
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 1

On the Quality of Service of Cloud Gaming

Systems

Kuan-Ta Chen, Member, IEEE, Yu-Chun Chang, Hwai-Jung Hsu, De-Yu Chen,

Chun-Ying Huang, Member, IEEE, Cheng-Hsin Hsu, Member, IEEE

Abstract

Cloud gaming, i.e., real-time game playing via thin clients, relieves users from being forced to upgrade

their computers and resolve the incompatibility issues between games and computers. As a result, cloud

gaming is generating a great deal of interests among entrepreneurs, venture capitalists, general publics,

and researchers. However, given the large design space, it is not yet known which cloud gaming system

delivers the best user-perceived Quality of Service (QoS) and what design elements constitute a good

cloud gaming system.

This study is motivated by the question: How good is the QoS of current cloud gaming systems?

Answering the question is challenging because most cloud gaming systems are proprietary and closed,

and thus their internal mechanisms are not accessible for the research community. In this paper, we

propose a suite of measurement techniques to evaluate the QoS of cloud gaming systems and prove

the effectiveness of our schemes using a case study comprising two well-known cloud gaming systems:

OnLive and StreamMyGame. Our results show that OnLive performs better, because it provides adaptable

frame rates, better graphic quality, and shorter server processing delays, while consuming less network

bandwidth. Our measurement techniques are general and can be applied to any cloud gaming systems,

so that researchers, users, and service providers may systematically quantify the QoS of these systems.

To the best of our knowledge, the proposed suite of measurement techniques have never been presented

in the literature.

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received April 4, 2013; revised June 25, 2013; accepted September 3, 2013.

K. T. Chen, Y. C. Chang, H. J. Hsu, and D. Y. Chen are with Institute of Information Science, Academia Sinica. C. Y. Huang is

with Department of Computer Science, National Taiwan Ocean University. C. H. Hsu is with Department of Computer Science,

National Tsing Hua University.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 2

Keywords

Cloud gaming, live video streaming, measurement, performance evaluation, remote rendering

I. INTRODUCTION

Modern computer games are often computationally and graphically intensive, and thus demand for the

latest hardware such as multi-core CPUs and high-end graphic cards for fluent game playing [1]. The

overhead of setting up a game is also significant because game software is becoming more and more

complex. As a result, users are often restricted to one well-equipped computer and cannot play games

anytime, anywhere. Furthermore, trying a new game is time consuming, because the game software may

be incompatible to users’ computers, which forces users to reconfigure their computers. This in turn

drives potential users away from computer games. All these issues impose serious burdens on users, and

solving the issues is crucial to the game industry for attracting more users.

Cloud gaming is a promising solution to ease the burdens on users. In cloud gaming, computer games

run on cloud servers and users interact with games via thin clients, which run on commodity PCs, TVs

with set-top boxes, and mobile devices with Internet access. Please note that “traditional” online games

also leverage the abundant computing resources in the clouds. As illustrated in Figure 1, traditional online

gaming is quite different from the considered cloud gaming. More specifically, in online gaming, all the

game logics are executed at game clients, and the game servers are only responsible to maintain consistent

game states among multiple game clients. In contrast, the game logics, including the resource-demanding

graphics rendering is moved to game servers with the cloud gaming architecture. By offloading the

game logics to cloud servers, cloud gaming frees users from the overhead of setting up games, solving

hardware/software incompatibility issues, and the need of upgrading their computers. Moreover, cloud

gaming is also beneficial to game developers for various reasons, e.g., they no longer need to: 1) support

heterogeneous devices and libraries, 2) produce game DVDs, and 3) worry about piracy [2]. Hence, cloud

gaming systems may change the way computer games are delivered and played.

In fact, cloud gaming has already generated a great deal of interests among entrepreneurs, venture

capitalists, the general publics, and researchers. Several startup companies have offered or plan to offer

cloud gaming services, such as OnLive, StreamMyGame, GaiKai, G-Cluster, OTOY, Ubitus, and T5-

Labs, though their realizations may be quite different from one another. For example, some systems are

only accessible via thin clients on PCs (either native or browser-based applications), while others can

be accessed via TVs with set-top boxes. A large number of design alternatives can be adopted when



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 3

Game Server

Gameplay Controls

Game Client

Game Server

Gameplay Controls

Game Client

Fig. 1. Comparisons between online and cloud gaming.

FreeBSD w/ 

dummynet

LAN

OnLive Server

Internet

LAN

StreamMyGame

Server

Client
Router

Fig. 2. The network topology of our measurement experi-

ments.

implementing a cloud gaming system, such as: 1) the way the existing game software is modified and

run on the server; 2) the way the game screen is encoded (on the server) and decoded (on the client); 3)

the way the encoded game screen is streamed to the client; and 4) the way short-term network instability

is handled to maintain the game’s responsiveness and graphic quality. Because of the large design space

of cloud gaming systems, it is not yet known which systems deliver better Quality of Service (QoS) than

others and which design elements constitute a good cloud gaming system.

In this paper, we answer the above-mentioned two questions. We achieve this by proposing a suite

of novel client-side measurement techniques to quantify the user-perceived QoS of the cloud gaming

systems. Designing these client-side techniques, however, is very challenging, because the cloud gaming

systems are mostly proprietary and closed. Therefore, their internal mechanisms are not public to the

research community. Furthermore, service providers host the cloud servers and the games in their own

data centers, and thus we do not have the luxury to augment the servers and games for measurement

purposes. Hence, measuring the QoS of these cloud gaming systems in a component-wise manner is

extremely difficult, if not impossible.

The performance of cloud gaming systems may be evaluated from a number of view angles. From

service providers’ perspective, the efficiency of resource allocation schemes is crucial; however, from

the end users’ perspective, the QoS metrics affecting gaming experience are far more important. Another



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 4

way to classify the performance metrics is by the time-scale: larger time-scale metrics across multiple

game sessions and smaller time-scale metrics are within individual game sessions. In this article, we

consider small time-scale metrics from the users’ perspective. We chose small time-scale because most

cloud gaming systems serve each user using a single Virtual Machine (VM) without load balancing,

while VM migration within individual game sessions is unlikely for the sake of high requirements on

the responsiveness of games. We focus on the users’ perspective, because the cloud gaming services will

not sustain without satisfied users. In particular, we concentrate on the following metrics:

• Traffic characteristics: How much network bandwidth is consumed by a game session?

• Latency: How smooth is the game play on a thin client? Also, how much latency is incurred by

each component?

• Graphic quality: How faithful is the quality of the streamed game screens on a thin client? How

does the graphic quality degrade over imperfect network conditions?

To the best of our knowledge, rigorously quantifying these (and other) user-perceived QoS metrics of

cloud gaming systems has never been considered in the literature. More specifically, the current article

makes the following two contributions:

• We propose a suite of measurement techniques to systematically measure the QoS of proprietary

and closed cloud gaming systems. The proposed measurement techniques require no access to the

source code nor data centers of the considered cloud gaming systems. Researchers, users, and service

providers may apply our measurement techniques to any cloud gaming systems to study their QoS.

• We analyze two commercial cloud gaming systems, OnLive and StreamMyGame, and compare their

QoS in terms of the traffic characteristics, delay components, update region sizes, frame rates, and

graphic quality. Our evaluation results show that OnLive performs better in general.

In summary, our proposed measurement techniques can be leveraged by the research community and

practitioners to better understand the component-wise QoS of cloud gaming systems.

The remainder of this paper is organized as follows. Section II provides a review on related studies.

In Section III, we introduce the cloud gaming systems under evaluation and the measurement setup. In

Section IV, the traffic characteristics of the chosen systems are analyzed. In Section V, our measurement

techniques of the responsiveness of cloud gaming systems are depicted, and the evaluation results of

OnLive and StreamMyGame are presented. In Section VI, we further analyze the impacts of different

system parameters on the responsiveness of cloud gaming systems. Section VII measures the graphic

quality under various network conditions. The fairness and effectiveness of our measurement techniques



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 5

are discussed in Section VIII, and our concluding remarks are presented in Section IX.

II. RELATED WORK

This paper touches upon two research domains: designing cloud gaming systems and measuring the

QoS of cloud gaming systems. In this section, we review the literature in both domains.

A. Remote Gaming Architecture

A number of thin client architectures have been proposed to support real-time remote graphical

applications, including remote gaming [3–8]. They can be roughly divided into two categories: instruction-

and image-based. The instruction-based systems [3, 4, 7] transmit graphic drawing instructions from

servers to clients and leave clients to render the graphics themselves. In contrast, the image-based

systems [5, 6, 8] stream rendered game screens as real-time videos. Typically, instruction-based systems

consume less bandwidth, as they only send graphics drawing commands whenever needed. On the other

hand, the thin clients of image-based systems are more platform- and implementation-independent and

demand for less client resources, because all the rendering tasks are performed at servers. To the best

of our knowledge, all the current commercial cloud gaming platforms, such as OnLive, StreamMyGame,

Ubitus, and GaiKai, are image-based systems.

This paper proposes a measurement approach for image-based cloud gaming systems. The approach

works even if the systems are closed and the servers and games cannot be instrumented, which are true

for commercial cloud gaming services such as OnLive. The first open cloud gaming system did not

appear until 2013: Huang et al. [8] proposed GamingAnywhere and adopted the measurement techniques

proposed in the current article to show that GamingAnywhere outperforms proprietary and closed cloud

gaming systems. The current paper presents the detailed measurement techniques, concentrates on the

comparisons among commercial cloud gaming systems, and conducts in-depth experimental studies with

a wider spectrum of games.

B. Measuring the QoS of Real-Time Remote Graphical Applications

Nieh and Laih [9, 10] proposed an approach to evaluate the QoS of several thin client systems on

various tasks using slow-motion benchmarking. Unfortunately, this technique cannot be applied to cloud

gaming systems because games would have to be modified so that they can run in slow motion. Besides,

the QoS metrics used, such as the amount of data transferred, do not accurately assess the temporal and

spatial quality of cloud gaming systems.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 6

Wong and Seltzer [11] evaluated the performance of Windows NT Terminal Service when serving

multi-user accesses. They focused on the server’s usage in terms of the processor, memory, and network

bandwidth. They also measured the latency introduced by the scarcity of servers’ resources. In addition,

Packard and Gettys [12] analyzed network traffic between an X client and server under a variety of

network conditions. They evaluated the effectiveness of compressors for X protocol streams sent over

high-latency links. Their results indicate that when the network delay is longer than 100 ms, an ssh

tunnel performs better than the LBX compressed stream in terms of compression efficiency.

Tolia et al. [13] quantified the user-perceived latency when using a number of applications over

VNC [14], a popular open-source, cross-platform thin client. They found that when using GIMP via

VNC over a network connection with 100 Mbps bandwidth and 100 ms Round-Trip Time (RTT), the

input response is longer than 150 ms with a probability of 29%. In contrast, the probability the input

response time longer than 150 ms is merely 1% when the network RTT is as short as 1 ms. Lagar-Cavilla

et al. [15] also showed that the network latency can negatively impact the interactivity of VNC. Their study

revealed that over an 100 Mbps network connection, the frame rate of VNC drops significantly if there

is a 33 ms network RTT and causes jerky interactions. More recently, Chang et al.’s [16] methodology

to study the performance of games on remote desktop software has been employed to evaluate several

popular thin clients, including LogMeIn, TeamViewer, and UltraVNC. Chang et al. established that player

performance and Quality-of-Experience (QoE) depend on video quality and frame rates. It is observed

that the mainstream thin clients cannot support cloud games given that the achieved frame rate is as low

as 9.7 fps [16]. In addition, Lee et al. [17] evaluates whether computer games are equally suitable to the

cloud gaming setting and finds that some games are more “compatible” with cloud gaming than others.

In contrast to the previous measurement studies on generic thin client systems [9–13], quantifying

the QoS of cloud gaming systems is much more challenging, as these systems have more strict QoS

requirements and are often proprietary and closed. Claypool et al. [18] conducted an extensive traffic

analysis using the well-known OnLive service. In particular, they compared the network traffic imposed

by OnLive against that of traditional online games and live video. They also studied how OnLive adapts

to different network conditions and whether game categories affect the network traffic characteristics.

This article follows our previous work [19] and completes [18] by proposing a systematic approach to

quantify component-wise latency and graphic quality of cloud gaming systems, while our (independently

done) network traffic analysis results in observations that are inline with their detailed analysis.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 7

TABLE I

GAMES SELECTED FOR MEASUREMENTS

Category Shorthand Game Title Release Date Publisher

Action-adventure (ACT)

Batman LEGO Batman: The Videogame Sep 23, 2008 Warner Bros. Interactive Entertainment

Braid Braid Apr 10, 2009 Number None, Inc

Conviction Tom Clancy’s Splinter Cell: Conviction Apr 13, 2010 Ubisoft

Tomb Tomb Raider: Underworld Nov 18, 2008 Eidos Interactive

First-person shooter (FPS)

BioShock BioShock Aug 21, 2007 2K Games

FEAR F.E.A.R. 2: Project Origin Feb 10, 2009 Warner Bros. Interactive Entertainment

Nukem Duke Nukem Forever Jun 14, 2011 2K Games

Real-time strategy (RTS)

DOW Warhammer 40,000: Dawn of War II Feb 19, 2009 THQ

Rome Grand Ages: Rome Mar 17, 2009 Kalypso Media

Tropico Tropico 3 Oct 20, 2009 Kalypso Media

III. MEASUREMENT SETUP

In this section, we introduce sample cloud gaming systems for measurements, which are OnLive and

StreamMyGame (SMG). We then give the details on the measurement setup.

A. Sample Cloud Gaming Systems for Measurements

OnLive was introduced at the Game Developer’s Conference in 2009, released in June, 2010, and

supports 306 games as of July 2012. OnLive is a well-known cloud gaming service with high-profile

investors and partners, including Warner Bros, AT&T, Ubisoft, Atari, and HTC. OnLive’s clients are

available on Microsoft Windows, Mac OS X1, and TV set-top box. The minimum bandwidth requirement

for OnLive is 3 Mbps, but an Internet connection of 5 Mbps or faster is recommended. All the games

are delivered in HDTV 720p format.

SMG enables each user to set up a game server for remote game playing. That is, users install SMG

and their games on their own PCs, and play the games with thin clients over the Internet anywhere,

anytime. SMG was launched in October 2007 and supports 128 games from Window-based server to

Windows/Linux-based clients as of February 2012. It supports various resolutions between 320x240 to

1920x1080 (1080p) and requires an Internet access between 256 Kbps (320x240) and 30 Mbps (1080p).

Our measurement techniques quantify the QoS of OnLive and SMG by monitoring the actual game

play. To obtain the results without bias, we choose heterogeneous and popular games for measurements

as follows. GameStats [20] is an online media and service website, which provides the latest game

1Since February 2011, OnLive supports Apple iPad, but it only allows users to watch other users’ game play as spectators.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 8

information and allows users to submit their opinions for the games. Most (about 57%) of the GameStats

opinions are related to three game categories: action-adventure (ACT), first-person shooter (FPS), and

real-time strategy (RTS). More than half of the games available on OnLive and SMG belong to these

three categories: 180 out of 306 games for OnLive and 67 out of 128 games for SMG. Moreover, ACT,

FPS, and RTS impose different workload on the cloud gaming systems and dictate diverse quality of

service requirements for enjoyable game play [1, 21]. For example, FPS games normally require high

responsiveness, while producing less complex game scenes; comparatively, RTS games produce the most

complex game scene while their users can tolerate higher latency [1, 21]. The requirements of ACT

games in game screen updates, latency, and scene complexity tend to lie between those of FPS and RTS

games [1, 21]. To cover a wide range of diverse games, we select at least three games from each category

for the measurements. The details of the chosen games are given in Table I.

B. Network Setup

Figure 2 illustrates the network topology for our experiments, which consists of two servers, a router,

and a client. The OnLive server (both the hardware and software) is operated by OnLive Inc. in their

own data centers. The SMG server developed by Tenomichi/SSP Ltd. is installed and hosted on one of

our PCs. We run both OnLive and SMG clients on the same PC, which is connected to the OnLive server

via the Internet and to the SMG server in a Fast Ethernet LAN. All the network traffic goes through a

FreeBSD 7.0 router running dummynet to emulate network quality degradations between the client and

server, e.g., by incurring additional delay, delay variance, packet loss, and bandwidth limit, whenever

needed.

Hereafter, “the server” refers to the SMG server hosted in our LAN for SMG measurements and the

OnLive server connected through the Internet for OnLive measurements. All our hosts (the clients and

the SMG server) are PCs with Intel Core i7-920 processors at 2.67GHz running Microsoft Windows 7.

For fair comparisons, we configure both OnLive and SMG to stream at a resolution of 1280x720 (720p)

for all experiments unless otherwise specified.

Since the OnLive server is outside our LAN, the quality of the network path between our client and

the OnLive server might affect our measurement results. Fortunately, we observed that the quality of the

Internet path was consistently good throughout our experiments. In particular, the network delay of the

path was around 130 ms with only few fluctuations. The standard deviations of the RTT were mostly

less than 5 ms for 100 back-to-back ICMP ping measurements with 1 Hz sampling frequency. The path

capacity allows OnLive to transmit 5 Mbps of gaming content to our client without any noticeable raise



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 9

U
p
lin

k
 B

it
 R

a
te

 (
M

b
p
s
)

0
0
.0

3
5

0
.0

7

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

U
p
lin

k
 P

a
c
k
e
t 

R
a
te

 (
p
k
t/

s
e
c
)

0
3
0

6
0

9
0

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

U
p
lin

k
 P

a
y
lo

a
d
 S

iz
e
 (

b
y
te

s
)

0
3
0

6
0

9
0

1
2
0

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

D
o
w

n
lin

k
 B

it
 R

a
te

 (
M

b
p
s
)

0
6

1
2

1
8

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o
ACT

FPS

RTS
D

o
w

n
lin

k
 P

a
c
k
e
t 

R
a
te

 (
p
k
t/

s
e
c
)

0
5
0
0

1
0
0
0

1
5
0
0

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

OnLive

SMG

D
o
w

n
lin

k
 P

a
y
lo

a
d
 S

iz
e
 (

b
y
te

s
)

0
5
0
0

1
0
0
0

1
5
0
0

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

B
a
tm

a
n

C
o
n
v
ic

ti
o
n

T
o
m

b

B
io

S
h
o
c
k

F
E

A
R

N
u
k
e
m

D
O

W

R
o
m

e

T
ro

p
ic

o

Fig. 3. Traffic characteristics of OnLive and StreamMyGame.

of packet loss. The ICMP ping measurements taken at 1 Hz during all the OnLive experiments showed

that the overall packet loss rate was less than 10−6. Therefore, the path between the OnLive server and

our client is essentially a communication channel with sufficient bandwidth, zero packet loss, and a 130

ms constant latency. In Section V, we will show that our measurement techniques are immune to network

delay between the client and the server as long as the delay variance is small.

IV. TRAFFIC ANALYSIS

In this section, we collect and analyze the traffic of playing different games on two cloud gaming

systems.

A. Trace Collection

To collect network traffic for analysis, an experienced game player was asked to play the considered

games using OnLive and SMG clients. We ran tcpdump on the FreeBSD server (see Figure 2) to record

all the packets between the client and server. Each game session lasted 10 minutes, and a total of three

hours of tcpdump traces from the 2x9 system-game pairs were collected. Since users’ actions and

scene complexity may affect the traffic characteristics significantly [1], we asked the user to follow the



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 10

guidelines: 1) move across as many scenes as possible while fighting opponents as required in regular

game play and 2) repeat his actions and visit the same scenes as much as possible when playing a game

on both cloud gaming systems.

B. Traffic Characteristics

Figure 3 plots the average bandwidth, packet rate, and payload size with 95% confidence bands of all

considered games and cloud gaming systems. The uplink and downlink figures present the characteristics

of the client traffic and the server traffic respectively. To determine whether the bandwidth consumption

is game- or system-dependent, we calculate the rank correlation of the bandwidth used by individual

games among different cloud gaming systems with Kendall’s tau coefficients. For uplink bit rates, the

rank correlation of 0.67 shows that the client traffic is game-dependent. For example, the uplink bit rates

of Batman is much lower than the other games in both cloud gaming systems. We believe this is due to

that Batman is controlled only by keyboard while the other games are controlled by both keyboard and

mouse, therefore the uplink bit rates of Batman is lower than the other games.

For the downlink bit rates, the rank correlation of 0.05 indicates that the server’s outgoing traffic is

not dependent on games. The downlink bandwidth of OnLive varies between 3 Mbps and 5 Mbps, and

that of SMG varies between 9 Mbps and 18 Mbps. This shows that OnLive incurs less server traffic

than SMG, and the server traffic is system-dependent. Furthermore, the downlink bit rates are almost two

orders of magnitude higher than the uplink bit rates, and thus the bandwidth efficiency of cloud gaming

systems is primarily determined by server traffic. Overall, OnLive is more bandwidth-efficient than SMG.

Furthermore, SMG’s downlink payload size is similar across games, whereas OnLive’s downlink payload

size varies across games. A closer look indicates that most of the packets sent by SMG server are

around 1400 bytes, which shows that SMG server tends to aggregate small packets for maximal payload

length. This allows SMG to reduce the header overhead at the expense of longer latency. In summary,

comparatively, we found that the client traffic is game-dependent, while the server traffic is rather system-

dependent.

Last, we notice that although our measurements were conducted independently to Claypool et al. [18],

our observations on OnLive are inline with theirs. In particular, we found that: (i) the downlink bit rates

are in the range of 3 to 5 Mbps, (ii) the downlink packet sizes are slightly smaller than 1000 bytes, and

(iii) OnLive traffic is very asymmetric: the downlink bit rate is about 70x higher than uplink bit rate,

the downlink packet rate is about 9x higher than uplink packet rate, and the downlink payload size is 8x

than uplink payload size.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 11

V. QUANTIFYING RESPONSIVENESS

We propose a set of measurement techniques to quantify the responsiveness in this section. Re-

sponsiveness is the most critical user-perceived QoS metric for cloud gaming systems. We define the

Response Delay (RD) as the time duration between a user submitting his/her command and the time

the corresponding game frame is displayed to the user. RD directly affects the user’s performance and

gaming experience [1]. Although RD can be explicitly measured when running games on a standalone

PC, measuring RD in a cloud gaming system is much more complicated because it comprises multiple

components. We divide the RD of a cloud gaming system into the following four components.

• Network delay (ND): ND represents the time required to transmit a user’s command to the server

and a game screen back to the client. It is essentially the network RTT.

• Processing delay (PD): PD represents the time required for the cloud gaming server to receive and

process a user’s command, and to encode and packetize the corresponding frame for the client.

• Game delay (GD): GD represents the time required by the game software to process a user’s

command and render the next game frame that contains responses to the command.

• Playout delay (OD): OD represents the time for the client to receive, decode, and display a frame.

RD equals the sum of all the delays described above, i.e.:

RD = ND + PD + GD + OD. (1)

Among all the delays, ND can be measured with tools like ICMP ping, and GD is game-dependent. In

this work, we assume that GD does not change while a game is customized for a cloud gaming system;

therefore, GD of individual games can be measured from the PC versions of the games. Measuring the

PD (at the server) and OD (at the client) is not straightforward because PD and OD occur internally in

cloud gaming systems, and may not be accessible from outside. Hence, special attentions are needed to

measure the PD and OD components.

In the rest of this section, we will describe how RD of a cloud gaming system is measured in

Section V-A and report the GDs of the considered games in Section V-B. Lastly, in Section V-C, the

techniques to accurately decompose PD and OD from RD and the results will be presented.

A. Response Delay Measurement

To measure the RDs of a cloud gaming system, we exploit the fact that most games support a movement

event which changes the game scene immediately during game play. The movement event is usually a

keystroke moving the avatar in ACT games or a mouse wheel scroll changing the viewpoints in RTS and



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 12

t0 (Movement event sent) t1 (Movement event received)

t2 (Frame sent)t3 (Frame received)

Client Server

Updated frame

t4 (Frame displayed)

Movement event

Fig. 4. The procedure of measuring response delay by

sending a movement event.

Client Server

t0

t1

t2

t3

t4

Movement event

Updated frame

t1

t3

PD & GD

OD

ND (Downlink)

ND (Uplink)

RD

Fig. 5. Decomposition of response delay.

TABLE II

RESPONSE DELAY OF DIVERSE GAMES ON DIFFERENT CLOUD GAMING SYSTEMS

Batman Conviction Tomb BioShock FEAR Nukem DOW Rome Tropico

OnLive
RD 399 ms 402 ms 333 ms 332 ms 288 ms 351 ms 358 ms 377 ms 290 ms

ND 131 ms 130 ms 131 ms 131 ms 131 ms 131 ms 130 ms 132 ms 131 ms

SMG
RD 502 ms 553 ms 454 ms 405 ms 397 ms 424 ms 402 ms 407 ms 420 ms

ND < 1 ms

FPS games. Figure 4 illustrates how we measure the RD of a cloud gaming system. First, a movement

event is fired on the client at time t0. We assume that the server receives the event at time t1, processes

the event, and sends the encoded frame to the client at time t2. The client receives the frame at time t3,

and we observe the game screen updated at time t4. As Figure 5 shows, RD equals (t4 − t0), i.e., the

time duration between t0 and t4. Within RD, ND equals the sum of (t1 − t0) and (t3 − t2). Moreover

(t2 − t1) is composed of PD and GD, and (t4 − t3) equals to OD.

To determine RD, i.e., to measure (t4 − t0), we utilize the hooking mechanism2 in Windows to inject

our instrumentation code into the OnLive and SMG clients. The detours [22] library is adopted to

intercept the following two functions:

1) IDirect3dDevice9::EndScene(): The OnLive client calls this function when it finishes

2The Windows hooking mechanism is invoked by calling the SetWindowsHookEx function. It is frequently used to inject

code into other processes.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 13

Game Delay (ms)

126

135

50

33

17

58

16

14

29

0 20 40 60 80 100 120 140 160

Batman

Conviction

Tomb

BioShock

FEAR

Nukem

DOW

Rome

Tropico

ACT

FPS

RTS

Fig. 6. Game delays of the PC versions of the considered games.

drawing a frame in the background and is ready to display the frame on the screen.

2) IDirect3DSurface9::UnlockRect(): The SMG client calls this function when it finishes

drawing a frame and is ready to display the frame on the screen.

After hooking the functions, the following steps are taken to measure the response delay:

1) Simulate a movement event by calling the SendInput() function at time t0.

2) Each time the game screen is updated, we monitor a specific set of pixels to determine if the game

scene is changed.

3) Wait until the scene changes and note the time as t4.

As t4 is measured, the RD corresponding to the movement event can be calculated by subtracting t0

from t4. The procedure repeats many times for each game on each cloud gaming system to obtain RD

samples. Besides, along with RD measurement, ND samples are also measured using ICMP pings. The

average RDs and NDs of different games on cloud gaming systems are shown in Table II. In particular,

the RDs vary between 290–400 ms for OnLive and 400–550 ms for SMG. The distance between the

server and client results in a 130 ms ND for OnLive while the NDs for SMG among all the games are

negligible (less than 1 ms), since both SMG server and client are in the same LAN.

B. Game Delay Measurement

GD is comprised of several parts. The first part is the processing time required for a game software

to process input commands and to render the corresponding frames. The second part is decided by the

interval of the main loop of games, as most games process users’ commands at regular intervals, say,

every 20 ms. Besides, some games may intentionally introduce additional delays to pacify users’ control



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 14

actions. GD occurs in games internally and cannot being directly observed outside.

We measure GDs of individual games using their PC versions. We make two assumptions. First, we

assume that the cloud gaming systems provide sufficient computational power for the games. Second, we

assume that the design of main loop and intentional delays of each game remain intact when the game

is customized for cloud gaming systems. These two assumptions guarantee that the GDs measured on a

PC approximate the actual GDs on cloud gaming systems.

For SMG measurements, the assumptions are certainly valid because the configuration of the SMG

server and the games installed on it are under our control. For OnLive measurements, these assumptions

are reasonable for two reasons. First, the cloud gaming providers usually adopt high-end hosts for game

streaming to guarantee the quality of experience. Second, as the mechanism of game delay is irrelevant

to real-time streaming, it is unlikely to be changed significantly for cloud gaming systems.

Under the assumptions, the GDs of the considered games are measured by applying the function

hooking technique described in Section V-A. The movement events and the selected game scenes are

identical to those in the RD measurements. We repeat the measurements 100 times for each game, and

plot the average GDs with 95% confidence bands in Figure 6. The narrow confidence bands indicate that

our measurements are reliable.

C. Decomposing Processing Delay and Playout Delay

Since we know how to measure RD, ND, and GD, we can derive PD and OD by determining either

one of them. We propose a novel technique to estimate t3 (shown in Figure 5). After t3 is determined,

OD can be calculated, and PD can be consequently derived.

The rationale behind estimating t3 is that it is the time the updated game frame entered into the client

from the server. Thus, if the incoming data is (intentionally) blocked on the client before t3, the updated

frame is not shown until the blocking is cancelled. On the other hand, if the incoming data is blocked

after t3, the updated frame is displayed despite that no further frames can be received and shown on the

screen as long as the blocking sustains.

To facilitate incoming data (i.e., packets) blocking, we hook the Winsock function recvfrom(),

which is invoked when the clients attempt to retrieve a UDP datagram from the UDP/IP stack. Instead

of one single packet, an encoded video frame is usually composed of hundreds or even thousands of

packets. When the function recvfrom() is blocked, the first packet being blocked (from being read

by the client) may correspond to the first, middle, or last of the packets associated with a game screen.

Thus, to ensure the accuracy of t3 determination, we start to block this function only immediately after



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 15

200 220 240 260 280 300 320

0
5

0
1

0
0

1
5

0

Batman on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

200 250 300 350

0
2

0
4

0
6

0

Conviction on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

100 140 180 220

0
2

0
4

0
6

0
8

0

Tomb on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

120 160 200 240

0
2

0
4

0
6

0
8

0

BioShock on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

50 100 150 200

0
2

0
4

0
6

0
8

0

FEAR on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

120 160 200 240

0
2

0
4

0
6

0
8

0

Nukem on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

150 200 250 300

0
2

0
4

0
6

0
8

0

DOW on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

150 200 250 300

0
2

0
4

0
6

0

Rome on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

100 150 200

0
2

0
4

0
6

0
8

0

Tropico on OnLive

Elapsed time (ms)

It
e

ra
ti
o

n

Fig. 7. OnLive’s scatter plots of tblock succeeded (red crosses) and tblock failed (blue circles) samples. The vertical dashed

line denotes the estimation of t3. Note that ND has been subtracted from the measurements.

450 500 550

0
2

0
4

0
6

0

Batman on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

460 500 540 580

0
2

0
4

0
6

0
8

0

Conviction on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

400 420 440 460 480

0
2

0
4

0
6

0

Tomb on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

320 360 400 440

0
2

0
4

0
6

0
8

0

BioShock on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

320 340 360 380 400

0
5

0
1

0
0

1
5

0

FEAR on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

350 400 450

0
2

0
4

0
6

0
8

0

Nukem on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

320 360 400 440

0
5

0
1

0
0

1
5

0

DOW on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

300 350 400 450

0
2

0
6

0
1

0
0

Rome on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

300 350 400 450

0
2

0
4

0
6

0
8

0

Tropico on SMG

Elapsed time (ms)

It
e

ra
ti
o

n

Fig. 8. StreamMyGame’s scatter plots of tblock succeeded (red crosses) and tblock failed (blue circles) samples. The vertical

dashed line denotes the estimation of t3.

a game screen is rendered. The measurement procedure is as follows.

1) Call the function SendInput() at time t0 to invoke a movement event. With the assumption that

OD is shorter than 100 ms, compute tblock as a random time between RD− 100 ms and RD+50



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 16

OnLive

R
e

s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
 (

m
s
)

B
a

tm
a

n

C
o

n
v
ic

ti
o

n

T
o

m
b

B
io

S
h

o
c
k

F
E

A
R

N
u

k
e

m

D
O

W

R
o

m
e

T
ro

p
ic

o

118 113 119
145

110
142

191 204

105

24 25
33

22

31

20

21
27

25

126 135

50 33

17

58

16

14

29

Processing Delay

Playout Delay

Game Delay

ACT

FPS

RTS

SMG

R
e

s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
 (

m
s
)

B
a

tm
a

n

C
o

n
v
ic

ti
o

n

T
o

m
b

B
io

S
h

o
c
k

F
E

A
R

N
u

k
e

m

D
O

W

R
o

m
e

T
ro

p
ic

o

350
383 380

351 362
332

365 364 364

26

36 23

21
18

34

21 29 27

126

135

50

33 17 58 16 14 29

Fig. 9. The estimated game, processing, and playout delays of the considered games on two cloud gaming systems.

TABLE III

PDS AND ODS OF THE CONSIDERED GAMES ON THE TWO CLOUD GAMING SYSTEMS

Batman Conviction Tomb BioShock FEAR Nukem DOW Rome Tropico

OnLive
PD (mean / sd.) 118/2.4 ms 113/1.6 ms 119/2 ms 145/2.7 ms 110/1.8 ms 142/1.7 ms 191/2.1 ms 204/5 ms 105/3.8 ms

OD (mean / sd.) 24/3.7 ms 25/4.3 ms 33/2.4 ms 22/3 ms 31/2.1 ms 20/1.3 ms 21/2.2 ms 27/3.9 ms 25/4 ms

SMG
PD (mean / sd.) 350/2.4 ms 383/1.6 ms 380/4.3 ms 351/1.3 ms 362/0.8 ms 332/3.9 ms 365/0.9 ms 364/2.2 ms 364/1.8 ms

OD (mean / sd.) 26/2.9 ms 36/1.9 ms 23/4.2 ms 21/2.2 ms 18/1.8 ms 34/3.9 ms 21/1.5 ms 29/3.8 ms 27/1.8 ms

ms3.

2) If the updated frame appears before tblock, record the time as tupdate and terminate the procedure.

Otherwise, temporarily block all the subsequent recvfrom() calls for one second4 at tblock.

3) Wait until the updated frame appears, record the time as tupdate, and terminate the procedure.

The blocking sustains from tblock to tblock+1 sec, and is considered successful if tupdate > tblock+1 sec.

In this case, t3 should be some time after tblock, and tblock is added to the record named tblock succeeded.

On the other hand, if tupdate ≤ tblock, the blocking is considered failed and t3 must be some time

before tupdate. In this case, tupdate is added to the record named tblock failed. By repeating the procedure

numerous times, tblock succeeded and tblock failed contain sample points before and after t3 respectively,

3The 50-ms interval is chosen arbitrarily in order to leave a “safe zone” that ensures an updated frame will be blocked with

a non-zero probability.

4The one-second interval is chosen arbitrarily in order to determine whether or not the updated frame is blocked. Other values

can also apply without affecting the measurement results.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 17

and t3 lies approximately at the boundary of the two groups. t3 is then estimated as the point yielding

the minimum sum of the two density functions formed by tblock succeeded and tblock failed respectively,

where each density function is computed as the mixture of the Gaussian density functions centered at each

element with a standard deviation of a reasonable magnitude5. By estimating t3, OD can be computed

as t4 − t3, and PD is derived as t3 − t0 − ND − GD.

Figures 7 and 8 show the scatter plots of tblock succeeded and tblock failed samples. The time points

in tblock succeeded and tblock failed are denoted with red crosses and blue circles respectively. The NDs

have been excluded from all the samples for a fair comparison between OnLive and SMG. We make

an observation that the samples gathered from OnLive are normally distributed while those of SMG are

aggregated around certain values. A closer look indicates that SMG tends to maintain its frame rate at

25 fps (frames per second), and therefore the inter-frame time of SMG is fixed at 40 ms. Since tblock and

tupdate can only be obtained whenever a frame is presented on the screen, they tend to cluster around

points with 40-ms intervals.

Moreover, because t3 (and consequently PD and OD) are inferred based on a set of iterations, the

robustness of our estimation of t3 can be checked by cross-validation. Instead of using the samples from

all the iterations, 50 iterations are randomly selected from all the iterations to estimate t3. 10 rounds

of the estimation are made, and the results from different rounds are compared to show the robustness

of our measurement techniques. The mean values and standard deviations of PD and OD of the two

cloud gaming systems are summarized in Table III. The standard deviations of our estimation in PD and

OD are all smaller than 5 ms, which indicates that our estimations are reliable without suffering from

significant measurement noises.

D. Results of Responsiveness Measurements

Figure 9 shows the averages of PD, OD, and GD of the considered games on OnLive and SMG6.

This figure shows that OnLive’s PDs are about half of those of SMG. This can be partly attributed to

the multi-tiled7 and the hardware-accelerated video encoder used by OnLive [23]. The average ODs of

5In our experiment, a standard deviation of 20 ms is adopted, while other values of the same order of magnitude yield nearly

identical estimation of t3.

6Since network delay (ND) is independent to the cloud gaming systems, we exclude it from the following discussion.

7The multi-tile technique is similar to the intra-refresh coding used in some H.264 codec implementations, such as x264

(http://www.videolan.org/developers/x264.html).



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 18

both cloud gaming systems are around 18–36 ms with limited differences among games. Such short ODs

indicate that both systems perform equally well in frame decoding and display.

In summary, OnLive’s overall streaming delay (i.e., PD at the server and OD at the client) is 130–230

ms. On the other hand, real-time encoding of 720p game screen seems to be a large burden for SMG on

an Intel i7-920 server because the streaming delay measured on SMG can be as long as 360–420 ms. It

is reported that FPS players expect latency less than 100 ms for acceptable players’ performance; sports

and role playing game players demand for less than 500 ms; while RTS and simulation game players

dictate less than 1000 ms [21]. Both cloud gaming systems may fail to satisfy FPS players; however, with

insignificant network delays, OnLive may satisfy the needs of most users of the other game categories

while SMG might be only marginal or even unacceptable for certain games.

VI. IMPACT OF SYSTEM DESIGN AND PARAMETERS ON RESPONSIVENESS

In this section, we study how the scene complexity, update region size, screen resolution, and

computational power of servers affect the responsiveness of cloud gaming systems. For fair comparisons

between OnLive and SMG, we deduct network delays (ND) from all the figures reported.

A. Impact of Scene Complexity

Figure 9 shows that the PDs of DOW and Rome, both are omnipresent RTS games, are higher than

those of the other games on OnLive8. This can be attributed to the highly complex game scenes of DOW

and Rome, which take longer to be encoded and transmitted [1].

To quantify the scene complexity, we define entropy as the average frame size after compressing a

raw video with a set of fixed, typical coding parameters. In particular, we use Fraps9 to capture game

scenes and encode them into H.264 video files. We then divide the file size by the number of frames

to derive the entropy. To cover a wide range of scene complexity, we consider two games, Rome and

BioShock, and choose three scenes with different complexity levels: complex, normal, and simple. We

record a one-minute video for each scene, and report the resulting entropy in Figure 10. This figure

gives the screenshots and entropy of each scene, which reveals that the entropy drops from high to low

complexity levels, while entropy of BioShock is much lower than that of DOW.

We plot the RDs of all the considered scenes in Figure 11. This figure shows that complex scenes

indeed result in higher PDs and ODs, in both games. We then present the correlation between the entropy

8The PDs of SMG are equally long across all considered games. Hence we only analyze results from OnLive here.

9http://www.fraps.com/



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 19

(a) BioShock, complex, entropy 2,114

bytes

(b) BioShock, normal, entropy 1,645

bytes

(c) BioShock, simple, entropy 401 bytes

(d) Rome, complex, entropy 2,877 bytes (e) Rome, normal, entropy 2,760 bytes (f) Rome, simple, entropy 2,322 bytes

Fig. 10. The screenshots of the considered game scenes with different scene complexity (entropy).

Complex Normal Simple

BioShock

R
e

s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
 (

m
s
)

142
129 120

30

22
19

33

33
33

Processing Delay

Playout Delay

Game Delay

Complex Normal Simple

Rome

R
e

s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
 (

m
s
)

241 235

188

26
23

18

14

14

14

Fig. 11. Response delays (without ND) of different scenes

of BioShock and Rome.

500 1000 1500 2000 2500 3000

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0
2

2
0

2
4

0

Entropy (bytes)

P
ro

c
e

s
s
in

g
 D

e
la

y
 (

m
s
)

BioShock (Complex)

BioShock (Normal)

BioShock (Simple)

Rome (Complex)

Rome (Normal)

Rome (Simple)

500 1000 1500 2000 2500 3000

1
8

2
0

2
2

2
4

2
6

2
8

3
0

Entropy (bytes)

P
la

y
o

u
t 

D
e

la
y
 (

m
s
)

Fig. 12. The correlation between the entropy and the

processing and playout delay.

and PD/OD in Figure 12. This figure reveals a game-independent positive correlation between entropy

and PD/OD. In summary, the scene complexity affects the processing, encoding, and decoding time in

OnLive. Last, we note that our empirically observed relation between game category and scene complexity

is consistent with Claypool [1], e.g., RTS games generally have higher scene complexity.

B. Impact of Update Region Sizes

We next study how the sizes of update regions affect the responsiveness. We consider two games,

DOW and Rome, on both OnLive and SMG. We perform three game actions to generate different sizes



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 20

DOW

Rome

Press the key “F9”

to invoke the area

Press the key “1" 

to invoke the area

Fig. 13. Screenshots of area changes triggered by keystrokes in DOW and Rome.

of update regions.

1) Scene change: A mouse movement rotates the view point. The responsiveness of a scene change

is defined as the time duration between the mouse movement and the screen rotation.

2) Area change: A keystroke to show and hide specific GUI components. Figure 13 illustrates the

screenshots of area changes in DOW and Rome, where about 7% of the screen is affected by the

area changes in both games. The responsiveness of an area change is defined as the time duration

between pressing the key and changing the pixels in the updated area.

3) Cursor movement: Move the mouse cursor across the screen. The responsiveness of a curve

movement is defined as the time between the mouse movement action and the actual cursor

movement on screen.

We plot the RDs of DOW and Rome with different sizes of update regions in Figure 14. We first discuss

the results from OnLive. The PDs of cursor movements are short, and those of scene changes are 6 times

longer. The PDs of area changes are between those of scene changes and cursor movements. On the other

hand, the PDs of Rome are higher than those of DOW assuming a common size of update regions. This

can be attributed to the transparent background of the area in Rome, which is quite challenging for video

codecs. Similar observations can be made on the results from SMG, although PDs from SMG are higher

while the variance of PDs across different update region sizes is small. In summary, the video coder used

by OnLive is more advanced in the sense that it successfully leverages the inter-frame redundancy for

shorter PDs.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 21

C. Impact of Screen Resolutions

Since OnLive only supports 720p resolution, we only study how screen resolutions affect the

responsiveness of SMG. We select two games: FEAR and Tomb, and choose three resolutions: 1280x720,

1024x768, and 640x480. We configure the games and SMG to use the same resolution to avoid any

unnecessary up/down-sampling. We plot the RDs of all games and resolutions in Figure 15. This figure

shows that smaller resolutions lead to shorter PDs, which is inline with the intuition. However, the

difference of PDs is negligible, e.g., only 5% between 640x480 and 1280x720 in FEAR. Moreover, we

see no consistent correlation between resolutions and ODs. These two observations indicate that some

common processing overhead of SMG dominates the responsiveness, so that the impact of resolutions

on RDs is minimal.

D. Impact of Computation Power

We study the impact of the server computation power on the responsiveness of SMG. We do not

consider OnLive because we have no access to OnLive servers. We set up four SMG servers with

different CPUs: 1) Intel Core i7-920 2.6GHz, 2) Intel Core i5-760 2.8GHz, 3) Intel Core 2 Quad Q6600

2.4GHz, and 4) AMD Athlon 64 4200+ 2.2GHz. We configure the four servers to have the same memory

size, disk model, and graphics card (NVIDIA GeForce GTX 275 with 896 MB video RAM). We use

FEAR in this study.

We rank the computational power of the CPUs using PassMark10, a popular benchmark index provided

by the PerformanceTest software. The benchmark scores indicate that Intel Core i7-920 is the most

powerful CPU, Intel Core i5-760 is the second, Intel Core 2 Quad Q6600 is the third, and AMD Athlon

64 4200+ is the least. We plot the PDs corresponding to different CPUs, and the correlation between the

PDs and the CPU benchmark scores in Figure 16. This figure shows that: 1) PD linearly decreases on

the less powerful servers and 2) there is a linear correlation between PD and benchmark score.

VII. QUANTIFYING STREAMING QUALITY

In this section, we quantify the game streaming quality of OnLive and SMG via measuring the frame

rate and graphic quality under various network conditions.

10http://www.cpubenchmark.net/high end cpus.html



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 22

DOW
R

e
s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
1

0
0

2
0

0
3

0
0

4
0

0
 (

m
s
)

Scene Area Cursor Scene Area Cursor

OnLive SMG

191

48 31

365 351 338

23

24
28

22
22

28

16

31

16 31Processing Delay

Playout Delay

Game Delay

Rome

R
e

s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
1

0
0

2
0

0
3

0
0

4
0

0
 (

m
s
)

Scene Area Cursor Scene Area Cursor

OnLive SMG

203

126

32

365
343 341

27

29

25

29

25 22

14

35

14

35

Fig. 14. The response delays (without NDs) of different

update region sizes of DOW and Rome on OnLive and SMG.

1280x720 1024x768 640x480

FEAR

R
e

s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
 (

m
s
)

363 362
328

20 21

23

17 15

18

Processing Delay

Playout Delay

Game Delay

1280x720 1024x768 640x480

Tomb

R
e

s
p

o
n

s
e

 D
e

la
y
 (

w
it
h

 N
D

 s
u

b
tr

a
c
te

d
)

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
 (

m
s
)

380 370 369

23
21 22

50
52

31

Fig. 15. The response delays (without NDs) of different

screen resolutions from FEAR and Tomb in SMG.

P
ro

c
e

s
s
in

g
 D

e
la

y
 (

m
s
)

0
1

0
0

2
0

0
3

0
0

4
0

0

Intel Core Intel Core Intel Core 2 AMD Athlon

i7−920 i5−760 Quad Q6600 64 4200+

2.6 GHz 2.8 GHz 2.4 GHz 2.2 GHz

362
397 413

451

1000 2000 3000 4000 5000 6000

3
6

0
3

8
0

4
0

0
4

2
0

4
4

0
4

6
0

PassMark CPU Mark

P
ro

c
e

s
s
 D

e
la

y
 (

m
s
)

Intel Core i7−920

Intel Core i5−760

Intel Core 2 Quad Q6600

AMD Athlon 64 4200+

Fig. 16. Left: the processing delays of scenes with different computational power. Right: the correlation between the processing

delay and the benchmark score.

A. Methodology

We configure dummynet on the router (see Figure 2) to control the following three network conditions.

• Network delay: 0 ms, 150 ms, 300 ms, 450 ms, and 600 ms;

• Packet loss rate: 0%, 2.5%, 5%, 7.5%, and 10%;

• Bandwidth: Unlimited, 6 Mbps, 4 Mbps, 2 Mbps, and 1 Mbps.

Since the OnLive server is approximately 130 ms away from our client, the evaluation for OnLive with

0 ms network delays is not available. Other than that, the distance of the OnLive server does not pose

problems because the network quality between the OnLive server and our client is fairly good, and the

bandwidth between them is more than sufficient. Moreover, for fair comparisons, the screen resolution

of games is set to 1280x720 (720p) in both OnLive and SMG. We choose two ACT games, Batman and

Braid, which allow us to repeat certain game scenes exactly while performing certain avatar actions. We



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 23

Batman

Braid

t t+1 t+2 t+3 t+4 time

Fig. 17. Successive screenshots with timestamps where the avatar jumps or walks to the certain position in Batman and Braid.

OnLive SMG

Batman (delay)

F
ra

m
e
 R

a
te

 (
F

P
S

)

0
1
0

2
0

3
0

4
0

5
0 0 ms

150 ms
300 ms
450 ms
600 ms

OnLive SMG

Batman (packet loss)

F
ra

m
e
 R

a
te

 (
F

P
S

)

0
1
0

2
0

3
0

4
0

5
0 0%

2.5%
5%
7.5%
10%

OnLive SMG

Batman (bandwidth)

F
ra

m
e
 R

a
te

 (
F

P
S

)

0
1
0

2
0

3
0

4
0

5
0 Unlimited

6 Mbps
4 Mbps
2 Mbps
1 Mbps

OnLive SMG

Braid (delay)

F
ra

m
e
 R

a
te

 (
F

P
S

)

0
1
0

2
0

3
0

4
0

5
0 0 ms

150 ms
300 ms
450 ms
600 ms

OnLive SMG

Braid (packet loss)

F
ra

m
e
 R

a
te

 (
F

P
S

)

0
1
0

2
0

3
0

4
0

5
0 0%

2.5%
5%
7.5%
10%

OnLive SMG

Braid (bandwidth)

F
ra

m
e
 R

a
te

 (
F

P
S

)

0
1
0

2
0

3
0

4
0

5
0 Unlimited

6 Mbps
4 Mbps
2 Mbps
1 Mbps

Fig. 18. The frame rates of game screens under different network conditions.

control the avatars in both games to repeatedly and unstoppedly jump (in Batman) and run (in Braid) in

a preselected scene for five minutes. This allows us to duplicate identical avatar appearances and game

scenes in different runs under various network conditions for fair comparisons.

The frame rate affects the playability and gaming performance [24], and we quantify the frame

rates of the cloud gaming systems under different network conditions as follows. We obtain the

frame rates of OnLive and SMG clients by hooking IDirect3dDevice9::EndScene() and

IDirect3DSurface9::UnlockRect(), respectively. We then compute the average frame rates under

diverse network conditions.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 24

OnLive SMG

Batman (delay)

S
S

IM

0 ms
150 ms
300 ms
450 ms
600 ms

0
0
.2

0
.4

0
.6

0
.8

1

OnLive SMG

Batman (packet loss)

S
S

IM

0%
2.5%
5%
7.5%
10%

0
0
.2

0
.4

0
.6

0
.8

1

OnLive SMG

Batman (bandwidth)

S
S

IM

Unlimited
6 Mbps
4 Mbps
2 Mbps
1 Mbps

0
0
.2

0
.4

0
.6

0
.8

1

OnLive SMG

Braid (delay)

S
S

IM

0 ms
150 ms
300 ms
450 ms
600 ms

0
0
.2

0
.4

0
.6

0
.8

1

OnLive SMG

Braid (packet loss)

S
S

IM

0%
2.5%
5%
7.5%
10%

0
0
.2

0
.4

0
.6

0
.8

1

OnLive SMG

Braid (bandwidth)

S
S

IM

Unlimited
6 Mbps
4 Mbps
2 Mbps
1 Mbps

0
0
.2

0
.4

0
.6

0
.8

1

Fig. 19. The graphic quality degradation with different network conditions in Batman and Braid on OnLive and SMG.

(a) OnLive, no degradation, SSIM 0.94 (b) OnLive, bandwidth 4 Mbps, SSIM

0.89

(c) OnLive, packet loss rate 10%, SSIM

0.79

(d) SMG, no degradation, SSIM 0.59 (e) SMG, bandwidth 4 Mbps, SSIM 0.50 (f) SMG, packet loss rate 10%, SSIM 0.48

Fig. 20. The screenshots of the game scenes from cloud gaming systems under various network conditions.

The graphic quality also affects the user experience, and we adopt SSIM [25] as the quality metric by

comparing the decoded game screens of OnLive and SMG against those captured on the PC versions of

the games. Moreover, we must ensure that the game screens under comparisons are semantically identical,

i.e., with identical viewpoints, camera orientations, and avatar positions. To achieve this, we control the

avatar to mechanically move in the games. In Batman, the avatar repeatedly jumps at the same location;

in Braid, the avatar runs back and forth between two locations. We use Fraps to capture the game

screens every 16 ms. We first record the game screens on a standalone PC and then do the same using



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 25

OnLive and SMG clients under diverse network conditions. We also carefully timestamp the frames in

the captured game screens for alignments. Last, we compute the average SSIMs between OnLive/SMG

game screens and standalone PC game scenes.

B. Measurement Results

We plot the measurement results in Figures 18 and 19. We first observe that SMG achieves a unified

frame rate: 25 fps under various network delay, while OnLive achieves lower frame rates when the

network delay is longer. This observation reveals that OnLive implements an adaptive algorithm to adjust

the frame rate based on the current network delay. Moreover, the network delay does not affect the

graphic quality of SMG at all, and the network delay only marginally affects the graphic quality of

OnLive. Nonetheless, the graphic quality of OnLive still outperforms that of SMG. We conclude that the

two cloud gaming systems cope with network delays very well.

In contrast, the packet loss and bandwidth limitations impose negative impact on the frame rates in both

OnLive and SMG. We observe that the frame rate drops linearly as the packet loss rate increases in both

OnLive and SMG. This reveals that neither OnLive nor SMG implements strong concealment mechanisms

against packet loss. We also observe that OnLive is more bandwidth efficient: OnLive achieves acceptable

frame rates with bandwidth larger than 2 Mbps, while its frame rate with unlimited bandwidth is the

same as that of 6 Mbps. In contrast, SMG suffers from zero fps under bandwidth less than 6 Mbps and

2 Mbps in Braid and Batman respectively.

Next, the packet loss and limited bandwidth lead to negative impacts on the graphic quality for both

cloud gaming systems. We observe that the graphic quality of the games on both cloud gaming systems

drops under high packet loss and limited bandwidth. Figure 20 illustrates the sample frames, which show

that frames with packet loss and limited bandwidth are blurred and/or with visual artifacts. Moreover,

SSIM indicates that OnLive provides better graphic quality under all the network conditions. Last, we

observe that the graphic quality achieved by SMG under very low bandwidth raises a bit. However, such

graphic quality increase does not reflect better user experience, as SMG’s frame rate drops to almost zero

when the network bandwidth is low.

VIII. DISCUSSIONS

A. Vantage Point Problem

One may wonder whether the location of the OnLive client affects the measurements of server

processing delay (PD) and client playout delay (OD). As long as the network between the OnLive server



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 26

Fig. 21. A screenshot from the PC version.

and client has stable network delay, sufficient bandwidth, and low packet loss rate, our measurement

techniques yield accurate results regardless of the location of the client. The reason is that the network

delay is measured continuously during the instrumentation process. Thus, unless the network delay is

extremely variable, the most recent ping results can always be adopted for estimation of the RTT between

the server and the client. The observed response delays can then be compensated (from Eq. (1)) without

affecting the inference accuracy of the PD and OD.

B. Fair Comparisons

While the results illustrated in Section V-D show that SMG’s PD is approximately 3.5 times greater

than that of OnLive (about 350 ms vs. 100 ms), one may suspect that SMG’s QoS could be comparable to

that of OnLive if a high-end machine is used for the SMG server. Here, we must remark that a “perfectly”

fair comparison between OnLive and SMG is impossible because OnLive servers are proprietary and may

be specially customized and tailored for cloud gaming whereas SMG is designed to run on commodity

servers and PCs. According to the results in Section VI-D, the PDs generated by SMG is linear in

correspondence to the computation power of the CPUs on the server, and the SMG server equipped with

the highest-end CPU (PassMark score 5520) yields merely 20% improvements in PD compared with

the server with the lowest-end CPU (PassMark score 1146). Therefore, SMG’s longer PD (comparing to

OnLive) must be due to the nature of its architecture and/or implementation.

C. Methodology Generalizability

We have applied our measurement techniques on two sample cloud gaming systems with three popular

categories of games. This demonstrates the generalizability of our measurement techniques to some extent.

Our approach can be generally applied to other cloud gaming systems because it requires no access to any

internals of the server and game software, nor any original uncompressed game screens from the cloud

gaming systems. Moreover, the measurement techniques also assume no particular features of the games.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 27

TABLE IV

A BRIEF COMPARISON OF ONLIVE AND STREAMMYGAME

Platform OnLive StreamMyGame

Downlink Bit Rate 3–5 Mbps 9–18 Mbps

Downlink Payload Size 715–950 bytes 1370–1390 bytes

Processing Delay 105–205 ms 350–365 ms

Frame Rate 22–54 fps 0.2–25 fps

Graphic Quality SSIM=0.94 SSIM=0.59

We perform the measurements on Microsoft Windows in this work, but the instrumentation code can

be implemented in other operating systems, such as Android and Mac OS. This is because binary-level

function intercepting mechanisms are widely supported by modern operating systems.

IX. CONCLUSION

In this paper, we have proposed a suite of measurement techniques for user-perceived QoS of proprietary

and closed cloud gaming systems under diverse network conditions. We have applied the measurement

techniques to two sample cloud gaming systems, OnLive and StreamMyGame, and conducted extensive

experiments. Table IV summarizes the measurement results, which indicate that OnLive: 1) consumes

less bandwidth, 2) achieves better responsiveness, and 3) is better optimized in terms of video coding.

Our experiments demonstrate the effectiveness of the proposed measurement techniques.

Implications. The configurations of servers and the arrival patterns of users are heterogeneous and

dynamic, which impose significant impacts on the QoS of cloud gaming systems. Such information,

however, is highly confidential to commercial cloud gaming systems and client-side measurement

techniques are crucial to quantify their QoS. Our proposed measurement techniques in this paper fill this

critical gap and has a number of important implications to future cloud gaming research. First, the suite of

measurement techniques serves a common tool for factually assessing the QoS of proprietary and closed

cloud gaming systems, such as OnLive and GaiKai. For example, it allows users to ensure whether these

systems perform as well as their operators claimed. The capability to dissect the delay components in a

cloud gaming system is especially helpful for researchers to identify the weak components and isolate the

key issues worth to address. More importantly, the measurement results will provide important reference

for calibration and comparison when the research community and the industry are building in-house

cloud gaming systems [8]. Moreover, the proposed techniques are able to provide needed figures, such as

the maximum delay allowed and the provided graphic quality given any network condition, for research



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 28

on the cloud gaming infrastructure provisioning, such as how to place servers across a number of data

centers to provide satisfactory cloud gaming service in world-wide scale [26]. Last but not the least, the

current article concentrates on small time-scale performance metrics from users’ perspective. Quantifying

large time-scale performance metrics from service providers’ perspective is also useful, and developing

measurement techniques for these metrics is part of our future plan.

ACKNOWLEDGEMENT

This work was supported in part by the National Science Council under the grants NSC100-2628-E-

001-002-MY3 and NSC102-2219-E-019-001.

REFERENCES

[1] M. Claypool, “Motion and scene complexity for streaming video games,” in Proceedings of the 4th

International Conference on Foundations of Digital Games. ACM, 2009, pp. 34–41.

[2] P. Ross, “Cloud computing’s killer app: Gaming,” Spectrum, IEEE, vol. 46, no. 3, p. 14, 2009.

[3] I. Nave, H. David, A. Shani, Y. Tzruya, A. Laikari, P. Eisert, and P. Fechteler, “Games@Large graphics

streaming architecture,” in IEEE International Symposium on Consumer Electronics 2008. IEEE, 2008.

[4] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P. Laulajainen, R. Carmichael, V. Poulopoulos,

A. Laikari, P. Perälä, A. De Gloria, and C. Bouras, “Platform for distributed 3d gaming,” Int. J. Comput.

Games Technol., vol. 2009, pp. 1:1–1:15, January 2009.

[5] D. De Winter, P. Simoens, L. Deboosere, F. De Turck, J. Moreau, B. Dhoedt, and P. Demeester, “A hybrid

thin-client protocol for multimedia streaming and interactive gaming applications,” in Proceedings of ACM

NOSSDAV 2006. ACM, 2006, pp. 15:1–15:6.

[6] O.-I. Holthe, O. Mogstad, and L. A. Rønningen, “Geelix livegames: remote playing of video games,” in

Proceedings of IEEE CCNC 2009. IEEE Press, 2009, pp. 758–759.

[7] P. Eisert and P. Fechteler, “Low delay streaming of computer graphics,” in Proceedings of IEEE ICIP 2008,

2008, pp. 2704–2707.

[8] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen, “Gaminganywhere: An open cloud gaming system,”

in Proc. of ACM MMSys 2013, February 2013.

[9] A. M. Lai and J. Nieh, “On the performance of wide-area thin-client computing,” ACM Trans. Comput. Syst.,

vol. 24, pp. 175–209, May 2006.

[10] J. Nieh, S. J. Yang, and N. Novik, “Measuring thin-client performance using slow-motion benchmarking,”

ACM Trans. Comput. Syst., vol. 21, pp. 87–115, February 2003.

[11] A. Y.-l. Wong and M. Seltzer, “Evaluating windows NT terminal server performance,” in Proceedings of

USENIX Windows NT Symposium. USENIX Association, 1999, pp. 15–15.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 29

[12] K. Packard and K. Packard, “X window system network performance,” in USENIX Annual Technical

Conference, 2003.

[13] N. Tolia, D. Andersen, and M. Satyanarayanan, “Quantifying interactive user experience on thin clients,”

Computer, vol. 39, no. 3, pp. 46–52, 2006.

[14] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual network computing,” IEEE Internet

Computing, vol. 2, no. 1, pp. 33–38, 2002.

[15] H. A. Lagar-Cavilla, N. Tolia, E. de Lara, M. Satyanarayanan, and D. O’Hallaron, “Interactive resource-

intensive applications made easy,” in Proceedings of the ACM/IFIP/USENIX 2007 International Conference

on Middleware, 2007, pp. 143–163.

[16] Y.-C. Chang, P.-H. Tseng, K.-T. Chen, and C.-L. Lei, “Understanding the performance of thin-client gaming,”

in Proceedings of IEEE CQR 2011, May 2011.

[17] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei, “Are all games equally cloud-gaming-friendly? an electromyo-

graphic approach,” in Proceedings of IEEE/ACM NetGames 2012, Oct 2012.

[18] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to win? network performance analysis of the OnLive

thin client game system,” in ACM Workshop on Network and Systems Support for Games (NetGames), 2012,

pp. 1–6.

[19] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei, “Measuring the latency of cloud gaming

systems,” in Proceedings of ACM Multimedia 2011, Nov 2011.

[20] GameStats. [Online]. Available: http://www.gamestats.com/index/gpm/pc.html

[21] M. Claypool and K. Claypool, “Latency and player actions in online games,” Commun. ACM, vol. 49, pp.

40–45, November 2006.

[22] G. Hunt and D. Brubacher, “Detours: binary interception of win32 functions,” in Proceedings of the 3rd

conference on USENIX Windows NT Symposium - Volume 3, ser. WINSYM’99. Berkeley, CA, USA: USENIX

Association, 1999, pp. 14–14. [Online]. Available: http://dl.acm.org/citation.cfm?id=1268427.1268441

[23] S. G. Perlman and R. V. D. Laan, “System and method for compressing streaming interactive video,” US

Patent No. 2009/0119736A1, May 2009.

[24] K. Claypool and M. Claypool, “On frame rate and player performance in first person shooter games,”

Multimedia Systems, vol. 13, pp. 3–17, 2007.

[25] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural

similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[26] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm in cloud gaming: A measurement study

on cloud to end-user latency,” in ACM Workshop on Network and Systems Support for Games (NetGames),

2012, pp. 1–6.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 30

Kuan-Ta Chen (a.k.a. Sheng-Wei Chen) (S’04–M’06) is an Associate Research Fellow at the Institute of

Information Science and the Research Center for Information Technology Innovation (joint appointment) of

Academia Sinica. Dr. Chen received his Ph.D. in Electrical Engineering from National Taiwan University

in 2006, and received his B.S. and M.S. in Computer Science from National Tsing-Hua University in

1998 and 2000, respectively. His research interests include quality of experience, multimedia systems, and

social computing. He has been an Associate Editor of IEEE Transactions on Multimedia since 2011. He

is a member of ACM, IEEE, IICM, and CCISA.

Yu-Chun Chang received his B.S. degree in computer science from National Taiwan University in 2005,

and received his Ph.D. degree in the Department of Electrical Engineering at National Taiwan University

in 2012. His research interests include Internet measurement, QoE management, quality of service, and

cloud gaming.

Hwai-Jung Hsu is a post-doctoral fellow at Institute of Information Science of Academia Sinica. Dr.

Hsu received his Ph.D. in Computer Science and Engineering from National Chiao Tung University in

2013, and his B.S. and M.S. in Computer Science and Information Engineering from National Chiao

Tung University in 2001 and 2003 respectively. His research interests include Electronic Entertainment,

Psychophysiology, Service-Oriented Computation, Cloud Computing, and Software Engineering. Much of

his recent work focuses on studying the physical and mental factors among users in online or mobile

gaming, including psychophysiological measurement, gaming experiences, analysis of market performance of online/mobile

games, and related human-computer interaction.

De-Yu Chen is a research assistant at the Institute of Information Science of Academia Sinica. He

received his M.S. in Computer Science from National Taiwan University in 2009, and his B.B.A. in

Business Administration from National Taiwan University in 2006. His research interests include cloud

computing, distributed computing, and network traffic analysis.

Chun-Ying Huang (S’03–M’08) is an Associate Professor at the Department of Computer Science and

Engineering, National Taiwan Ocean University. He received his B.S. in Computer Science from National

Taiwan Ocean University in 2000 and M.S. in Computer Information Science from National Chiao Tung

University in 2002. Dr. Huang received his Ph.D. in Electrical Engineering Department from National

Taiwan University in 2007. His researches focus on computer network and network security issues,

including traffic measurement and analysis, malicious behavior detection, and multimedia networking

systems. Dr. Huang is a member of ACM, CCISA, IEEE, and IICM.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, SEPTEMBER 2013 31

Cheng-Hsin Hsu (S’09–M’10) received the B.Sc. degree in mathematics and M.Sc. degree in computer

science and information engineering from National Chung-Cheng University, Taiwan, in 1996 and 2000,

respectively. He received the M.Eng. degree in electrical and computer engineering from the University of

Maryland, College Park, in 2003 and the Ph.D. degree in computing science from Simon Fraser University,

Burnaby, BC, Canada, in 2009. He is an assistant professor at National Tsing Hua University at Hsin

Chu, Taiwan. His research interests are in the area of multimedia networking and distributed systems. He

is a member of the IEEE and ACM.


