bitrate consumed by each gaming session.

• Efficiency: the ratio between the MOS score over the

consumed bandwidth in Mbps.

• Running time: the execution time of each run of the

adaptation algorithms.

In the next section, we report average results with 95%
confidence intervals whenever applicable.

TABLE IV
MOS SCORES OF THE EFFICIENT AND OPTIMAL ALGORITHMS

# of Gamers
OPTavg EFFavg # of Gamers

OPTmm EFFmm

Mean Mean Worst Worst

100 5.16 5.16 1 5.53 5.53

200 5.15 5.15 2 5.01 5.01

400 5.15 5.15 4 4.91 4.91

800 4.49 4.49 8 4.91 4.91

TABLE V
RUNNING TIME OF THE EFFICIENT AND OPTIMAL ALGORITHMS (S)

# of Gamers
OPTavg EFFavg # of Gamers

OPTmm EFFmm

Mean Max Mean Max Mean Max Mean Max

100 0.02 0.03 0.090 0.097 1 0.02 0.01 0.009 0.009

200 0.15 0.16 0.102 0.103 2 0.36 0.37 0.015 0.016

400 0.95 0.96 0.153 0.157 4 4.47 4.48 0.022 0.023

800 5.01 5.02 0.237 0.248 8 125.8 127.1 0.029 0.029

B. Results

Comparisons between the optimal and efficient algo-

rithms. We first compare the efficient algorithms against
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Fig. 19. Performance of different algorithms: (a) mean MOS scores, (b) worst MOS scores, (c) overall efficiency, and (d) allocated average bitrate per gamer.

the optimal ones. Invoking OPTavg and OPTmm poten-

tially takes prohibitively long time, and thus we set U ∈
{100, 200, 400, 800} and U ∈ {1, 2, 4, 8} for OPTavg and

OPTmm, respectively. We run each setting for a day and report

the average MOS scores and running time in Tables IV and V.

Table IV shows that our proposed efficient algorithms indeed

produce the optimal adaptations, as proved in Lemmas 1 and

2. Table V reveals that the efficient algorithms run much faster

than the optimal ones: more than 21 and 4337 times of running

time reductions are observed. The running time gap is going to

be even bigger with more gamers, as EFFavg and EFFmm run

in polynomial time, but OPTavg and OPTmm do not. Given

that the efficient algorithms achieve the optimal adaptations in

polynomial time, we no longer consider the optimal algorithms

in the rest of this section.

Comparisons between the efficient and baseline algo-

rithms. We first report the performance results of the efficient

and baseline algorithms in Figure 19. Figure 19(a) and 19(b)

show that the proposed EFFavg and EFFmm achieve the design

goals: (i) EFFavg leads to the highest average MOS scores

and (ii) EFFmm results in the highest worst MOS scores.

Moreover, they outperform the two baseline algorithms by up

to 30% and 46%. Figure 19(c) reveals that EFFavg leads to

higher efficiency than EFFmm, but both of them outperform

the baseline algorithms. Last, Figure 19(d) shows that when

U ≥ 500, all four algorithms allocate roughly equal bitrate

to gamers. This indicates that the superior performance of

our efficient algorithms is not built upon excessive resource

consumption. We take a closer look by reporting the link

utilization in Figure 20. Figure 20(a) reveals that our efficient

algorithms lead to gamer link utilization no larger than that

of the baseline algorithms. Furthermore, more gamers result

in lower gamer link utilization, indicating that the bottleneck

is at the data center. This is confirmed by Figure 20(b): the

data center link utilization reaches 100% when there are more

than 500 gamers. Another observation on Figure 20 is that no

algorithm overloads the links, which illustrates the correctness

of our algorithm design and simulator implementation.

Difference between EFFavg and EFFmm. The two ef-

ficient algorithms target different optimization criteria, and

are optimal in terms of mean MOS scores and minimum

MOS scores, respectively. We plot the average MOS scores

of individual games in Figure 21. Figure 21(a) shows that

with EFFavg , the gamers playing Batman achieve higher MOS

scores, which can be attributed to the optimization criterion:

250 500 1000 2000 4000

Number of Gamers

Li
nk

 U
til

. o
f G

am
er

s 
(%

)

0
5

10
15

EFFavg

EFFmm
Baseeq

Basenorm

(a)

250 500 1000 2000 4000

Number of Gamers

Li
nk

 U
til

. o
f D

at
a 

C
en

te
r 

(%
)

0
50

10
0

15
0

EFFavg

EFFmm
Baseeq

Basenorm

(b)

Fig. 20. Link utilization: (a) across all gamers and (b) of the data center
under different adaptation algorithms.
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Fig. 21. Mean MOS scores under different numbers of gamers using two
adaptation algorithms: (a) EFFavg and (b) EFFmm.

investing bandwidth on Batman leads to higher improvement

on the MOS scores. In contrast, Figure 21(b) demonstrates that

EFFmm indeed achieves fairness on the MOS scores: gamers

playing all three games achieve the same MOS score except

when U = 250. A closer look (cf. Figure 20(b)) indicates

that when there are fewer gamers, there are actually more

than enough bandwidth for all gamers to achieve the highest

MOS scores. This demonstrates that our EFFmm algorithm is

designed in a way that it does not only maintain fairness, but

also capitalize all the available resources.

Implication of different data center available band-

width. We report the MOS scores under different values of

R ∈ {0.5R, 1R, 2R, 4R} in Figure 22. It shows that higher

available bandwidth leads to smaller gap between our efficient

algorithms and the baseline algorithms. This can be explained

by Figure 22(b). It shows that higher available bandwidth

results in low data center link utilization. More specifically,

when the data center bandwidth increases, gamers’ links

become the bottlenecks. This reduces the optimization room

of our algorithms, and results in smaller gaps.
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Fig. 22. Impacts of different available bandwidth R: (a) average MOS scores
and (b) data center link utilization.

Our efficient algorithms scale to large problems. To

verify the scalability of our efficient algorithms, we measure

the running time of the EFFavg and EFFmm algorithms under

various number of gamers. We report the average running

time in Table VI, which shows that it takes at most ∼ 1.7
seconds to solve an adaptation problem with more than 8000

gamers, showing that the efficient algorithms scale to large

cloud gaming platforms.

TABLE VI
RUNNING TIME IN SECONDS

# of Gamers
EFFavg EFFmm

Mean Max Mean Max

500 0.181 0.183 0.179 0.184

1000 0.296 0.299 0.287 0.290

2000 0.523 0.531 0.520 0.533

4000 1.000 1.104 1.060 1.066

8000 1.677 1.681 1.654 1.661

VIII. CONCLUSION

In this paper, we studied the problem of adapting cloud

gaming sessions to maximize the gamer experience in dy-

namic environments in three steps. First, we conducted a

crowdsourcing-based user study to measure and model the

gamer experience under different video codec configurations.

Second, we enhanced GA, an open-source cloud gaming

platform to support video codec reconfigurations, which allows

the cloud gaming platform to adapt the frame rate and bitrate

of each cloud gaming session on-the-fly. Third, with the gamer

experience model and adaptation mechanism, we presented

two formulations with different optimization criteria of: (i)

maximizing the average MOS scores across all gamers and

(ii) maximizing the minimum MOS scores among all gamers.

We then proposed two optimal and two efficient algorithms to

solve these two adaptation problems. We analytically showed

that the proposed efficient algorithms run in polynomial time,

yet achieve optimal adaptations. We carried out extensive

trace-driven simulations, and the simulation results comply

with our analysis. In addition, the proposed efficient algo-

rithms: (i) outperform the baseline algorithms by up to 46%

and 30%, (ii) run fast and scale to large (≥ 8000 gamers)

problems, and (iii) indeed achieve the user-specified optimiza-

tion criteria. The enhanced cloud gaming platforms will be

made publicly available, which can be leveraged by many

researchers, developers, and gamers.
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