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ABSTRACT
Dynamic and adaptive binding between computing devices
and displays is increasingly more popular, and screencast
technologies enable such binding over wireless networks. In
this paper, we design and conduct the first detailed mea-
surement study on the performance of the state-of-the-art
screencast technologies. Several commercial and one open-
source screencast technologies are considered in our detailed
analysis, which leads to several insights: (i) there is no single
winning screencast technology, indicating rooms to further
enhance the screencast technologies, (ii) hardware video en-
coders significantly reduce the CPU usage at the expense of
slightly higher GPU usage and end-to-end delay, and should
be adopted in future screencast technologies, (iii) compre-
hensive error resilience tools are needed as wireless commu-
nication is vulnerable to packet loss, (iv) emerging video
codecs designed for screen contents lead to better Quality
of Experience (QoE) of screencast, and (v) rate adaptation
mechanisms are critical to avoiding degraded QoE due to
network dynamics. Furthermore, our measurement method-
ology and open-source screencast platform allow researchers
and developers to quantitatively evaluate other design con-
siderations, which will lead to optimized screencast tech-
nologies.

Categories and Subject Descriptors: H.5 [Information
Systems Applications]: Multimedia Information Systems

Keywords: Measurements; streaming; wireless networks;
experiments; optimization

1. INTRODUCTION
Emerging digital display technologies enable larger, less

expensive, higher-definition, and more ubiquitous displays
to be deployed in homes, offices, schools, shops, and other
spaces. For example, flexible displays hit the market by the
end of 2014, which come in different sizes and can be used
in various applications, such as expanding the limited screen
real estate of mobile and wearable devices, constructing roll-
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out displays for desktop, tablet, and laptop computers, and
serving as huge advertisement screens mounted on build-
ings [3]. In fact, the worldwide market revenue of flexible
displays is expected to increase from 0.1 million USD in 2013
to 31.3 billion by 2020 [11]. These next-generation displays
will likely come without integrated computing devices, and
rely on other computing devices for computations and stor-
age. Therefore, the binding between computing devices and
displays will become more dynamic and adaptive than what
we are used to nowadays. In some usage scenarios, a display
may be concurrently associated with several computing de-
vices, and a computing device may simultaneously leverage
multiple displays. A study reports that, on average, people
move across 21 different displays every hour [25], which em-
phasizes the importance of dynamic binding between com-
puting devices and displays, and this number will certainly
go up in the near future.

The dynamic binding of displays and computing devices
can be done using screencast, which refers to capturing
and sending the audiovisual streams from computing de-
vices over networks to displays in real time. Screencast en-
ables many usage scenarios, including playing multimedia
contents over home networks, sharing desktops among col-
leagues over the Internet, and extending the small built-in
displays of mobile and wearable devices over wireless net-
works. Because of its rich usage scenarios, screencast has
attracted serious attentions from both the academia and in-
dustry. For example, several open-source projects [5, 16]
have been launched to enable screencast among wearable
and mobile devices as well as desktop, tablet, and laptop
computers. There are also proprietary and closed commer-
cial products, such as AirPlay [8], Chromecast [1], Mira-
cast [33], MirrorOp [21], and Splashtop [28]. Although
screencast is gradually getting deployed, the performance
measurements on the state-of-the-art screencast technolo-
gies have not been rigorously considered in the literature.
Current and future developers and researchers, therefore,
have to resort to heuristically making the design decisions
when building the screencast technologies.

In this paper, we set up a real testbed to conduct the
very first detailed experiments to quantify the performance
of the screencast technologies under diverse conditions. The
conditions are captured by several key parameters, including
resolution, frame rate, bandwidth, packet loss rate, and net-
work delay. The performance metrics include video bitrate,
video quality, end-to-end latency, and frame loss rate. We
evaluate 5 commercial products [1, 8, 21, 28, 33] and 1 open-
source solution [13]. The commercial products are treated



as black boxes and general measurement methodologies are
developed to compare their performance in different aspects.
The open-source solution is a cloud gaming platform, called
GamingAnywhere (GA) [13, 16]. GA works for screencast,
because cloud gaming is an extreme application of screen-
cast, which dictates high video quality, high frame rate (in
frame-per-second, fps), and low interaction latency [7]. Nev-
ertheless, using GA as a general screencast technology may
leave rooms for optimization, e.g., it is well-known that pop-
ular video coding standards, such as H.264 [34], are designed
for natural videos and may not be suitable to screen con-
tents, also known as compound images, which are combi-
nations of computer-generated texts and graphics, rendered
3D scenes, and natural videos [39].
Fortunately, GA [13, 16] is extensible, portable, config-

urable, and open. Therefore, developers and researchers are
free to use GA for systematic experiments to make design
decisions for optimized screencast. In this paper, we de-
sign and conduct several such experiments, e.g., we integrate
GA with emerging video codecs [15, 36] in order to conduct
a user study using a real screencast setup to quantify the
gain of new video codecs. Our sample experiments reveal
the potential of using GA for screencast research and devel-
opments. More importantly, we demonstrate how to mea-
sure the performance of screencast technologies, and how to
quantify the pros/cons of different screencast technologies.
To our best knowledge, this paper is the first comprehensive
work of its kind.
Our experiments on a real screencast testbed lead to the

following insights, which are useful for future screencast
technologies.
• Considering diverse usage conditions and performance

metrics, there is no single winning screencast technol-
ogy, which indicates that there are still rooms to opti-
mize the state-of-the-art screencast technologies.

• Hardware video encoders significantly reduce the CPU
usage at the screencast senders, and slightly increase the
GPU usage and end-to-end latency; hence are suitable
to screencast technologies.

• One way to better adapt to nonzero packet loss rate is
to employ the reliable TCP protocol, but TCP protocol
does not work well when network latency is long, and
more comprehensive error resilience tools are desired.

• Screen contents have fairly different characteristics than
natural videos, and adopting emerging video codecs
designed for screen contents in screencast technologies
leads to better Quality of Experience (QoE).

• Most state-of-the-art screencast technologies do not
adapt to dynamic bandwidth in a nice way, and thus
suffer from negative impacts, including slow responsive-
ness, blocking features, and frozen screens, which high-
lights the importance of rate adaptation.

The rest of this paper is organized as follows. We re-
view the literature in Section 2. We customize GA to be
a more flexible platform for screencast in Section 3. This
is followed by the detailed measurement methodology given
in Section 4. We analyze the measurement results of the
state-of-the-art screencast technologies in Section 5. We
then present the GA-based quantitative evaluations and user
studies, and we discuss the design considerations for future
screencast technologies in Section 6. Section 7 concludes this
paper.

2. RELATEDWORK
Early screen sharing systems, such as thin clients [2, 27]

and remote desktops [10, 26], allow users to interact with
applications running on remote servers. These screen shar-
ing systems focus on developing protocols that efficiently
update changed regions of the screen, rather than achieving
high visual quality and frame rate, and thus are less suitable
to highly-interactive applications, such as computer gaming
as reported in Chang et al. [6]. Readers are referred to
the surveys [20, 38] on these screen sharing systems. To
cope with such limitations, several companies offer video
streaming based cloud gaming systems, such as OnLive [23],
GaiKai [12], and Ubitus [30]. Huang et al. propose Gamin-
gAnywhere (GA) [16], which is the first open-source cloud
gaming system. These cloud gaming platforms also work
for screencast scenarios, although there are some optimiza-
tion rooms to explore. More recently, Chandra et al. [4, 5]
develop DisplayCast that shares multiple screens among
users in an intranet, where the networking and computa-
tion resources are abundant. DisplayCast consists of several
components, including the screen capturer, zlib-based video
compression, and service discovery, but it lacks of rate con-
trol mechanisms.

The performance measurements of screen sharing and
cloud gaming systems have been done in the literature. For
example, Tolia et al. [29] and Lagar-Cavilla et al. [19] ana-
lyze the performance of VNC (Virtual Network Computing),
and Claypool et al. [9] and Chen et al. [7] study the perfor-
mance of cloud games. The performance measurements on
the state-of-the-art screencast technologies, however, have
not received enough attentions in the research community.
He et al. [14] conduct a user study on Chromecast [1] with
about 20 participants to determine the user tolerance thresh-
olds on video quality (in PSNR [31]), rendering quality (in
frame loss rate), freeze time ratio, and rate of freeze events.
The user study is done using a Chromecast emulator. Their
work is different from ours in several ways: (i) we also con-
sider objective performance metrics, (ii) we use real setups
for experiments, (iii) we consider multiple screencast tech-
nologies [1, 8, 16, 21, 28, 33], and (iv) our evaluation re-
sults reveal some insights on how to further optimize the
screencast technologies. Moreover, following the method-
ologies presented in this paper, researchers and developers
can leverage GA to intelligently make design decisions based
on quantitative studies.

Last, we note that we choose GA [16] over Display-
Cast [4, 5] as the tool to assist design decisions for several
reasons, including: (i) GA focuses on the more challeng-
ing audiovisual streaming, (ii) GA is arguably more exten-
sible and portable, and (iii) GA has a more active com-
munity [13]. Nonetheless, readers who prefer to start from
DisplayCast [4, 5] can apply the lessons learned in this work
to DisplayCast as well.

3. GAMINGANYWHERE AS A SCREEN-
CAST PLATFORM

We investigate the key factors for implementing a suc-
cessful screencast technology using GamingAnywhere (GA).
GA may not be tailored for screencast yet, e.g., unlike pow-
erful cloud gaming servers, the computing devices used for
screencast may be resource-constrained low-end PCs or mo-
bile/wearable devices, and thus screencast senders must be



Table 1: Supported codecs and the required SDP parameters

Codec SDP Parameter Description

Vorbis configuration Codec-specific configurations, such as
codebooks

Theora width Video width
height Video height
configuration Codec-specific configurations, such as

codebooks
H.264 sprop-parameter-sets SPS (Sequence Parameter Set) and

PPS (Picture Parameter Set)
H.265 sprop-vps VPS (Video Parameter Set)

sprop-sps SPS (Sequence Parameter Set)
sprop-pps PPS (Picture Parameter Set)

light-weight. Moreover, the screen contents of screencast
are quite diverse, compared to cloud gaming: text-based
contents in word processing, slide editing, and web browsing
applications are common in screencast scenarios. In this sec-
tion, we discuss customization of GA for screencast, which
also enables researchers and developers to employ GA in
performance evaluations to systematically make design de-
cisions.

3.1 Support of More Codecs
GA adopts H.264 as its default codec. Currently the im-

plementation is based on libx264 and is accessed via the
ffmpeg/libav APIs. However, we found that it might not
be easy to integrate other codec implementations into GA
following the current design. For example, if we plan to use
another H.264 implementation from Cisco [22], we have to
first implement it as an ffmpeg/libav module, whereas in-
tegrating a new codec into ffmpeg/libav brings extra work-
load. In addition, ffmpeg/libav’s framework limits a user to
access advanced features of a codec. For example, libx264
allows a user to dynamically reconfigure the codec in terms
of, e.g., frame rates, but currently it is not supported by
ffmpeg/libav’s framework. Therefore, we revise the module
design of GA to allow implementing a codec without inte-
grating the codec into the ffmpeg/libav framework. At the
same time, we also migrate the RTSP server from ffmpeg
to live555. As the result, GA now supports a wide range
of video codecs that provide the required session descrip-
tion protocol (SDP) parameters at the codec initialization
phase. A summary of currently supported codecs and the
associated SDP parameters are shown in Table 1.

3.2 Hardware Encoder
Screencast servers may be CPU-constrained, and thus we

integrate a hardware encoder with GA as a reference imple-
mentation. We choose a popular hardware platform, In-
tel’s Media SDK framework [17], to access the hardware
encoder. The hardware encoder is available on machines
equipped with both an Intel i-series CPU (2nd or later gen-
erations) and an Intel HD Graphics video adapter. To inte-
grate the Intel hardware encoder into GA, we have to pro-
vide the sprop-parameter-sets, which contains the SPS (Se-
quence Parameter Set) and PPS (Picture Parameter Set)
configurations of the codec. After the codec is initialized,
we can obtain the parameters from the encoder context by
retrieving SPS and PPS as codec parameters, i.e., calling
MFXVideoENCODE GetVideoParam function with a buffer of
type MFX EXTBUFF CODING OPTION SPSPPS.
The Intel hardware encoder does not support many op-

tions. In addition to the setup of bitrate, frame rate, and
GoP size, we use the following default configurations for
the codec: main profile, best quality, VBR rate control, no
B-frame, single decoded frame buffering, and sliced encod-
ing. We also tried to enable intra-refresh feature, but un-
fortunately this feature is not supported on all of our Intel
PCs. We notice that Intel’s video encoder supports only the
NV12 pixel format. Fortunately, it also provides a hardware-
accelerated color space converter. Thus, we can still take
video sources with RGBA, BGRA, and YUV420 formats;
the video processing engine first converts the input frames
into the NV12 pixel format and then passes the converted
frames to the encoder. The CPU load reduction due to the
hardware encoder is significant, which we will show in the
experiments in Section 6.

3.3 Emerging Video Codecs
The revised GA design supports the emerging H.265 cod-

ing standard. To be integrated with GA, an H.265 codec
implementation has to provide all the three required parame-
ters (VPS, SPS, and PPS, as shown in Table 1). We have in-
tegrated libx265 [37] and HEVC Test Model (HM) [15] with
GA. HEVC supports several emerging extensions like Range
Extension (REXT) and Screen Content Coding (SCC) [39],
which are designed for screencast or similar applications. We
note that neither libx265 nor HM are optimized for real-time
applications per our experiments. Longer encoding time
however is not a huge concern for now, as both implemen-
tations are emerging and we consider the implementations
will be optimized before actual deployments. Therefore, in
Section 6, we evaluate these emerging codecs, and we focus
on their achieved user experience (e.g., graphics quality) by
encoding screen contents without considering their running
time.

4. MEASUREMENT METHODOLOGY
In this section, we present the measurement methodol-

ogy to systematically compare the state-of-the-art screen-
cast technologies.

4.1 Screencast Technologies
The following five commercial screencast technologies are

considered in our experiments.
• AirPlay is a proprietary protocol designed by Apple.

AirPlay supports streaming audio, video, photos, and
meta-data over wireless channels. Computers running
iTunes and devices running iOS 4.2+ can be AirPlay
senders, while AirPort Express and Apple TV can be
AirPlay receivers. With iOS 4.3+, third-party apps
may send compatible audiovisual streams over AirPlay.
Besides, there is an open-source implementation [24] of
the AirPlay protocol, which may turn any computer
into an AirPlay receiver.

• Chromecast is a digital media player which is capa-
ble of directly streaming audiovisual contents via Wi-
Fi. For screencast, a user can use Google Cast exten-
sion for Chrome, which uses WebRTC API to trans-
mit screen contents from the web browser or desktop to
the Chromecast device. Some third-party applications
claim to be able to mirror the desktop, however, at the
time of writing (Sep 2014), none of these applications
are available yet.



Table 2: The Considered Parameters

Parameter Value

Workload
Frame rate 15 fps 30 fps 60 fps
Resolution 640x360 896x504 1280x720

Network
Bandwidth 4 Mbps 6 Mbps Unlimited
Delay 200 ms 100 ms 0 ms
Packet loss rate 2% 1% 0%

• Miracast is a peer-to-peer wireless standard for screen-
cast over Wi-Fi Direct. Miracast-compatible devices
can serve as Miracast senders and receivers. Existing
OS’s with built-in Miracast support include Android
4.2 or later, BlackBerry 10.2, and Microsoft Windows
8.1. For streaming screens to a device that does not
support Miracast, there are also Miracast adapters ca-
pable of rendering the screens through HDMI or USB
ports.

• MirrorOp and Splashtop offer pure software solu-
tions, which require the users to install proprietary ap-
plications at both the sender and receiver. Although
MirrorOp and Splashtop use closed protocols, the devel-
opers offer the applications on multiple OS’s, including
Windows and Mac OS X.

In addition, the open-source GA is evaluated as a screencast
technology as well.

4.2 Content Types
We study how the screencast technologies perform when

streaming different types of contents. We consider 9 content
types in the following 3 categories:
• Gaming: including first-person shooter, racing, and

turn-based strategy games.

• Movie/TV: including dialogue movie scene, car chas-
ing movie scene, and talk show.

• Interactive applications: including Google street
view browsing, slide editing, and web surfing in Chrome.

For fair comparisons, we record the screens of different con-
tent types into 1280x720 videos. In particular, we extract
one minute of representative video for each content type and
concatenate them into a single 9-minute long video. We in-
sert 2-second white video frames between any two adjacent
content types to reset the video codecs. In this way, the
measurement results collected from adjacent content types
do not interfere one another.

4.3 Workload and Network Conditions
We also study how the screencast performance is affected

under different workload settings and network conditions,
which we believe impose direct and non-trivial impacts on
screencast quality. Workload parameters are related to the
quality of source videos, including frame rate and resolu-
tion. We change the frame sampling rates to generate mul-
tiple videos, and set 30 fps as the default frame rate. We
also vary the resolutions at 1280x720, 896x504, and 640x480.
For the latter two cases, we place the video at the center of
the (larger) screen without resizing it. This is because we
believe image resizing would cause loss of details and bias
our results. As to network conditions, we use dummynet

1 to

1
dummynet is a network emulation tool, initially designed for

testing networking protocols. It has been used in a variety
of applications, such as bandwidth management.

control the bandwidth, delay, and packet loss rate (packet
loss) of the outgoing channel of senders. The default band-
width is not throttled, delay is 0 ms, and packet loss rate is
0%.

In our experiments, a parameter of workload and network
conditions is varied while all other parameters are fixed at
their default values. The list of parameters in given in Ta-
ble 2, with the respective default values in boldface. For
screencast technologies that support both UDP and TCP
protocols, the default protocol is UDP.

4.4 Experiment Setup
There are several components in the experiment: a sender

and a receiver for each screencast technology, and a Wi-Fi
AP, which is mandatory for all technologies except Miracast
(based on Wi-Fi Direct). The specifications of the screencast
technologies are summarized in Table 3, and the detailed
experiment setups are given below.
• AirPlay. The sender is a MacBook Pro running OS X

10.9.2, with a 2.4 GHz Intel Core i5 processor and 8 GB
memory, while the receiver is an Apple TV. They are
connected to the same Wi-Fi AP before the sender can
discover, connect, and stream screens to the receiver.

• Chromecast. The sender is a Lenovo ThinkPad X240
notebook running Windows 8.1, with 1.6 GHz Intel
Core i5 processor and 8 GB memory and the receiver is
a Chromecast dongle. The only way for screencasting
using Chromecast is by Google Cast Chrome Exten-
sion. Once the sender is connected to the Wi-Fi AP, it
can discover and connect to any available devices in the
same Wi-Fi network.

• Miracast. We use the Lenovo notebook as the sender.
For the receiver, we use a NETGEAR Push2TV Mira-
cast adapter. Miracast is based on Wi-Fi Direct and
supported by Windows 8.1. As long as the receiver
is placed within the wireless transmission range of the
sender, Windows 8.1 provides a simple user interface for
screencasting the sender’s desktop to the receiver.

• MirrorOp and Splashtop. The Lenovo notebook
serves as the sender, while a PC running Windows 7,
with an Intel Core i7 processor serves as the receiver.
To use these two services, a user needs to create an ac-
count, and run the sender and receiver programs on the
respective machines. Once both machines are logged in,
they can discover and connect to each other.

In addition, experiments on GA are also conducted using
the same setup as MirrorOp and Splashtop. We note that
there may be multiple implementations for certain technolo-
gies, e.g., Miracast, but we cannot cover all the implemen-
tations in this work. We pick a popular implementation
for each technology, and detail the measurement methodol-
ogy so that interested readers can apply the methodology to
other implementations.

4.5 Performance Metrics
We measure the following performance metrics that are

crucial to screencast user experience.
• Bitrate. The average amount of data per second trans-

mitted from the sender to receiver, which is important
because the wireless spectrum and total bandwidth is
limited and shared by all applications/users.

• End-to-end latency (latency). The time difference
between each video frame is rendered at the sender and



Table 3: Screencast Technologies Considered

Technology AirPlay Chromecast GamingAnywhere Miracast MirrorOp Splashtop

Specification

Product Apple TV Chromecast GamingAnywhere NETGEAR PTV3000 Sender/Receiver Streamer/Client
HW/SW Hardware Hardware Software Hardware Software Software
Connectivity AP AP AP Wi-Fi Direct AP/Internet AP/Internet
Protocol TCP UDP UDP/TCP UDP TCP TCP

Devices used
Sender

MacBook Pro
OS X 10.9.2

Chrome Browser w/
Google Cast Ext.
v14.305.0.0
on Windows 8.1 Laptop

Windows 8.1 Laptop Windows 8.1 Laptop
MirrorOp Sender
v2.0.3.2
on Windows 8.1 Laptop

Splashtop Streamer
v2.5.8.4
on Windows 8.1 Laptop

Receiver
Apple TV
v6.1.1

Chromecast
(firmware v16041)

Windows 7 PC
NETGEAR Push2TV
(firmware v2.4.46)

MirrorOp Receiver
v0.2.11-4.win
on Windows 7 PC

Splashtop Personal
v2.4.5.2
on Windows 7 PC

‡ If not otherwise specified, the PC computer is a ThinkCentre M92p, and the laptop computer is a ThinkPad X240.
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Figure 1: Experiment setup for: (a) bitrate/video quality and (b) latency; (c) actual testbed for latency measurements in our lab.

at the receiver, which is especially important for inter-
active applications. The user experience also drops if
the latency jitter (i.e., the variation of latency) is high.

• Frame loss rate (frame loss). The fraction of video
frames that are not rendered at the receiver, which
greatly affects the viewing experience.

• Video quality (quality). The video quality rendered
at the receiver compared to the original video captured
at the sender. We use PSNR [31] and SSIM [32] to
quantify the video quality observed at the receiver.

When presenting the measurement results, 95% confidence
intervals of the averages are given as error bars in the figures
whenever applicable.

4.6 Experiment Procedure
For each technology, we first connect the sender and re-

ceiver, play the video with diverse content types at the
sender, and measure the four performance metrics. We re-
peat the experiment ten times with each configuration (i.e.,
workload and network parameters). To facilitate our mea-
surements, we have added a unique color bar at the top of
each frame of the source content as their frame id, which
can be programmatically recognized (c.f., Figure 1(c)).
To measure the bitrate used by the screencast technolo-

gies, we run a packet analyzer at the sender to keep track
of the outgoing packets during the experiments. For mea-
suring the video quality, we direct the HDMI output of the
receiver to a PC, which is referred to as the recorder. The
recorder PC is equipped with an Avermedia video capture
card to record the videos. To quantify the quality degra-
dation, each frame of the recorded video is matched to its
counterpart in the source video, using the frame id. Last,
we calculate the PSNR and SSIM values as well as the frame
loss rate by matching the frames. This setup is illustrated

in Figure 1(a).
To measure the user-perceived latency, we direct the ren-

dered videos of both the sender and receiver to two side-
by-side monitors via HDMI (for the sake of larger displays).
We then set up a Canon EOS 600D camera to record the
two monitors at the same time, as shown in Figure 1(c).
To capture every frame rendered on the monitors, we set
the recording frame rate of the camera to 60 fps, which
equals the highest frame rate in our workload settings. The
recorded video is then processed to compute the latency of
each frame, by matching the frames based on frame ids and
by comparing the timestamps when the frame is rendered by
the sender and receiver. The setup is shown in Figure 1(b).

Last, we note that we had to repeat each experiment twice:
once for bitrate and video quality (Figure 1(a)), and once
for the latency (Figure 1(b)). This is because each receiver
only has a single HDMI output, but the two measurement
setups are quite different. Fortunately, our experiments are
highly automated in a controlled environment, and thus our
experiment results are not biased. The actual testbed is
shown in Figure 1(c).

5. COMPARATIVE ANALYSIS
We analyze our measurement results in this section. A

number of insights are drawn from our measurement results.
In summary, we do not observe a single winning screencast
technology, which shows that designing an optimized screen-
cast technology remains an open problem.

5.1 Performance under Default Settings
We report the results under the default configurations (see

Table 2). Each experiment lasts for 9 minutes 18 seconds,
with 33,480 video frames. For each screencast technology,
we first calculate the bitrate, latency, and video quality of
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Figure 2: Performance under the default settings: (a) bitrate, (b) latency, (c) frame loss, and (d) quality in PSNR.
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Figure 3: Performance under different frame rates: (a) bitrate, (b) latency, (c) frame loss, and (d) quality in PSNR.

individual video frames rendered by the receiver (i.e., lost
frames are not considered) and then compute the mean and
standard error of the metrics across all the video frames.
We also derive the frame loss rate of each experiment. We
plot the results in Figure 2, and make several observations.
First, AirPlay and Miracast both lead to high bitrate and
low latency, while Miracast achieves much lower frame loss
rate. Second, although Chromecast incurs very low bitrate,
it suffers from high latency and high frame loss rate. Third,
Splashtop and MirrorOp achieve similar bitrate and video
quality, but Splashtop leads to lower latency and frame loss
rate. Fourth, screencast technologies other than Miracast
lead to roughly the same video quality. Last, GA leads to low
bitrate, low latency, good video quality, but slightly higher
frame loss rate. Figure 2 reveals that most screencast tech-
nologies have some weaknesses, e.g., AirPlay and Miracast
incur higher bitrate, Chromecast and MirrorOp suffer from
high latency, and Chromecast also results in high frame loss
rate. In contrast, Splashtop and GA perform fairly well in
terms of all metrics. GA’s imperfect frame loss can be par-
tially attributed to the default UDP protocol it adopts, and
we will take a closer look at the implications of switching to
TCP protocol in Section 6.2. We omit the figure of quality
in SSIM, because it shows almost identical trends as PSNR.

5.2 Performance under Diverse Workload
and Network Conditions

We vary frame rates to generate different amounts of traf-
fics. We plot the performance results in Figure 3, which leads
to several observations. First, AirPlay and Miracast incur
higher bitrates at 15 fps than other screencast technologies
at 30 and 60 fps. Second, higher frame rates generally re-
sult in higher latencies and frame loss rates, due to saturated
network resources. Third, frame rates impose minor impacts
on video quality.

Next, we configure different network conditions in terms of
network bandwidth and delay, and plot the observed screen-
cast performance in Figures 4 and 5, respectively. We make
some observations on Figure 4. First, AirPlay, Chromecast,
and Miracast adjust the bitrate according to the available
bandwidth, while GA, MirrorOp, and Splashtop maintain
the same bitrate independent to the bandwidth. Second,
Chromecast and MirrorOp suffer from excessive latency,
while other screencast technologies perform reasonably well.
Third, Miracast results in seriously degraded video quality
with lower bandwidth, which can be attributed to its over-
aggressive bitrate usage. On the other hand, we also make
some observations on Figure 5. First, AirPlay and Splashtop
are sensitive to delay, because they both reduce the bitrate
as the delay increases. Second, higher delay generally re-
sults in higher latency and frame loss rate, while GA and
Miracast outperform other screencast technologies in these
two aspects. Last, only AirPlay and MirrorOp suffer from
degraded video quality under longer delay, which we sus-
pect may be partly due to the TCP protocol they adopt
(c.f. Table 3).

5.3 Performance Ranking
We study the ranking of these screencast technologies un-

der different conditions. In addition to the default condition,
we define high frame rate by increasing the frame rate to 60
fps, lossy network by setting the packet loss rate to 2%, high
delay network by setting the network delay to 200 ms, and
low bandwidth network by setting the bandwidth to 4 Mbps.
For each condition, we compute the performance metrics,
and rank the screencast technologies on each metric inde-
pendently2. We then plot the results in the form of radar
chart in Figure 6, where each of the four axes reports the

2We use PSNR as the video quality metric, but SSIM leads
to nearly identical ranking.
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Figure 4: Performance under different bandwidth: (a) bitrate, (b) latency, (c) frame loss, and (d) quality in PSNR.
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Figure 5: Performance under different delays: (a) bitrate, (b) latency, (c) frame loss, and (d) quality in PSNR.

ranking of screencast technologies in terms of a particular
performance metric. This figure reveals that: (i) Splashtop
performs the best and balanced in general, and it is never
ranked the last in all aspects, (ii) AirPlay and GA perform
reasonably well in all aspects, trailing Splashtop, and (iii)
Chromecast, Miracast, and MirrorOp lead to inferior per-
formance in general. The figure also reveals potential limi-
tations of individual screencast technologies. For example,
under lossy network conditions, GA results in lower video
quality and higher latency, which can be mitigated by adding
error resilience tools to it.

5.4 Tolerance Ranking
We perform tolerance analysis to quantify how much im-

pact each parameter incurs on each performance metric with
diverse screencast technologies. For each screencast technol-
ogy, we vary a parameter while fixing all other parameters
at their default values. We repeat the experiment multiple
times, and compute the mean performance of each experi-
ment. For each metric, we compute the tolerance, which is
defined as one minus the range (i.e., the difference between
the maximum and minimum) over the minimum. If the tol-
erance is smaller than 0, we set it to be 0. Larger tolerance
(closer to 1) means more stable performance; smaller tol-
erance (closer to 0) indicates that the particular parameter
affects a performance metric more prominently.
We report the tolerance ranks of latency, frame loss

rate, and video quality in Figure 7, where the five axes
of each radar chart represent the impact of the five work-
load/network parameters, and the ticks closer to the ori-
gins indicate lower tolerance due to the particular parame-
ter associated with the axis. We make several observations.
First, the latency achieved by MirrorOp does not change
under different parameters, while latency achieved by other
screencast technologies is vulnerable to at least one param-

eter. For example, AirPlay is vulnerable to changes in net-
work delay and packet loss rate, and Chromecast is vulner-
able to changes in bandwidth. Second, the frame loss rates
achieved by AirPlay and Splashtop are vulnerable to changes
of all parameters, while the frame loss rates of all screencast
technologies are vulnerable to changes in the frame rates.
Third, most considered screencast technologies achieve sta-
ble video quality, except Miracast and MirrorOp, which are
sensitive to bandwidth and network delay, respectively. In
summary, the frame loss rate is the most vulnerable metric,
while all screencast technologies handle video quality quite
well. Overall, MirrorOp performs the best, and GA may be
enhanced to better adapt to changes in frame rate and delay.

Nevertheless, we need to add that the degree of tolerance
needs to be interpreted together with the performance in
the evaluation of screencast technologies. For example, Mir-
rorOp performs the best in terms of tolerance. We believe
that this is mainly due to its much longer latency (see Fig-
ure 2), so maintaining a nearly constant latency and frame
loss rate is relatively easy compared to screencast technolo-
gies with shorter latencies (such as AirPlay, GA, Miracast,
and Splashtop). Thus, tolerance should be the next thing
we are looking for only after the performance achieved is
satisfactory, and we cannot conclude that one screencast
technology is better than others solely based on tolerance
comparisons in Figure 7.

6. DESIGN CONSIDERATIONS
Thus far we have investigated the performance of consid-

ered screencast technologies under a variety of workload and
network conditions. Two main take-aways of Section 5 are:
(i) screencast technologies all have advantages and disad-
vantages and (ii) deeper investigations to identify the best
design decisions are crucial. In this section, we present a
series of GA-based experiments to analyze several sample



Figure 6: Ranks of different screencast technologies under different conditions. Ticks closer to the origins represent lower ranks (worse
performance).

design considerations. We emphasize that our list of de-
sign considerations is not exhausted, and readers are free to
leverage open-source screencast technologies such as GA [16]
and DisplayCast [4, 5] for similar studies.

6.1 Hardware Encoding
We study the implications of switching from software

video encoder to hardware encoder in GA, and we com-
pare their performance against the commercial screencast
technologies. We use the experiment setup presented in Ta-
ble 3, and we stream the 9 minutes 18 seconds video using
the default settings given in Table 2. We consider three
performance metrics: CPU usage, GPU usage, and end-to-
end latency. For CPU/GPU usage, we take a sample every
second, and the end-to-end latency is calculated for every
frame. Then, we report the average CPU/GPU usages in-
curred by individual screencast technologies in Figure 8. In
this figure, GA and GA (HE) represent GA with software
and hardware video encoders, respectively. Moreover, the
numbers in the boxes are the average end-to-end latency.
We draw several observations from this figure. First, hard-

ware encoder dramatically reduces the CPU usage of GA:
less than 1/3 of CPU usage is resulted compared to soft-
ware encoder. Second, upon using the hardware encoder,
GA results in lower CPU usage, compared to MirrorOp,
Chromecast, and Splashtop. While AirPlay and Miracast
consume less CPU compared to GA with hardware encoder,
they achieve inferior coding efficiency as illustrated in Fig-
ures 2(a) and 2(d). More specifically, although AirPlay and
Miracast incur much higher bitrate, their achieved video
quality levels are no better than other screencast technolo-
gies. We conclude that AirPlay and Miracast trade band-
width usage (coding efficiency) for lower CPU load, so as

to support less powerful mobile devices, including iOS and
BlackBerry. Third, both GA and GA (HE) achieve very low
latency: up to 18 times lower than some screencast tech-
nologies. Such low end-to-end latency comes from one of
the design decisions of GA, i.e., zero playout buffering [16],
as a cloud gaming platform, which is useful for highly inter-
active applications during screencasting. We note that GA
(HE) leads to 26 ms longer latency than GA, which is due
to the less flexible frame buffer management mechanism in
Intel’s Media SDK framework [17], which prevents us from
performing more detailed latency optimization done in ffm-
peg/libav.

In summary, the hardware video encoder largely reduces
the CPU usage, while slightly increases the GPU usage and
end-to-end latency, which is quite worthy to consider when
developers are building future screencast technologies.

6.2 Transport Protocols
The experiment results given in Section 5 indicate that

GA is vulnerable to nontrivial packet loss rate. This may be
attributed to the fact that GA employs the UDP protocol
by default, and a quick fix may be switching to the reliable
TCP protocol. Therefore, we next conduct the experiments
using GA with the UDP and TCP protocols. We adopt the
default settings as above and vary the network bandwidth
and delay settings. We consider 3 performance metrics: end-
to-end latency, frame loss rate, and video quality in PSNR
and report the average results over the 9 minutes 18 seconds
videos in Figure 9, where two corresponding boxes (those
of UDP versus TCP) are connected by dashed lines. The
annotations above the boxes are network conditions, and
the numbers in the boxes are the PSNR values representing
the resulting video quality rendered at the client.

We make the following observations. First, when the net-



Figure 7: Tolerance of different screencast technologies to different workload and network conditions. Lower tolerance (closer to the
origins) means higher vulnerability to dynamic environments.
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Figure 8: Hardware encoder reduces the CPU usage of GA.

work delay is low, TCP always leads to lower frame loss
rate: 2% difference is observed. However, when the delay is
longer, say ≥ 100 ms, TCP results in even higher frame loss
rate, which can be attributed to the longer delay caused by
TCP, making more packets miss their playout deadlines and
are essentially useless. Third, TCP usually incurs slightly
longer end-to-end latency, except when we set the bandwidth
to 4 Mbps, which leads to a much longer latency. On the
other hand, under 4 Mbps bandwidth, UDP suffers from
higher packet loss rates and thus lower video quality, i.e.,
UDP results in 2.5 dB lower video quality than TCP.
In summary, Figure 9 depicts that the TCP protocol may
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Figure 9: The impacts of TCP and UDP protocols.

be used as a basic error resilience tool of GA, but it does
not perform well when network delay is longer and when the
network bandwidth is not always sufficiently provisioned.
This is inline with the well-known limitation on TCP: it
suffers from degraded performance in fat long pipes [18], due
to the widely adopted congestion control algorithms. Hence,
more advanced error resilience tools are desired.

6.3 Video Codecs
Under the default settings, we report the achieved video

quality in Figure 10. This figure shows that MirrorOp and
Splashtop achieve good video quality for all content types,
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Figure 10: Video quality achieved by different screencast technologies on diverse content types, in: (a) PSNR and (b) SSIM.

while other screencast technologies all suffer from degraded
video quality for some content types. For example, Air-
Play leads to inferior PSNR for desktop contents, and GA
results in lower PSNR/SSIM for movie contents. Further-
more, we observe that several screencast technologies suf-
fer from lower video quality, especially in PSNR, for some
content types. For example, for web browsing, AirPlay,
Chromecast, and Miracast lead to ∼ 22 dB in PSNR, which
can be caused by the different characteristics of web brows-
ing videos: the sharp edges of texts are easily affected by
the ringing artifacts in the standard video codecs, such as
H.264 [34]. Recently, Screen Content Coding (SCC) has
been proposed [39] as an extension to the High Efficiency
Video Coding (HEVC) standard. SCC is built on top of the
Range Extension (REXT) of the HEVC standard, which
expands the supported image bit depths and color sampling
formats for high-quality video coding.
In the following, we conduct a separate study to inves-

tigate the benefit of the emerging video coding standards:
H.265 REXT, which is designed for nature videos, and H.265
SCC, which is designed for screen contents. For compar-
isons, we also include x264 with two sets of coding param-
eters: the real-time parameters used by GA, which is de-
noted as H.264 RT, and the high-quality parameters with
most optimization tools enabled, which is denoted as H.264
SLOW. In particular, we select 5 screen content videos: Bas-
ketballScreen (2560x1440), Console (1920x1080), Desktop
(1920x1080), MissionControl3 (1920x1080), and Program-
ming (1280x720) from HEVC testing sequences for SCC.We

Table 4: The Resulting Video Quality in PSNR (dB)

Video H.264 RT H.264 SLOW H.265 REXT H.265 SCC

BasketballScreen 15.93 33.12 30.83 33.08
Console 15.18 19.35 21.63 22.37
Desktop 13.57 23.08 23.15 28.06

MissionControl3 16.63 34.70 30.46 33.36
Programming 17.29 31.46 31.67 33.36

encode the first 300 frames of each video using the four
codecs at 512 kbps on an AMD 2.6 GHz CPU. Table 4 gives
the resulting video quality, which reveals that, H.264 RT
results in inferior video quality. With optimized tools en-
abled, H.264 SLOW leads to video quality comparable to
H.265 REXT, which is outperformed by H.265 SCC by up
to ∼ 5 dB. This table shows the potential of the emerging
H.265 video codecs.

We next conduct a user study to get the QoE scores
achieved by different codecs. We randomly pick 40 frames
from each video, and extract these frames from the recon-
structed videos of the 4 codecs. We save the chosen frames
as lossless PNG images, and create a website to collect in-
puts from general publics. We present images encoded by
two random codecs side-by-side, and ask viewers to do pair
comparison. We conducted the user study in September
2014, including 126 paid subjects, who completed 180 ses-
sions with 7,200 paired comparisons, and the total time sub-
jects spent in the study is 27.2 hours. We compute the QoE
scores using the Bradley-Terry-Luce (BTL) model [35] and
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Figure 11: QoE scores of achieved by different codecs: (a) overall scores and (b) individual videos.

Table 5: Observed Negative Impacts due to Imperfect Rate Adaptation (Sampled at 1 Mbps Bandwidth)

Technology Slow Responsiveness Blocking Features Frozen Screens (a few seconds) Consecutive Lost Frames Disconnections

AirPlay �

Chromecast � � � �

GA � � �

Miracast � � �

MirrorOp � � �

Splashtop � �

Figure 12: Sample blocking features observed in Miracast.

normalize the scores to the range between 0 (worst experi-
ence) and 1 (best experience). We plot the overall average
and per-video QoE scores in Figure 11. We can make a
number of observations on this figure. First, H.265 SCC
outperforms H.265 REXT for all videos, demonstrating the
effectiveness of H.265 SCC. Second, the H.264 RT codec re-
sults in very low QoE scores, while the H.264 SLOW codec
results in video quality comparable to H.265 SCC. However,
a closer look at the H.264 SLOW reveals that the encoding
speed can be as low as < 1 fps, turning it less suitable to
real-time applications such as screencasting.
In summary, Figures 10 and 11 depict that different con-

tents require different video codecs, e.g., the emerging H.265
SCC codec is more suitable to screen contents, comprising
texts, graphics, and nature images.

6.4 Rate Adaptation
We repeat the experiments under different bandwidth set-

tings: between 4 Mbps and 1 Mbps. We observe various neg-
ative impacts, including slow responsiveness, blocking fea-
tures (see Figure 12), frozen screens, consecutive lost frames,
and disconnections (between the sender and receiver) for
some screencast technologies once the bandwidth is lower
than 3 Mbps. Table 5 presents the sampled negative im-
pacts under 1 Mbps bandwidth, which clearly shows that
most screencast technologies suffer from at least two types
of negative implications. AirPlay performs the best, which
is consistent with our observation made in Figure 4: AirPlay
actively adapts its bitrate to the changing bandwidth. On
the other hand, although Chromecast and Miracast also ac-
tively adapt their bitrate: they do not survive under low
bandwidth. Furthermore, GA, MirrorOp, and Splashtop
do not adapt their bitrate to the bandwidth at all, and
thus sometimes they may under-perform given the available
bandwidth and sometimes they may send excessive traffic
and suffer from unnecessary packet loss and quality degra-
dation. Hence, these observations clearly manifest that more
carefully-designed rate adaptation mechanism is highly de-
manded in the future screencast technologies.

7. CONCLUSION
The performance of the state-of-the-art screencast tech-

nologies has not been rigorously studied, and researchers and
developers have to heuristically make design decisions when
building the future screencast technologies. In this paper,
we have developed comprehensive measurement methodol-
ogy for screencast technologies and carried out detailed anal-
ysis on several commercial and one open-source screencast
technologies. The presented methodology is also applicable



to other and future technologies, such as screencast prod-
ucts and non-Intel hardware codec SDKs. Our comparative
analysis shows that all screencast technologies have advan-
tages and disadvantages, which in turn demonstrates that
the state-of-the-art screencast technologies can be further
improved by making educated design decisions, based on
quantitative measurement results. Exercising different de-
sign decisions using commercial screencast technologies is,
however, impossible, because these technologies are propri-
etary and closed. We have also presented how to customize
GA for a screencast platform, which enables researchers and
developers to perform experiments using real testbed when
facing various design considerations. Several sample exper-
iments related to actual decision considerations have been
discussed, e.g., we have found that hardware video encoders
largely reduce the CPU usage, while slightly increase the
GPU usage and end-to-end latency. We have also identified
some open problems via the GA-based experiments, such as
the importance of well-designed rate adaptation mechanisms
for dynamic wireless networks.
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