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Abstract—It is common to inspect an Android application
using static or dynamic analysis techniques. Most traditional
tools adopt static analysis techniques due to its low cost and
high performance properties. However, since an inspected target
could be obfuscated, it is also common to work with dynamic
analysis techniques so that complete runtime information can
be obtained to provide in-depth application behavior. Although
there are already a lot of tools based on dynamic analysis
techniques, the capability of such a tool is unknown. It is
straightforward to understand the capability of a dynamic
analysis tool by measuring its code coverage. However, to our
knowledge, there is not a universal approach for measuring code
coverage for all dynamic analysis tools, especially when a tool is
only accessible remotely. In this paper, we propose an approach
to measure code coverage for dynamic analysis tools. We design
and implement the approach to measure code coverage for both
online and off-line dynamic analysis tools. We then pick online
tools including ABM, Anubis, CopperDroid, Tracedroid, as well
as off-line tools including standard Android emulator, DroidBox,
and DroidScope. Our measurement results show that the average
coverage rate for each tool lies between 20% and 60%. We believe
that our approach can provide more information for researchers
and developers to better understand and improve the capability
of dynamic analysis techniques.

Keywords-Android, code coverage, dynamic analysis, mobile
security, software inspection

I. INTRODUCTION

Mobile devices might be the most closest devices to hu-
mans’ daily life. The current mobile device market is shared by
Android and iOS operating system. According to reports form
IDC [1], the top two players (Android and iOS) dominates the
market with 76.6% and 19.7% share in Q4 2014, respectively.
In comparison to i0S, Android adopts a relatively open strat-
egy for developers and users. Developers are able to develop
Android applications on most mainstream operating systems,
and then distribute their applications through official Google
Play market, third-party marketplace, or any (untrusted) stor-
age spaces. Users can install applications from any sources
and customize their device with their preferred interfaces and
styles. Although these flexibilities have successfully attracted
a large number of users, the open design also provides more
chances for malicious users to approach Android users. As a
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result, users often feel that Android is more risky! than iOS,
even if an application is installed from the official market.
The risks brought by an application may include attaching
massive advertisements, degrading system performance, occu-
pying system resources, breaking system programs, requesting
over-privileged permissions, leaking personal information, and
even launching network attacks.

There are a lot of approaches to prevent an Android device
from being compromised by a risky application. The first-line
defense is that Android OS by default disallows a user to
install an application from an untrusted source [3]. When it
happens, a warning message is popped up to show that an
application could be harmful because its installation source
cannot be validated. However, a user can turn off this feature
at any time. There are alternative on-device approaches that
protect users from risky applications. Anti-virus software
fits in this category. Anti-virus companies like McAfee and
Kaspersky offer their approaches for Android users to do
real-time protection on file accessing. Due to performance
considerations, most anti-virus software is based on pattern
matching techniques. There are also off-device approaches that
help users to check whether an application is malicious. Most
of these approaches are online tools. VirusTotal [4] is an online
tool that attempts to scan an uploaded software using tens
of different anti-virus scanners. Similarly, AndroTotal [5] is
another online tool that designed specifically for Android ap-
plications. These tools scan files submitted by a user and return
scanning reports generated by one or more virus scanners. A
user is able to justify whether an application is malicious based
on the reports.

It is insufficient if a scanner only determines whether an
application is malicious. To further understand the behavior
and characteristics of an application, we need better analysis
tools. Androguard [6] is a static analysis tool that is able to
do reverse engineering for an Android application package file
(apk file in short). It also provides a set of tools to manage
and detect malicious Android applications using control flow

IThe use of the word “risky” is more precise then “vulnerable.” The open
nature of Android does actually give more chances for malicious attackers.
However, as to vulnerabilities, recent reports [2] show that the number of
vulnerabilities found on iOS is not less than that found on Android. The two
platforms could be equally vulnerable.



graph based signatures. Andrubis [7] (later integrated into
Anubis) is an online tool that is able to monitor and report
detailed Android application behavior using dynamic analysis
techniques. Alternatively, behavioral analytical reports may be
also obtained by using an off-line tool, for example, Trace-
droid [8] and DroidBox [9]. These behavior analysis tools can
be implemented using static or dynamic analysis techniques.
A static analysis tool does not need to launch an application.
The reports are generated by making in-depth analysis to
source codes (either in a high- or low-level language) and other
resource files in a package. In contrast, a dynamic analysis tool
has to launch an application, and then analyzes application
behavior based on collected runtime information including
system call traces, file accesses, network activities, and system
logs. Although dynamic analysis techniques require more
resources, they are able to defend against code obfuscation
techniques and are better for hybrid execution environment
adopted by Android. As a result, a lot of researches adopt
reports from dynamic analysis tools to make further detection.

Although dynamic analysis techniques have been widely
used, the capability of such a tool is unclear, and there is
not a general approach to measure the capability of the tools.
One major issue for dynamic analysis tools is that they may
not inspect an inspected application thoroughly. Therefore, a
fundamental metric to evaluate the capability of a dynamic
analysis tool is measuring the code coverage for the tool. The
code coverage is the ratio of codes that has been executed
in a dynamic analysis environment. Code coverage can be
measured in diverse granularities including instruction-level,
line-level, block-level, function-level, or class-level. However,
measuring code coverage is usually not a general and trivial
task, especially when a dynamic analysis tool is deployed only
online. In this work, we attempt to propose a general approach
to measure code coverage for Android dynamic analysis tools.
The proposed approach can be applied to both online and off-
line tools. We also conduct a preliminary code coverage mea-
surement for several dynamic analysis tools including online
tools (ABM, Anubis, CopperDroid, and Tracedroid) and off-
line tools (Android emulator, DroidBox, and DroidScope). We
believe the proposed approach can better reveal the capability
of a measured tool and provide in-depth information for future
improvement.

The rest of this paper is organized as follows. We introduce
related works in Section II. The proposed approach is intro-
duced and discussed in Section III. Section IV presents our
measurement results for several selected online and off-line
tools. Finally, a concluding remark is given in Section V.

II. RELATED WORK

A number of research groups have developed their own tools
to understand Android application behaviors. Enck et al. [10]
proposed TaintDroid, which is able to monitor the information
flow inside an Android device. TaintDroid is neither a dynamic
analysis tool nor a sandbox. It is a custom-built firmware with
features to track how apps use sensitive information. As a

result, it is not possible to implement TaintDroid as a stand-
alone application and must be a complete system firmware.
Lantz et al. [9] proposed DroidBox, which extends TaintDroid
and provides additional static pre-check and API monitoring
features. DroidBox detects data leaks by tainting sensitive
data and placing taint sinks throughout the APIL. In addi-
tion, by logging relevant API function parameters and return
values, a potential malware can be discovered and reported
for further analysis. Anubis is an online dynamic analysis
tool originally designed for inspecting malware targeted on
personal computers. The core component was developed by
Bayer et al. [11]. In 2012, Anubis also implemented a sandbox
environment for inspecting Android applications (codename:
Andrubis). In addition to dynamic analysis in sandboxes,
Andrubis also performs static analysis, yielding information
including the app’s activities, services, required external li-
braries and actually required permissions. But the detailed
design of Andrubis is unknown to the public. Huang et al. [12]
proposed android behavior monitor (ABM), which integrates
open source components and is built upon standard Android
emulator. In addition to its open design, ABM adopts several
strategies to improve code coverage including emulation of
random user inputs, sending short messages, and making
phone calls. Yan and Yin [13] proposed DroidScope to analyze
Android application behavior. DroidScope is built on top
of QEMU emulator and is able to reconstruct the OS-level
and Java-level semantic views completely from the outside.
In addition, a number of tools including API tracer, native
instruction tracer, Dalvik instruction tracer, and taint tracker
are developed to conduct further analysis. Reina et al. [14]
proposed CopperDroid, which is also a dynamic analysis tool
built upon QEMU emulator. CopperDroid has similar designs
and implementations to DroidScope. CopperDroid monitors
low-level system calls so it is able to monitor malware
behavior whether it is initiated from Java, JNI or native code
execution.

In addition to the tools themselves, a number of researches
attempt to detect malicious applications based on dynamic
behavior. Xie et al. [15] proposed pBMDS to observe unique
behaviors of the mobile phone applications and the operating
users on input and output constrained devices, and leverage a
hidden Markov model to learn application and user behaviors
from process state transitions and user operational patterns.
Based on these information, pPBMDS can identify behav-
ioral differences between malware and human users Blising
et al. [16] proposed AASandbox that performs both static
analysis and dynamic analysis on android programs to auto-
matically detect suspicious applications. Static analysis scans
the software for malicious patterns at the source code level.
Dynamic analysis executes the application in a sandbox that
monitors and logs low-level accesses to the system for further
analysis. It is unfortunately that the authors did not show the
performance on analyzing malware. Burguera et al. [17] also
proposed to detect malware using behavior dynamics. They
developed a client named Crowdroid that is able to monitor
Linux kernel system calls and report them to a centralized



server. Based on the collected dataset, they cluster each dataset
using a partition clustering algorithm and hence differentiate
between benign and malicious applications. Zhou et al. [18]
proposed DroidRanger to detect malicious applications based
on both static and dynamic features. They first propose a
permission-based behavioral foot printing scheme to detect
new samples of known Android malware families. They then
applied a heuristics-based filtering scheme to identify certain
inherent behaviors of unknown malicious families. Evaluations
show that their system can detect known malware as well as
certain zero-day malware.

There are a lot of dynamic analysis tools, but seldom of
them discussed about their code coverage rates and approaches
to measure code coverage rates. Veen and Rossow [8, 19]
claim that the average code coverage rate is about 33%. How-
ever, the author may measure the number using their custom
approaches, which could be not applicable to other platforms.
Although the code coverage is not measured, literatures have
recommended several strategies to improve code coverage.
The simplest approach is to work with the Android Monkey
tool [20] to generate random input events. Mahmood et al. [21]
proposed a systematic approach to generate a large number of
test cases for fuzzing an application, as well as a test bed
that given the generated test cases, executes them in parallel
on numerous emulated Androids running on the cloud. The
cases are generated by reverse engineering an application and
create relationships between Uls and codes. The generated
test cases would have better code coverage than random input
events, but it is not clear how the coverage rate is measured.
Machiry et al. [22] proposed DynoDroid, which is also an
input generating system that attempts to improve the code
coverage for testing Android applications. The code coverage
of DynoDroid is measured using Emma [23]. However, there
are several restrictions when using Emma with Android. The
details are discussed later in Section III-A

III. THE PROPOSED APPROACH

Android applications are major developed with the Java
programming language. Developing with Java is not new, and
there are already a number of tools that can do coverage
analysis for Java codes. However, these tools do not work
with Android’s development environment directly. As a result,
the official Android software development kit (SDK) has
incorporated the well-known Emma tool to its development
environment. Although Android SDK has incorporated Emma,
an inspected application has to be modified and meets the
requirements of running Emma on Android. In this section,
we give a brief description on using Emma on Android first
and then introduce how our approach works.

A. Emma on Android

Emma is a code coverage measurement tool originally
designed for Java, and Android has incorporated Emma to
be parts of its SDK. There are two major benefits of using
Emma. First, most Android applications with source codes
can be measured. Second, Emma produces a detailed and
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Fig. 1. The process of the proposed approach.

comprehensive report for a developer, and code coverage rates
are presented in various granularities including class-level,
method-level, block-level, and line-level. Although Emma is a
feature-rich tool, there are some restrictions when a developer
attempts to run Emma on Android.

o The “on-the-fly” mode is not supported. This means
that we cannot measure coverage rates for pre-compiled
binaries.

e Source codes must be modified to load Emma.

o Support only Java bytecode, not Dalvik bytecode [24].

e Must enable the instrumentation mode by using the am
script to launch the inspecting application under the shell
prompt. Alternatively, readers may work with the plug-in
integrated with Eclipse or Android Studio IDE.

Due to the above restrictions, Emma only works with a local
application having complete source codes. It is also clear that
Emma could not be a good choice from the perspective of
large-scale evaluation of code coverage for dynamic analysis
tools.

B. Our Approach

Our approach has three design objectives. First, we expect
to measure the code coverage without Java source codes.
Second, we expect to support both local measurement and
remote measurement. Third, we expect to provide similar
code coverage granularities to Emma. The basic idea of our
approach is simple. We decompile an apk file back to its source
code in assembly language. We then insert measurement codes
into the decompiled codes, recompile, repackage, and finally
use the patched binary file to test code coverage rates. The
process is shown in Figure 1. We discuss the details of the
three major steps in the figure in later subsections.

1) File Extraction and Decompilation: In the first step, we
extract files inside an Android application package (apk) file
and do the decompilation. Although an apk file is actually
a zip archive, we use apktool [25] to extract files because



TABLE I
LIST OF SMALI BRANCH INSTRUCTIONS.

[ GOTO [ IF [ OTHER
goto if-eq if-egz | packed-switch
goto/16 if-ne if-nez sparse-switch
goto/32 | if-1t if-1ltz | try ... catch ...
if-ge if-gez
if-gt if-gtz
if-le if-lez

the tool also converts files like AndroidManifest.xml into a
human readable format. The decompilation is done by using
the baksmali tool [26]. baksmali reads the classes.dex file in
an apk file and converts each identified bytecode into assembly
source codes, i.e., the .smali files. The assembly language
syntax is loosely based on Jasmin’s/dedexer’s syntax, and
supports the full functionality of the dex format including
annotations, debug info, and line info.

2) Modification and Code Instrumentation: In the second
step, we have to patch the extracted files obtained in the
first step. Similar to Emma, required permissions for writing
measurement results have to be declared in the AndroidMan-
ifest.xml file. To handle the decompiled source codes, we
implement a compiler to parse smali codes and insert our
customized instrumentation codes. To achieve different levels
of granularities, the compiler has to identify correct places to
insert instrumentation codes. We discuss how instrumentation
codes are inserted to provide different levels of coverage
granularities. For class-level granularity, it is straightforward
because smali use a single file to store a single class. We can
simply find the constructor of each class and insert instrumen-
tation codes at the entry point of a constructor. For method-
level granularity, it is also straightforward because smali use
a .method keyword to indicate the beginning of a function.
Similarly, instrumentation codes can be inserted at the entry
point of a method. Handling block-level granularity is a little
bit complicated because the compiler has to identify the entry
point of each block. To identify a block, we check instructions
listed in Table I. A branch instruction is used as a separator
to split a code block into two blocks. Based on the logic, we
identify block entry points and insert instrumentation codes
for each identified block. Finally, for line-level granularity,
the compiler simply reads comments in the generated smali
files, which have indicated the line numbers in the code.

We assign a Classld to each identified class. Classld is a
unique and non-negative integer in an application package.
Similarly, we also assign Methodld and Blockld to each iden-
tified method and block, respectively. With these identities, a
unique identity string can be generated for each instrumented
point. The identity string is in the format of “Classld #
Methodld # Blockld.” The instrumentation code inserted into
smali codes is simply a function call in the following form of
doCount(“Classld # Methodld # Blockld”), where doCount is
a static function exported from a top-level class. A sample
implementation of doCount function is given in Figure 2,
which uses a HashMap to count the number of appearance

public class Coverage {
static HashMap<String, Integer> rec =
new HashMap<String, Integer>();
public static void doCount (String id) {
if (rec.containsKey (id)) {
rec.put (id,
} else {
rec.put (id,
}
}

rec.get (id) +1);

1);

}i

Fig. 2. A sample implementation of the doCount function.

TABLE I
A SAMPLE OF DALVIK REGISTER ARRANGEMENT IN A METHOD.

Name  Alias  Register purpose
v0 Store the 1st local variable.
vl Store the 2nd local variable.
v2 p0 Store the 1st parameter passed to the method.
v3 pl Store the 2nd parameter passed to the method.
v4 p2 Store the 3rd parameter passed to the method.

of each identity string.

Although it looks straightforward to insert instrumenta-
tion codes at the identified locations, the implementation is
nontrivial due to Dalvik virtual machine’s function calling
convention. Dalvik virtual machine uses registers to pass
function call parameters instead of stacks. As a result, when
the instrumentation code attempts to make a function call, the
additional register used to passing string identity could affect
the regular use of other registers originally used in the patched
codes, and even crash the application. To prevent patched
codes from being crashed, we discuss two possible strategies,
direct-call and indirect-call, to insert instrumentation codes
without destroying the patched application.

The direct-call strategy is to call the doCount function
directly at the instrumented point. Since we need to pass
an identity string to the counting function, the simplest way
to patch the codes is to add an additional register to store
the identity string. However, it does not always work due
to Dalvik’s instruction restriction on using the registers. An
example of register arrangement in a method is shown in
Table II. In the example, the method has two local variables
and three parameters. Dalvik virtual machine uses registers of
smaller index numbers to store local variable and registers of
higher index numbers to store function parameters. There are
aliases created for function parameters. In the example, the p0,
pl, and p2 are aliases for register v2, v3, and v4, respectively.
If an additional register is added for storing a local variable,
the variable would be v2 and all register index number for
function parameters are increased by one as well. Note that
the aliases are still referenced to the correct registers, i.e., p0,
pl, and p2 become aliases for v3, v4, and v5, respectively.
Adding an additional local variable register may cause an issue



const-string v1, "32#0#0"

invoke-static {vl}, Lorg/test/Coverage;->doCount (Ljava/lang/String;)V

"32#23#0"
invoke-static/range {v17

const—-string v17,

v17}, Lorg/test/Coverage;->doCount (Ljava/lang/String;)V

Fig. 3.

Samples of code instrumentation using the direct-call strategy.

.method public static count_32_23_0()V
.locals 1

const-string v0, "32#23#0"

invoke-static {v0}, Lorg/test/Coverage;->doCount (Ljava/lang/String;)V

return-void
.end method

Fig. 4. A sample of code instrumentation using indirect-call strategy.

because not all registers are accessible for all instructions.
Some instructions like move and invoke use a 4-bit field to
store register index number. As a result, these instructions can
only access register v0—uv1b. If a parameter register moves
from v15 to v16, instructions originally used to access v15
may not work for v16. We summarize possible cases when
patching a method. Suppose originally we have [ local variable
registers and p parameter registers.

a) [ 4+ p < 15: This case is safe. When adding an additional
local variable register, the total number of registers is still
less than or equal to 16.

b) I > 16: This case is also safe because all parameter
registers are greater than 15. These registers must be
accessed using compatible instructions.

¢) I <16 and [ + p > 16: This case is not safe. In this case,
there must be one parameter register moves from v15 to
v16. Incompatible instructions access to the v16 register
trigger exceptions and crash the program.

Samples using the direct-call strategy can be found in Figure 3.

In contrast to the direct-call strategy, the indirect-call
strategy wraps the calling of doCount into a newly created
wrapper function and then calls the wrapper function at
the instrumented location. An example of function wrap-
ping is given in Figure 4. In the example, the calling of
doCount(“32#23#0”) is implemented in the count 32_23_0
function. The corresponded instrumented location can simply
call the count_32_23_0 function, which requires no param-
eter and therefore no additional registers are required. One
limitation of the indirect-call strategy is that, a single .dex
file can only contain a maximum number of 65536 functions.
In case the number of functions exceeded the limitation, we
can consider to either use only class-level and method-level
granularities or split a single .dex file into multiple .dex files.
Although implementing with the direct-call strategy is more
concise, due to its complexity on handling register dynamics,
we consider the indirect-call strategy to implement the pro-

1#8#0 1
1#84#1 1
1#124#24 1
1#12#25 1

Visited classes: 2
Visited methods: 7
Visited blocks: 40

Fig. 5. A sample result generated based on the measurement results.

posed approach. When all code instrumentations are done, a
meta-file is generated to store the mapping from Classld and
Methodld to class name and method name, respectively.

3) Compilation and Repackaging: The final step is to com-
pile assembly source codes into the .dex files and repackage
all the files into an Android package. The compilation can be
done by using the smali tool and the repackaging can be done
using the apktool. Once a patched package is available, we can
submit it to an online or off-line dynamic analysis tool and
receive the measurement results. In addition to store the results
in a local storage, when working remotely, our measurement
codes are configured to send measurement results periodically
back to our own server. A sample measurement result is shown
in Figure 5. By matching the identity strings against the meta-
data generated in the second step, we can restore the string
identities back to the original class names, method names,
and block IDs. The coverage rate can be also computed based
on the measurement results and the meta-data. To create a
diverse application packages for evaluating the real capability
of a dynamic analysis tool, the proposed process can be done
automatically without human interaction. A number of apk
files are prepared, and are fed to the proposed approach for
generating test packages. The test packages are then used to
evaluate a dynamic analysis tool.



IV. EVALUATION

We evaluate the proposed approach from three aspects. We
first evaluate the ratio of packages that can be successfully
reverse engineered, patched, and repackaged. We then compare
the measured coverage rate for our approach against Emma.
Finally, we present the measurement results for selected An-
droid dynamic analysis tools.

A. Repackaging Success Rate

We downloaded top three application package files from 26
categories available on Google Play market plus 12 randomly
selected applications (total 90) and test if a package can be
properly handled by our proposed approach. Among all the
90 packages, 76 of them can be correctly extracted using the
apktool and decompiled by baksmali. However, after patching
the codes, only 36% of them (27 packages) can be recompiled
and repackaging to apk files. The failure on extracting a
package is because apktool is not able to correctly handle file
names of images in 9-patch format. The failure on repackaging
a package is due to the number of newly created methods
exceeds the maximum limit of a single .dex file. Although the
success rate is not high, we can still generate sufficient large
number of testing packages at the current stage. Improving the
repackaging success rate is one of our future works.

B. Comparison with Emma

We then compare the measurement result of code coverage
rate reported from Emma and our proposed approach. Since
Emma requires Java source codes, we downloaded six applica-
tion projects from the F-droid website [27], which is an online
repository for hosting open source Android applications. Each
project is compiled and tested using official Android emulator
for five times. The compared result is shown in Table III. The
result shows that our approach has measurement results similar
to Emma.

C. Measuring Android Dynamic Analysis Tool

We finally use the proposed approach to measure the code
coverage rate of Android dynamic analysis tools. We selected
both online and off-line tools. Online tools include ABM,
Anubis, CopperDroid, and Tracedroid. Off-line tools include
official Android emulator, DroidBox, and DroidScope. We
tried to setup all the off-line tools with the same configurations.
The official emulator and DroidBox both emulate Android
4.3.1 (API level 18). DroidScope emulates Android 2.3.3 (API
level 10). The packages used to conduct benchmarks are those
packages described in Section IV-A. We evaluate each selected
tool five times using the packages, and the method-level and
block-level results are shown in Figure 6, 7 and Figure 8, 9,
respectively. Due to space limitations, we only showed 11
results from all the results. We summarize our findings based
on the measurement results. First, we found that online tools
have performances similar to off-line tools. This might be
because most online tools are simply integration works and
have setup similar to these off-line tools. Second, we found
that some measurement results show a coverage rate close to

TABLE III
COMPARE OUR APPROACH AGAINST EMMA.

Package: net . sourceforge.opencamera
Class Method Block Line
Emma 50.30% 46.36% 33.19% 44.29%
Ours 53.94% 49.83% 39.30% 42.17%
Package: com.uberspot.a2048
Class Method Block Line
Emma 100.00% 64.71% 70.48% 68.04%
Ours 100.00% 61.11% 65.17% 61.40%
Package: com.ruesga.android.wallpapers.photophase
Class Method Block Line
Emma 54.62% 37.62% 31.79% 32.75%
Ours 37.58% 43.62% 36.85% 38.95%
Package: com.monead.games.android.sequence
Class Method Block Line
Emma 57.69% 41.62% 36.20% 36.81%
Ours 50.00% 41.08% 35.07% 35.56%
Package: com.notriddle.budget
Class Method Block Line
Emma 54.55% 35.90% 23.35% 25.74%
Ours 50.47% 33.90% 21.59% 26.54%
Package: home . jmstudios.calc
Class Method Block Line
Emma 93.48% 46.59% 46.95% 40.95
Ours 89.24% 45.98% 41.75% 38.59

zero. Based on our experiences with off-line analysis tools,
we think the phenomenon is caused by the following two
major reasons. First, due to limited API levels implemented on
dynamic analysis tools, some of these zero coverage rates are
because of incompatible API levels. In this case, an application
package is not launched by the tool. On the other hand,
some of the zero rates are because an application package
crashes or stops in a very short time. Most tools still report
that the execution is successful. Finally, we found that the
measured coverage rates for all the tools are not good enough,
which lies between 20% and 60%. An application package
could have a lower coverage rate because it is blocked by
UI operations like login forms, license agreements, and even
pop-up advertisements. These findings show that there is still
a large room for researchers to improve the performance of
dynamic analysis tools.

V. CONCLUSION

Modern Android behavioral analysis tools often implement
dynamic analysis techniques for understanding run-time be-
havior of applications. However, the capabilities of various
dynamic analysis tools are not clear to their users. In this
paper, we proposed a universal approach to systematically
measure the code coverage rate of Android dynamic analysis
tools, and it is applicable to various implementations including
online and off-line tools. We evaluated several well-known
online and off-line tools include ABM, Anubis, CopperDroid,
Tracedroid, DroidBox, DroidScope, and official Android em-
ulator. Our measurement results show that: 1) Online tools
have similar performance to off-line tools; 2) A good tool has
to provide diverse API levels so that it is able to inspect as
many packages as possible; 3) The code coverage rate is still
not good enough, which lies between 20% and 60%. These



Method-level coverage for off-line tools

8 _ B Emulator
- @ DroidBox
O DroidScope
g o
S B
9 M —
<
o
o o _| B
[} o
o]
o}
3
s o |
o T
=]
o
(@]
o ]
N
o - iy 5N - =] L
& GoJ @ @ o & Q & el & £
5 &L &Sy Fe
FFSFFFFTe s
$ IS > &3
§ &£ 5§ &E ¢ g & §
9 g & 3 S SRS N S
g ¥ F & 9  F £ 8
S F ¥ & g 3 S o £ 8
9 IS N ; @ & &
IS & § S & & N
S & 9 § v
s & v s 5 &
$ s £ ¢ §
o o L
) < N
< & S
N
Fig. 6. Code coverage rate measurement results: Method-level results for

off-line tools.

Method-level coverage for online tools

Code coverage rate (%)

Fig

Block-level coverage for off-line tools
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Block-level coverage for online tools
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findings show that there is still a large room for improving the ~dynamic analysis tools.
performance of dynamic analysis tools. We believe that a good
dynamic analysis tools is the key to build up a success security
analysis and software quality assessment framework. To bet-
ter understanding and improving the capabilities of dynamic
analysis tools, our future works include conducting automated

large-scale evaluations and improving code coverage rates of
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