
1

Placing Virtual Machines to Optimize
Cloud Gaming Experience

Hua-Jun Hong, De-Yu Chen, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu

Abstract—Optimizing cloud gaming experience is no easy task due to the complex tradeoff between gamer Quality of Experience

(QoE) and provider net profit. We tackle the challenge and study an optimization problem to maximize the cloud gaming provider’s

total profit while achieving just-good-enough QoE. We conduct measurement studies to derive the QoE and performance models. We

formulate and optimally solve the problem. The optimization problem has exponential running time, and we develop an efficient heuristic

algorithm. We also present an alternative formulation and algorithms for closed cloud gaming services with dedicated infrastructures,

where the profit is not a concern and overall gaming QoE needs to be maximized. We present a prototype system and testbed using

off-the-shelf virtualization software, to demonstrate the practicality and efficiency of our algorithms. Our experience on realizing the

testbed sheds some lights on how cloud gaming providers may build up their own profitable services. Last, we conduct extensive

trace-driven simulations to evaluate our proposed algorithms. The simulation results show that the proposed heuristic algorithms: (i)

produce close-to-optimal solutions, (ii) scale to large cloud gaming services with 20000 servers and 40000 gamers, and (iii) outperform

the state-of-the-art placement heuristic, e.g., by up to 3.5 times in terms of net profits.

Index Terms—Cloud gaming, remote rendering, live video streaming, real-time encoding, performance evaluation, performance

optimization

✦

1 INTRODUCTION

To offer on-demand gaming services to many gamers
using heterogeneous client computers, including game
consoles, desktops, laptops, smartphones, and set-top
boxes, increasingly more service providers push com-
puter games to powerful cloud servers and stream
the game scenes to a simple application running on
client computers [2]. Such on-demand game services
are referred to as cloud gaming by various companies,
such as Gaikai, Ubitus, and OnLive. Market research
predicts that the cloud gaming market is going to grow
to 8 billion USD by 2017 [3], and some leading game
development companies [4] have seriously considered
this new opportunity. Therefore, we expect to see many
more cloud gaming services soon.

Offering cloud gaming services in a commercially-
viable way is, however, very challenging as demon-
strated by OnLive’s financial difficulty [5]. The main
challenge for cloud gaming providers is to find the best
tradeoff between two contradicting objectives: reducing
the hardware investment and increasing the gaming Quality-
of-Experience (QoE). Satisfactory gaming QoE demands
for high-end hardware, which may incur huge financial
burden; meanwhile, using low-end hardware leads to

A preliminary version of this manuscript [1] appeared in the Proceedings
of the 12th Annual Workshop on Network and Systems Support for Games
(NetGames 2013) as a 2-page short paper.

• H. Hong and C. Hsu are with Department of Computer Science, National
Tsing Hua University, Hsin Chu, Taiwan.

• C. Huang is with Department of Computer Science and Engineering,
National Taiwan Ocean University, Kee Lung, Taiwan.

• D. Chen and K. Chen are with Institute of Information Science, Academia
Sinica, Taipei, Taiwan.

Resource Broker

Virtual Machines

Physical Server Physical Server

Game

OS

GS

Game

OS

GS

Game

OS

GS

Virtual Machines

Game

OS

GS

Manage
Game

OS

GS

Game

OS

GS

Game

OS

GS

Game

OS

GS

Game

OS

GS

Clients

Data Center

game video streaming

Internet

gameplay inputs

Fig. 1. The architecture of cloud gaming services, where

GS denotes cloud gaming server.

less pleasing gaming QoE, which may drive gamers
away from the cloud gaming services. Moreover, differ-
ent game genres impose diverse hardware requirements,
which may result in insufficient or wasted hardware
resources if server resources are not well planned. For
example, the servers configured for cutting-edge 3D first
person shooter games may be an overkill for 2D casual
games. The server diversity renders the dilemma of
finding the best tradeoff between profit and QoE even
harder.

Since cloud gaming services push games to cloud
servers, server consolidation enables dynamic resource
allocation among game servers serving multiple gamers
for better overall performance and lower operational
cost. In this paper, we study the problem of efficiently
consolidating multiple cloud gaming servers on a phys-
ical machine using modern virtual machines (VMs),
such as VMware and VirtualBox, in order to provide
high gaming QoE in a cost-effective way, as illustrated

2

in Fig. 1. We consider the VM placement problem to
maximize the total profit while providing the just-good-
enough QoE to gamers. This problem is referred to as
provider-centric problem throughout this paper.

The considered problem is a variation of the vir-
tual network embedding problem [6], and thus is NP-
Complete. The existing solutions for network embedded
problems [6], [7], [8], [9], [10], however, are designed for
computational/storage intensive applications, without
taking the real-time requirements of cloud gaming (and
other highly interactive applications) into consideration.
In particular, unlike computational/storage intensive ap-
plications that demand for high CPU/disk throughput,
cloud games demand for high QoE, in terms of, e.g.,
responsiveness, precision, and fairness [11], [12], [13].
Hence, the existing virtual network embedding algo-
rithms do not work for cloud gaming providers. To the
best of our knowledge, this paper is the first attempt to
tackle the VM placement problem to maximize the cloud
gaming QoE.

In particular, this paper makes the following contribu-
tions:

• We conduct extensive measurement studies using an
open-source cloud gaming platform, GamingAny-
where [14] on two VM implementations to derive
the game-dependent parameters for QoE and per-
formance models (Sec. 3).

• We formulate and propose two algorithms for the
provider-centric VM placement problem (Sec. 4).

• We extend the provider-centric VM placement prob-
lem into a gamer-centric problem for closed cloud
gaming services, e.g., in hotels, Internet cafes, and
amusement parks, where the overall gaming QoE
needs to be maximized using already-deployed in-
frastructures. We also propose two algorithms to
solve the gamer-centric problem (Sec. 5).

• We present a prototype system built by off-the-shelf
components, and quantify the implication of live
migration, which refers to moving a running VM
from one physical server to another. We augment
our algorithms to accommodate to high migration
overhead, resulting in efficient and practical algo-
rithms (Sec. 6).

• Our extensive trace-driven simulations indicate that:
(i) our efficient algorithms result in close-to-optimal
performance, as small as 0% and 10% gaps, (ii)
the efficient algorithms scale to large cloud gaming
services with twenty thousands of servers and more
than forty thousands gamers, and (iii) the efficient
algorithms outperform a state-of-the-art algorithm
by large, e.g., up to 3.5 times of net profit increase
(Sec. 7).

2 RELATED WORK

2.1 General Cloud Applications

Optimizing general cloud applications has been studied
in cloud environments. For example, Zaman et al. [15]

propose an auction-based mechanism for dynamic pro-
vision and allocation of VMs to maximize the provider’s
profit and improves the total utilization of cloud re-
sources. Lin et al. [16] formulate the data replication
problem in the clouds as a mathematical optimization
problem and propose several algorithms for the I/O
intensive applications. In our work, we formulate the
VM placement problem of cloud gaming systems and
propose optimization algorithms to solve the problem.
Different from these two studies [15], [16], we optimize
the real-time cloud games with an objective of maximiz-
ing the provider’s profit by QoE-aware algorithms while
optimizing the gaming quality at the same time.

VM migration techniques have been investigated for
non real-time applications. Marzolla et al. [17] utilize
the live migration technology to move the VMs away
from the the lightly loaded physical servers and thus
the empty servers can be switched to low-power mode.
Ferreto et al. [18] create a dynamic server consolidation
algorithm with migration control and avoid unnecessary
migrations to reduce the number of powerd on servers
and migration cost. Chen et al. [19] find that virtual
machines do not usually use all their resources, and they
create an algorithm which also considers the migration
cost according to the records of migration history for
saving energy. Speitkamp and Bichler [20] present a
heuristic solution which approximates the optimal solu-
tion by not only considering the cost but also determin-
ing whether the problem size can be optimally solved.
Nathuji et al. [21] create a performance interference
model and classify the applications into different re-
source bounds using historical data. The applications are
then consolidated on physical servers for better Quality
of Service (QoS). Zhu and Tung [22] also consider the
interference and implement a system to determine the
placement of VMs to avoid the interference and meet the
desired QoS values. None of the aforementioned studies
take cloud gaming QoE levels into consideration.

2.2 Cloud Games

The benefits of game server consolidation have been
studied for certain game genres. For example, Lee and
Chen [23] address the server consolidation problem
for Massively Multiplayer Online Role-Playing Game
(MMORPG). In particular, they propose a zone-based
algorithm to leverage spatial locality of gamers in order
to reduce the hardware requirements at the servers. Their
work is different from ours for two reasons. First, we
consider cloud gaming that streams high-quality real-
time videos to gamers, while MMORPG servers only
send low bitrate status updates. Second, we explicitly
optimize gaming QoE in this paper, while they only
attempt to save energy at the data centers without taking
QoE into consideration.

Duong et al. [24] and Wu et al. [25] are complementary
to our work, as they concentrate on minimizing the
queueing delay of a cloud gaming system, while we

3

focus on the user experience during the game sessions.
For example, Duong et al. [24] develop resource pro-
visioning and waiting queue scheduling algorithms to
admit selective incoming gamers for the best profit un-
der user-specified maximal waiting times. Wu et al. [25]
also propose an online control algorithm to quickly serve
users in the waiting queue. Compared to their work,
we optimize the gaming QoE after a user is admitted
in the system; such QoE maximization is arguably more
important, as gamers typically can only tolerate a few
minutes of waiting time, but each game session may last
for hours.

Most of the cloud gaming systems, including Gaikai,
Ubitus, and OnLive are proprietary and closed, and thus
measuring cloud gaming performance and QoS on them
is hard, if not impossible. We employ GamingAnywhere
(GA) [14] for our experiments, which is an open cloud
gaming system. In particular, we use GA to derive the
performance and QoS models for different games on
different VMs, and to develop VM placement algorithms.
Last, our initial investigations on the QoE-aware virtual
machine placement problems were reported in Hong et
al. [1].

Limbo Normandy PSR

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

0
1

0
2

0
3

0
4

0

Limbo Normandy PSR

F
ra

m
e

 r
a

te
 (

F
P

S
)

0
2

0
4

0
6

0
8

0
1

0
0

No VM

VirtualBox

VMware

Fig. 2. Virtualization overhead depends on game and VM

implementations.

3 MEASUREMENT STUDIES

We conduct measurement studies to model the impli-
cations of consolidating multiple cloud gaming servers
on a physical machine. We set up the GA server [14]
on VMware workstation 9 and VirtualBox 4.2.6. The GA
client runs on another machine without VMs. The two
Windows 7 machines running GA server and client are
connected via a wired network, and they are equipped
with Intel i7 3.4 GHz CPU and 24 GB memory, and Intel
i5 2.8 GHz CPU and 4 GB memory, respectively. We
install a NVidia Quadro 6000 GPU on the GA server. We
choose three games in different genres: Limbo, Sudden
Strike: Normandy (Normandy), and Police Supercars
Racing (PSR), and measure various performance metrics
over 5-min game sessions with different configurations.
We consider four metrics relevant to the VM placement
problem: (i) CPU utilization: the average CPU load mea-
sured on the physical server, (ii) GPU utilization: the
average GPU load measured on the physical server, (iii)
frame rate: the average number of frames streamed per
second, and (iv) processing delay: the average time for

TABLE 1

R-square Values of Different Games/VM

Game VM CPU GPU FPS DELAY

Limbo
VMware 0.9910 0.9837 0.9767 0.9955

VirtualBox 1.0000 0.9877 0.9933 0.9996

Normandy
VMware 0.9999 1.0000 0.9865 0.9995

VirtualBox 0.9991 0.9986 0.9764 0.9995

PSR
VMware 0.5758 0.9961 0.9917 0.9974

VirtualBox 0.9898 0.9360 0.9969 0.9943

the GA server to receive, render, capture, encode, and
transmit a frame, which is measured by the techniques
proposed in Chen et al. [26].

We first compare the performance of GA running on
the host OS and that running on a single VM with all
available resources allocated to it. Fig. 2 gives some sam-
ple results, which reveals that: (i) VMs lead to nontrivial
overhead, (ii) different VMs result in different amount of
overhead, and (iii) different games incur different work-
loads that may have distinct performance implications
on different VMs. Hence, more extensive measurements
are required to derive the prediction model of GA per-
formance in each game/VM pair.

Next, we vary the number of VMs on the server, while
equally dividing the 8 CPU cores among all VMs. In
particular, we conduct the measurements with 1, 2, 4,
and 8 VMs. We plot the sample results from Limbo
in Fig. 3. This figure reveals that the CPU utilization,
GPU utilization, frame rate, and processing delay can be
modeled as sigmoid functions of the number of VMs on
a physical server, which are also plotted in Fig. 3 as the
curves. We notice that several basic functions, such as
ax+ b, ax2+ bx+ c, a/x, a−a/x, y = log(x), and y =

√
x

may also be used as the regression models [27]. After
trying these basic functions, we find that the sigmoid
functions fit our measurements much better. Therefore,
we employ the sigmoid functions in this paper, and
report their R-square values in Table 1. The R-square
values indicate how close the sigmoid functions follow
the real measurements: the deviation is smaller when the
R-square value approaches 1. Hence, Table 1 shows that
sigmoid functions model the VM measurement results
very well. The precise fitted sigmoid models are detailed
in Sec. 4.2, and the empirically derived parameters are
used in Secs. 6 and 7. We acknowledge that the model
parameters depend not only on the pairs of game/VM
but also on game server specifications and operating
systems. This however is not a serious concern, as cloud
gaming providers are likely to build data centers with
one or very few types of machines, which can be profiled
offline beforehand. In extreme cases where the physi-
cal servers are more heterogeneous, our measurement
approach may adopt online regression for incremental
adaptations.

4 VM PLACEMENT PROBLEM AND SOLUTION

We study the provider-centric problem in this section.

4

1 2 3 4 5 6 7 8

0
2

0
4

0
6

0
8

0
1

0
0

Number of VMs

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

(a)

VMware, R^2 = 0.99
VirtualBox, R^2 = 1

1 2 3 4 5 6 7 8

0
2

0
4

0
6

0
8

0

Number of VMs

G
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

(b)

VMware, R^2 = 0.98
VirtualBox, R^2 = 0.98

1 2 3 4 5 6 7 8

0
1

0
2

0
3

0
4

0

Number of VMs

F
ra

m
e

 R
a

te
 (

F
P

S
)

(c)

VMware, R^2 = 0.97
VirtualBox, R^2 = 0.99

1 2 3 4 5 6 7 8

0
1

0
0

2
0

0
3

0
0

Number of VMs

P
ro

c
e

s
s
in

g
 D

e
la

y
 (

m
s
)

(d)

VMware, R^2 = 0.99
VirtualBox, R^2 = 0.99

Fig. 3. Measurement results for CPU utilization, GPU utilization, frame rate, and processing delay. Sample results

from Limbo.

4.1 System Overview

Fig. 1 illustrates the system architecture of the cloud
gaming platform, which consists of S physical servers,
P gamers, and a broker. Each physical server hosts
several VMs, while every VM runs a game and a game
server (GS). Several physical servers are mounted on a
rack, and multiple racks are connected to an aggregation
switch. The aggregation switches are then connected to
the Internet via a core switch. Physical servers are dis-
tributed in several data centers at diverse locations. The
gamers run game clients on desktops, laptops, mobile
devices, and set-top boxes to access cloud games via the
Internet.

The broker is the core of our proposal. The broker
consists of a resource monitor and implements the VM
placement algorithm. It is responsible to: (i) monitor the
server workload and network conditions, and (ii) place
the VMs of individual gamers on physical servers to
achieve the tradeoff between QoE and cost that is most
suitable to the cloud gaming service. In particular, for
public cloud gaming services, the provider’s profit is
more important, while for closed cloud gaming services,
the gaming QoE is more critical. We study the former
case in this section, and will consider the later case in
Sec. 5. The games may have diverse resource require-
ments, including CPU, GPU, and memory [28], while
the paths between gamers and their associated servers
have heterogeneous network resources, such as latency
and bandwidth. Moreover, gamers can tolerate different
QoE levels for different game genres [29]. Last, we note
that the broker can be a virtual service running on a
server or a server farm for higher scalability.

4.2 Notations and Models

Table 2 gives the symbols used in this paper. We study
the VM placement problem, in which the VM placement
decisions affect network delay, processing delay, and
operational cost. We write the network delay between
server s (1 ≤ s ≤ S) and gamer p (1 ≤ p ≤ P) as es,p
which is essentially the round-trip time between them.
The es,p values may be measured by various network
diagnostic tools, such as Ping and King [30]. We use
fp(v) and dp(v) to denote the frame rate and processing
delay when serving gamer p with a server running v

TABLE 2

Symbols Used Throughout This Paper

Sym. Description
S Number of physical servers
P Number of gamers
s Index of a physical server
p Index of a gamer

es,p Round-trip time between physical server
s and gamer p

v Number of VMs running on physical server s
fp(v) Frame rate when serving gamer p with a

server running v VMs
dp(v) Processing delay when serving

gamer p with a server running v VMs
α Frame rate model parameter
β Processing delay model parameter

us(v) CPU utilizations of server s running v VMs
zs(v) GPU utilizations of server s running v VMs
δ CPU utilization model parameter
ζ GPU utilization model parameter
gp Hourly fee paid by gamer p

ws(v) Operational cost of CPU and GPU
cs Cost term consisting of various components
G Memory size of each VM
Gs Memory size of physical server s
B Streaming bit rate of GA server
W Number of data centers
w Index of a data center
Sw Set of servers in data center w

d̃s,p(v) Sum of processing delay, network delay,
and playout delay

qp Game QoE degradation
γ QoE degradation model parameter
Qp Max tolerable QoE degradation of gamer p
xs,p Decision variable of the problem formulation
t1 Start time of migration
t2 Start time of synchronization before

end of migration
t3 End time of migration
D Probability of each gamer joins (leaves)

a gamer session
ω Normalized migration overhead

VMs, which depend on the game played by p. Fig. 3
reveals that sigmoid functions can model fp(v) and dp(v)
well, and we write them as fp(v) =

αp,1

1+e
−αp,2v+αp,3

and

dp(v) =
βp,1

1+e
−βp,2v+βp,3

, where αp,1–αp,3 and βp,1–βp,3 are

model parameters derived from regression. Furthermore,

5

1: for each gamer p = 1, 2, . . . , P do
2: sort servers on network latency to p in asc. order
3: for each server s = 1, 2, . . . , S do
4: if serving p on s satisfies Eqs. (2)–(8) then
5: let xs,p = 1
6: break
7: return x

Fig. 4. The pseudocode of the QDH algorithm.

we use us(v) and zs(v) to model the CPU and GPU
utilizations of server s running v VMs. Fig. 3 shows that
us(v) and zs(v) can also be written as sigmoid functions
us(v) = δ1

1+e−δ2v+δ3
and zs(v) = ζ1

1+e−ζ2v+ζ3
, where δ1–

δ3 and ζ1–ζ3 are the model parameters. We denote gp
as the hourly fee paid by gamer p. We let ws(v) =
cs(us(v)+zs(v)) be the operational cost of imposing CPU
and GPU utilization us(v) and zs(v) on s, where cs is
a cost term consisting of various components, such as
electricity, maintenance, and depreciation. Moreover, we
allocate G GB memory to each VM, whereas physical
server s is equipped with Gs GB memory. Last, we
consider GA servers to stream at B kbps. We let W be
the number of data centers, and use Sw (1 ≤ w ≤ W) to
denote the set of servers in data center w. We let Bw be
the uplink bandwidth of data center w (1 ≤ w ≤ W). Our
bandwidth model is general, as the mapping between
servers and data centers is flexible. For example, if the
last-mile links are the bottleneck, we may create a virtual
data center for each server, such that |Sw| = 1, ∀w.

We next model the QoE of cloud gaming. Recent
studies [11], [12] suggest that the response time of user
inputs directly affects QoE levels. The response time
d̃s,p(v) is the sum of processing delay, network delay, and
playout delay. The playout delay is the time duration of
receiving, decoding, and displaying a frame at the client.
Since playout delay is not affected by VM placements,
we do not include it in our model for brevity, and write
d̃s,p(v) = dp(v) + es,p. We generalize the QoE models in
Lee et al. [11], [12] to be a function of both response time
and frame rate. More specifically, we let qp(fp, d̃s,p) be
the gaming QoE degradation observed by gamer p with
frame rate fp and response time d̃s,p. Inspired by the
linear QoE model in [11], we write qp(fp, d̃s,p) = γp,1fp+
γp,2d̃s,p, where γp,1 and γp,2 are model parameters that
can be derived by the methodology presented in Lee et
al. [11]. Last, we use Qp to denote the maximal tolerable
QoE degradation of gamer p.

4.3 Problem Formulation

We let xs,p ∈ {0, 1} (1 ≤ p ≤ P, 1 ≤ s ≤ S) be the decision
variables, where xs,p = 1 if and only if gamer p is served
by a VM on server s. With the notations defined above,

we formulate the provider-centric problem as:

max

[

P
∑

p=1

S
∑

s=1

xs,pgp −
S
∑

s=1

cs(
δ1

1 + e−δ2vs+δ3
+

ζ1

1 + e−ζ2vs+ζ3
)

]

(1)

s.t. fp = αp,1

/

(1 + e
−αp,2

∑S
s=1(xs,pvs)+αp,3), ∀p; (2)

d̃p =
βp,1

1 + e−βp,2
∑

S
s=1

(xs,pvs)+βp,3
+

S
∑

s=1

es,pxs,p, ∀p;

(3)

vs =
∑P

p=1 xs,p, ∀s; (4)

1 =
∑S

s=1 xs,p, ∀p; (5)

Qp ≥ γp,1fp + γp,2d̃p, ∀p; (6)

Bw ≥ B
∑

s∈Sw

∑P

p=1 xs,p, ∀w; (7)

Gs ≥ G
∑P

p=1 xs,p, ∀s; (8)

xs,p ∈ {0, 1}, ∀1 ≤ s ≤ S, 1 ≤ p ≤ P. (9)

The objective function in Eq. (1) maximizes the
provider’s net profit, i.e., the difference between the
collected fee and cost. Eqs. (2) and (3) derive the frame
rate and response time as intermediate variables. In
Eq. (4), we define another intermediate variable vs to
keep track of VMs on each server s, and we evenly allo-
cate the cores among all VMs on a server. Eq. (5) ensures
that each gamer is served by a single server. Eq. (6)
makes sure that the gaming QoE degradation is lower
than the user-specified maximal tolerant level. Eqs. (7)
and (8) impose bandwidth and memory constraints on
each data center and sever, respectively. In summary,
the formulation maximizes the provider’s profit while
serving each gamer with a (user-specified) just-good-
enough QoE level.

4.4 Proposed Algorithm

The provider-centric formulation in Eqs. (1)–(9) can be
optimally solved using optimization solvers, such as
CPLEX [31]. We refer to the solver-based algorithm
as OPT. The OPT algorithm gives optimal solutions
at the expense of exponential computation complexity.
Therefore, we use OPT for benchmarking and propose
an efficient heuristic algorithm, called Quality-Driven
Heuristic (QDH), below.

The QDH algorithm is built upon an intuition: it is
desirable to consolidate more VMs on a server as long
as the user-specified maximal tolerate QoE degradation
is not exceeded. Fig. 4 illustrates the pseudocode of
the QDH algorithm. For each gamer, the algorithm first
sorts all servers on the network latency to that gamer. It
then iterates through the servers in the ascending order
and creates a VM for the gamer on the first server that
can support this gamer without violating constraints in
Eqs. (2)–(9). It is clear that the QDH algorithm runs in
polynomial time.

6

1: for each gamer p = 1, 2, . . . , P do
2: sort servers on quality degradation qp(·) in asc. order
3: for each server s = 1, 2, . . . , S do
4: if serving p on s satisfies Eqs. (2)–(5), (7)–(8) then
5: let xs,p = 1
6: break
7: return x

Fig. 5. The pseudocode of the QDH′ algorithm.

5 ALTERNATIVE FORMULATION AND ALGO-
RITHMS FOR CLOSED SYSTEMS

The provider-centric problem presented in Sec. 4 is
suitable to public cloud gaming services. For closed
cloud gaming services, e.g., in hotels, Internet cafes, and
amusement parks, maximizing the overall QoE is more
important as the network bandwidth is dedicated to
cloud gaming. Therefore, we present the gamer-centric
formulation and algorithms in this section. We start from
the provider-centric formulation in Eqs. (1)–(9), and we
first replace the objective function in Eq. (1) with:

min
[
∑P

p=1
γp,1fp +

∑P
p=1

γp,2d̃p
]

, (10)

which minimizes the total QoE degradation. In particu-
lar, the QoE degradation is reduced when fp increases or
dp decreases as the empirically derived γp,1 is negative
and γp,2 is positive. Next, we remove the constraints in
Eq. (6) as the new objective function has taken the QoE
into consideration. This yields the gamer-centric problem
formulation. We develop a solver-based algorithm for
the gamer-centric formulation, which is referred to as
OPT′.

We also propose an alternative QDH for the gamer-
centric problem, which is called QDH′. Fig. 5 illustrates
the heuristic algorithm. For each gamer, the algorithm
first computes its quality degradation levels on individ-
ual servers. It sorts the servers on the quality degrada-
tion if serving that gamer using each server. Then, the
algorithm iterates through the servers and creates a VM
for the gamer on the first server that can support the
gamer without violating any constraints in Eqs. (2)–(5),
(7)–(8). QDH′ runs in polynomial time.

6 SYSTEM IMPLEMENTATION AND TESTBED

We conduct small-scale evaluations using a real testbed
in the section.

6.1 Prototype Implementation

We have implemented a complete cloud gaming sys-
tem consisting of a broker, physical servers, and GA
servers/clients, as illustrated in Fig. 6. We adopt
VMWare ESXi 5.1 as the virtualization software on phys-
ical servers. ESXi allows us to create VMs on physical
servers, and each VM hosts a GA server and a game
chosen by the corresponding gamer. We employ VMware
vCenter 5.1 as the platform for our broker, which is

GA Client

Gamer

Single Sign On Inventory Service

Broker

GA Server Games

ESXi Physical Servers

VMs

1 2 3 6

4 5

7

8

9

Fig. 6. The implemented prototype system.

Fig. 7. The cloud gaming testbed in our lab.

comprised of Single-Sign-On for user authentication and
Inventory Service for managing/monitoring the VMs on
ESXi servers. The Inventory Service comes with different
APIs, and we use its Java API to interface with the
vCenter on the broker so as to control ESXi servers on
all physical servers.

Fig. 6 shows the flow of our system. We integrate the
GA client and server with VMware ESXi and vCenter. In
particular, the GA client provides an interface for gamers
to send their accounts and passwords to the broker
(1©). Upon being authenticated (2©), the GA client sends
the user-specified game to the broker, and the broker
determines where to create a new VM for that game
based on the status of all physical servers and networks
(3©). The broker then instructs the chosen physical server
to launch a VM (4©) and sends the VM’s IP address to
the GA client (5©, 6©). Last, the GA client connects to
the GA server (7©), instructs the GA server to run the
user-specified game (8©), and sends the stream of game
to GA Client (9©). This starts a new GA game session.

6.2 Testbed and Practical Concerns

We set up a testbed using the prototype system in our
lab, which is shown in Fig. 7. The testbed contains an i7
3.2 GHz broker with the management web page, several
i5 3.5 GHz physical servers with NVidia Quadro 6000

7

0 5 10 15
-400

-200

0

200

Time (min)

P
ro

fi
t

($
)

QDHL

QDH

(a)

0 5 10 15
86

88

90

92

94

96

Time (min)

Q
o
E

(%
)

QDH’L
QDH’

(b)

Fig. 9. Comparisons between QDHL/QDH′

L and QDH/QDH′: (a) net profits and (b) quality.

cards, and several i5 client computers. The broker, phys-
ical servers and client computers are connected via Gi-
gabit Ethernet. We enable the CPU hardware support for
virtualization and conduct the following experiments.

We measure the overhead of launching a VM running
Windows 7 and compare it against that of natively
booting up Windows 7 on the same machine. We found
out that both experiments take ∼50 s, showing little
additional overhead due to virtualization. We next mea-
sure the overhead of live migrations. Fig. 8 illustrates
a sample migration of a gamer from the source VM
to the destination VM, where the areas with virtual
patterns indicate the VM currently used by the gamer.
More generally, there are two types of migrations: (i)
live migration and (ii) stop-and-copy [32]. With live
migration, the memory and disk pages of the source
VM are first copied over to the destination VM. Mean-
while, the gamer still connects to the source VM and
may produce dirty memory and disk pages. The system
iteratively copies those dirty pages to the destination
VM until either there is no more dirty pages, or the
number of new dirty pages is more than the number
of copied dirty pages. Next, the synchronization starts:
(i) the system freezes both VMs, (ii) the system copied
over the remaining pages, and (iii) the gamer is then
served by the destination VM. We let t1 and t3 be the
start and end times of the migration procedure, and t2
be the time synchronization starts. Using the notations,
live migration copies pages between t1 and t2 without
stopping gamers from using the VMs, and freezes VMs
between t2 and t3. Our testbed supports live migration
and we conduct diverse experiments to quantify the

Fig. 8. Live migration.

migration overhead.
We discover that the live-migration time t1 to t3 of

20, 30, and 40 GB VM images are about 6, 9, and 11
minutes in our testbed. In addition, the frozen time t2
to t3 are always less than 3 seconds. These three various
VM image sizes are roughly mapped to the three con-
sidered games: Limbo, PSR, and Normandy. Given that
the migration time are non-trivial, recomputing the VM
placement problems for all gamers (including those with
ongoing sessions) may lead to unacceptable QoE degra-
dation even with live migration. The major cause of the
QoE degradation is the duplicated resource reservations:
when migrating a gamer, both the source and destination
VMs consume resources as shown in Fig. 8. Hence,
we propose an migrationless version of the proposed
QDH/QDH′ algorithms, which do not migrate the run-
ning VMs to avoid the degradation caused by migration
time. We denote the new algorithms as QDHL/QDH′

L,
which only intelligently place the VMs of incoming
gamers that have not started the game sessions. That
is, by getting rid of the outermost loops in Figs. 4 and 5,
we never migrate the ongoing game sessions. Intuitively,
QDHL/QDH′

L run faster, yet achieve better performance
as the high migration time is avoided. Moreover, QDH′

L

is an optimal migrationless algorithm. We will show this
in evaluation sections (Secs. 6.3 and 7).

6.3 Experiment–Performance Gains of the Migra-
tionless Algorithms

Setup. To quantify the QDHL/QDH′

L algorithms, we
employ a testbed with 9 physical servers, 15 gamers, and
3 games–Limbo, PSR, and Normandy. In every minute,
each gamer joins (leaves) a game session with a proba-
bility of D% (1 −D%), where D is a system parameter.
Each simulation lasts for T minutes. We assume that each
physical server can serve up to two VMs and each VM
launches a randomly selected game. In each simulation,
we measure the fps and processing delay, and use them
in the quality model. Also, we measure the CPU and
GPU utilizations, and use them in the profit model.
We inject realistic network latency (see Sec. 7.1) using
dummynet [33]. Last, we set D = 90%, T = 15 minutes
and consider the two performance metrics:

8

0 25 50 75 100
-50

0

50

100

150

Migration Overhead (%)

P
ro

fi
t(

$
)

QDH
QDHL

(a)

0 25 50 75 100
0

20

40

60

80

100

Migration Overhead (%)

Q
o
E

(%
)

QDH QDH’L

(b)

Fig. 10. Comparisons between QDHL/QDH′

L and QDH/QDH′: (a) net profits and (b) quality.

0 5 10 15
-50

0

50

100

150

Time (min)

P
ro

fi
t

($
)

QDHL

OPTL

(a)

0 5 10 15
90

91

92

93

94

95

Time (min)
Q

o
E

(%
)

QDH’L
OPT’L

(b)

Fig. 11. Comparisons between QDHL/QDH′

L and OPTL/OPT′

L: (a) net profits and (b) quality.

• Net profit. The total provider profit in every minute.
• Quality of Experience. The gaming QoE normalized

in the range of [0%, 100%].

Results. We make three observations on the
performance of the QDHL/QDH′

L algorithms. First,
QDHL/QDH′

L outperform QDH/QDH′. In particular,
Figs. 9(a) and 9(b) show that the gains between
QDHL/QDH′

L and QDH/QDH′ are up to 396 dollars
and 4% QoE. A closer look reveals that the performance
gains are due to high migration overhead.

Due to the increasingly higher computing power, the
migration overhead will be gradually reduced and the
performance gains of QDHL/QDH′

L may be diminish-
ing. To better understand the trend, we let ω be the
normalized migration overhead, where 0 ≤ ω ≤ 1. For
example, setting ω = 1/3 means the migration overhead
becomes 1/3 of the current one. We vary different ω
values and plot the average results in Fig. 10. This figure
reveal that the migrationless algorithms QDHL/QDH′

L

still outperform the ordinary algorithms QDH/QDH′

even when ω = 25% and ω = 5%. However, such a steep
technology advance is less likely to become a reality
in the short term. Hence, we no longer consider the
QDH/QDH′ algorithms in the rest of this paper.

Last, we compare the QDHL/QDH′

L algorithms
against the migrationless optimal solution that exhaus-
tively checks all servers for each new gamer. We refer
to the migrationless optimal solutions as OPTL/OPT′

L.
Fig. 11 reports the average performance over time.

Fig. 11(a) shows that QDHL and OPTL result in sim-
ilar net profit. More specifically, the OPTL algorithm
outperforms the QDHL algorithm in the first half of the
experiment, but the QDHL occasionally performs better
in the second half. A closer look indicates that since both
algorithms are migrationless, once game sessions start,
they will be executed until the gamers leave. Therefore,
even though OPTL selects the best VM placements for
the incoming gamers, it cannot foresee the future (e.g.,
when will the gamers leave), and thus its profit may
be lower than that of the QDHL algorithm. Nonetheless,
the overall profit of QDHL is still 10% lower than the
optimum. A closer look depicts that the optimization
gain of QDHL is merely 10%. Fig. 11(b) reveals that
QDH′

L leads to exactly the same (optimal) performance
in QoE, compared to OPT′

L. Fig. 11 shows the merits of
QDHL and QDH′

L.

7 TRACE-DRIVEN SIMULATIONS

In this section, we consider large-scale evaluations using
detailed simulations.

7.1 Setup

We have built a simulator for the VM placement prob-
lem using a mixture of C/C++, Java, and Matlab. We
have implemented the QDHL/QDH′

L algorithms in our
simulator. For comparisons, we have also implemented
a VM placement algorithm that places each VM on

9

0 1 2 3
-5

0

5

10

15

Time (day)

P
ro

fi
t

(T
h
o
u
sa

n
d

$
) QDHL

LBP

(a)

0 1 2 3
0

50

100

Time (day)

N
u
m

b
er

o
f
U

se
d

S
er

ve
rs

QDHL

LBP

(b)

Fig. 12. Provider-centric simulation results with synthetic traces: (a) net

profits and (b) used servers.

0 1 2 3
85

90

95

100

Time (day)

Q
o
E

(%
)

QDH’L
LBP

Fig. 13. Gamer-centric simulation

results with synthetic traces.

0
10
20
30
40
50
60
70
80
90

QDH’
L

LBP QDH
L

Q
o
E

(%
)

 Limbo PSR Normandy

Fig. 14. Fairness in QoE levels on different game genres.

a random game server that is not fully loaded and
in the data center geographically closest to the gamer.
This baseline algorithm is referred to as Location Based
Placement (LBP) algorithm. We collect gamer and server
IP addresses and the latency between each gamer/server
IP pair in order to drive our simulator. For servers,
we use DigSitesValue [34] to obtain the IP addresses of
OnLive data centers in Virginia, California, and Texas.
For gamers, we develop a BitTorrent crawler using
libtorrent [35] to collect peer IP addresses and then use
them as gamer IP addresses. Since OnLive only hosts
game servers in the US, we filter out non-US gamer
IP addresses using ip2c [36]. We ran our crawler on
August 13, 2013 with 4494 torrents downloaded from
IsoHunt [37], which gave us 22395 IP addresses and 5875
US IP addresses. Next, we measure the network latencies
among gamer/server IP pairs using King [30], since we
have no control over neither end systems. We drop the IP
addresses without complete latency results to all servers,
which leads to 412 gamer IP addresses.

We conduct a three-day simulation for each scenario
using different algorithms. The gamers arrive at the
broker following a Poisson process with a mean time
interval of 4 minutes and each gamer plays for a dura-
tion uniformly chosen from {300, 600, 1200, 2400, 4800}
minutes. In addition to the synthetic gamer arrival traces,
we also employ real World of Warcraft (WoW) traces [38]
in our simulations. Each gamer plays a game randomly
chosen from Limbo, PSR, and Normandy. We also vary
the number of servers S ∈ {192, 384, 768, 1536, 3072}
and the migration overheads of 6, 9, and 11 minutes
for Limbo, PSR, and Normandy respectively. During
each simulation, we run the scheduling algorithm once

every minute and we report the mean performance
results among all gamers, and 95% confidence intervals
whenever applicable. If not otherwise specified, we set
S = 192, γp,1 = −0.1, γp,2 = 0.1, gp = 1, and cs = 2. We
conduct all the simulations on an Intel i7 3.4 GHz PC.
We consider the following performance metrics:

• Net profit.
• Quality of Experience.
• Running time. The time of executing each algorithm.
• Number of used servers. The number of servers that

serve at least one gamer.

7.2 Results

Performance of QDHL/QDH′

L. We plot the provider-
centric results in Fig. 12(a), which shows that QDHL

significantly outperforms LBP: up to 3.5 times difference.
This can be explained by Fig. 12(b), which shows that
QDHL turns on fewer servers to achieve higher net
profits. We plot the gamer-centric results in Fig. 13,
which reveals that QDH′

L constantly outperforms LBP:
up to 5% QoE gap. Moreover, the confidence intervals
show that QDH′

L leads to more consistent QoE lev-
els among individual gamers, achieving better fairness.
Fig. 14 plots the aggregate QoE of three games, which
shows that both QDH′

L and LBP are relatively fair to
different game genres, while QDHL maximizes the net
profits by devoting more resources to less complicated
games.

Performance results from WoW traces. In the follow-
ing, we report results from the WoW traces. We plot
the provider-centric results in Fig. 15(a), which shows
that QDHL always outperforms LBP with the difference
between the two algorithms up to 20+ thousand dollars.
And in the first quarter of the simulation, LBP runs into a
big deficit problem. This can be explained by Figs. 15(b)
and 17(b), which reveals that while QDHL shutdown
more servers and it always allows all gamers meets 60+%
QoE which is the just-good-enough QoE level. Fig. 15(c)
shows that QDH ′

L outperforms LBP up to 130%.
Scalability. We plot the running time in Fig. 16, which

shows the QDHL/QDH′

L algorithms terminate in real
time: < 1.5 ms. We then increase the number of servers S,
and report the average running time with two assump-
tions that all gamers which we get from WoW trace will

10

0 1 2 3
-20

-10

0

10

20

30

Time (day)

P
ro

fi
t

(T
h
o
u
sa

n
d

$
)

QDHL

LBP

(a)

0 1 2 3
0

50

100

150

200

Time (day)

N
u
m

b
er

o
f
U

se
d

S
er

ve
rs

QDHL

LBP

(b)

0 1 2 3

60

70

80

90

100

Time (day)

Q
o
E

(%
)

QDH’L
LBP

(c)

Fig. 15. Simulation results with WoW traces: (a) net profits, (b) used servers, and (c) QoE levels.

0 1 2 3
0

10

20

30

40

50

Time (day)

R
u
n
n
in

g
T

im
e

(m
s)

QDHL

QDH’L
LBP

Fig. 16. Running time of VM

placement algorithms.

0 500 1000
-20

0

20

40

60

Number of Gamer

P
ro

fi
t

(T
h
o
u
sa

n
d

$
)

QDHL

QDH’L
LBP

(a)

0 500 1000
50

60

70

80

90

100

Number of Gamer

Q
o
E

(%
) QDHL

QDH’L
LBP

(b)

Fig. 17. Impacts of number of gamers on: (a) net profits and (b) QoE

levels.

TABLE 3

Running Time in Seconds

of Servers
QDHL QDH′

L
Mean Max Mean Max

5000 0.215 0.853 0.02 0.05
10000 0.379 0.967 0.05 0.07
15000 0.557 1.9 0.07 0.12
20000 0.819 2.52 0.12 0.23

not leave the game session and we repeat the WoW trace
30 times to scale up the number of total gamers in our
system. Table 3 shows that it takes QDHL/QDH′

L at most
2.5s to solve a VM placement problem with more than
20000 servers and 40000 gamers. This is relatively short
compared to the initialization time of modern computer
games.

Number of gamers. The number of gamers in WoW
traces is varying in time, and we present two scatter plots
in Figs. 17(a) and 17(b) to study the relation between
the performance and number of gamers. These figures
show that more gamers lead to higher profits and lower
QoE levels, and QDHL/QDH′

L successfully achieve their
design objectives.

8 CONCLUSION AND FUTURE WORK

We studied the VM placement problems for maximiz-
ing: (i) the total net profit for service providers while
maintaining just-good-enough gaming QoE, and (ii) the
overall gaming QoE for gamers. The former problem is
more suitable for public cloud gaming systems, while
the later problem is more suitable for closed systems.

We conducted extensive experiments using a real cloud
gaming system [14], and two VMs to derive various
system models. We formulated the two problems as
optimization problems, and proposed optimal and effi-
cient algorithms to solve them. Via testbed and extensive
trace-driven simulations, we demonstrate that: (i) the
efficient algorithms achieve up to 90% (provider-centric)
and 100% (gamer-centric) performance compared to the
optimal algorithms, (ii) the efficient algorithms con-
stantly outperform the state-of-the-art algorithm, e.g., up
to 3.5 times in net profits, and (iii) the efficient algorithms
terminate in < 2.5 s on a commodity PC even for large
services with 20000 servers and 40000 gamers.

This work can be extended in several directions. For
example, we may develop more comprehensive system
models, which may take other types of resources and
heterogeneous server types into consideration, and sup-
port online parameter adaptation.

REFERENCES

[1] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“QoS-aware virtual machine placement for cloud games,” in Proc.
of ACM Annual Workshop on Network and Systems Support for Games
(NetGames’13), Denver, CO, December 2013.

[2] P. Ross, “Cloud computing’s killer app: Gaming,” IEEE Spectrum,
vol. 46, no. 3, p. 14, March 2009.

[3] “Distribution and monetization strategies to increase rev-
enues from cloud gaming,” http://www.cgconfusa.com/report/
documents/Content-5minCloudGamingReportHighlights.pdf.

[4] “Cloud gaming adoption is accelerating . . .
and fast!” http://www.nttcom.tv/2012/07/09/
cloud-gaming-adoption-is-acceleratingand-fast/.

[5] “OnLive launches new company to avoid bankruptcy,” http://
techland.time.com/2012/08/20/onlive.

11

[6] F. Bari, R. Boutaba, R. Esteves, M. Podlesny, G. Rabbani, Q. Zhang,
F. Zhani, and L. Granville, “Data center network virtualization: A
survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2,
pp. 909 – 928, 2012, accepted to appear.

[7] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual
network embedding: Substrate support for path splitting and
migration,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 17–29, April 2008.

[8] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and
J. Wang, “Virtual network embedding through topology-aware
node ranking,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 2, pp. 38–47, April 2011.

[9] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine place-
ment,” in Proc. of IEEE INFOCOM 2010, San Diego, CA, March
2010, pp. 1–9.

[10] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in Proc.
of IEEE INFOCOM 2009, Rio de Janeiro, Brazil, April 2009, pp.
783–791.

[11] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei, “Are all games
equally cloud-gaming-friendly? an electromyographic approach,”
in Proc. of the ACM SIGCHI International Conference on Advances
in Computer Entertainment Technology (ACE’05), October 2012, pp.
117–124.

[12] S. Shi, K. Nahrstedt, and R. Campbell, “Distortion over latency:
Novel metric for measuring interactive performance in remote
rendering systems,” in Proc. of IEEE International Conference on
Multimedia and Expo (ICME’11), Barcelona, Spain, July 2011, pp.
1–6.

[13] P. Chen and M. Zark, “Perceptual view inconsistency: An objec-
tive evaluation framework for online game quality of experience
(QoE),” in Proc. of the Annual Workshop on Network and Systems
Support for Games (NetGames’11), Ottawa, Canada, October 2011,
pp. 2:1–2:6.

[14] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
“GamingAnywhere: The first open source cloud gaming system,”
ACM Transactions on Multimedia Computing Communications and
Applications, pp. 1–25, Jan 2014.

[15] S. Zaman and D. Grosu, “A combinatorial auction-based mech-
anism for dynamic VM provisioning and allocation in clouds,”
IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp. 129–141,
July-December 2013.

[16] J. Lin, C. Chen, and J. Chang, “QoS-aware data replication for
data-intensive applications in cloud computing systems,” IEEE
Transactions on Cloud Computing, vol. 1, no. 1, pp. 101–115, July-
December 2013.

[17] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server consolidation
in clouds through gossiping,” in Proc. of International Sympo-
sium on World of Wireless, Mobile and Multimedia Networks (WoW-
MoM’11), Lucca, Italy, June 2011, pp. 1–6.

[18] T. Ferreto, M. Netto, R. Calheiros, and C. Rose, “Server consolida-
tion with migration control for virtualized data centers,” Future
Generation Computer Systems, vol. 27, no. 8, pp. 1027–1034, October
2011.

[19] M. Chen, H. Zhang, Y. Su, X. Wang, G. Jiang, and K. Yoshihira,
“Effective VM sizing in virtualized data centers,” in Proc. of
International Symposium on Integrated Network Management (IM’11),
Dublin, Ireland, May 2011, pp. 594–601.

[20] B. Speitkamp and M. Bichler, “A mathematical programming
approach for server consolidation problems in virtualized data
centers,” IEEE Transactions on Services Computing, vol. 3, no. 4,
pp. 266–278, December 2010.

[21] Q. Zhu and T. Tung, “A performance interference model for
managing consolidated workloads in QoS-aware clouds,” in IEEE
International Conference on Cloud Computing (CLOUD’12), Hon-
olulu, HI, June 2012, pp. 170–179.

[22] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for QoS-aware clouds,” in Proc.
of the European Conference on Computer systems (EuroSys’10), Paris,
France, April 2010, pp. 237–250.

[23] Y. Lee and K. Chen, “Is server consolidation beneficial to
MMORPG? a case study of World of Warcraft,” in Proc. of IEEE
International Conference on Cloud Computing (CLOUD’10), Miami,
FL, February 2010, pp. 435 – 442.

[24] T. Duong, X. Li, R. Goh, X. Tang, and W. Cai, “QoS-aware revenue-
cost optimization for latency-sensitive services in IaaS clouds,”

in Proc. of IEEE/ACM 16th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT’12), Dublin, Ireland,
October 2012.

[25] D. Wu, Z. Xue, and J. He, “iCloudAccess: Cost-effective streaming
of video games from the cloud with low latency,” IEEE Transac-
tions on Circuits and Systems for Video Technology, January 2014,
accepted to appear.

[26] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proc. of
ACM International Conference on Multimedia (MM’11), Scottsdale,
AZ, November 2011, pp. 1269–1272.

[27] M. Kutner, C. Nachtsheim, J. Neter, and W. Li, Applied linear
statistical models, 5th ed. McGraw-Hill Higher Education, 2004.

[28] M. Claypool, “Motion and scene complexity for streaming video
games,” in Proc. of the International Conference on Foundations of
Digital Games (FDG’09), Port Canaveral, FL, April 2009, pp. 34–
41.

[29] C. Mark and C. Kajal, “Latency and player actions in online
games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45,
November 2006.

[30] K. Gummadi, S. Saroiu, and S. Gribble, “King: Estimating latency
between arbitrary Internet end hosts,” in Proc. of ACM SIGCOMM
Internet Measurement Workshop (IMW’02), Boston, MA, November
2002, pp. 5–18.

[31] “IBM ILOG CPLEX optimizer,” http://www-01.ibm.com/
software/integration/optimization/cplex-optimizer/.

[32] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machine,” Symposium
on Networked Systems Design and Implementation, vol. 2, pp. 273–
286, 2005.

[33] “DummyNet,” http://info.iet.unipi.it/∼luigi/dummynet/.
[34] “DigSites,” http://digsitesvalue.net/s/onlive.com.
[35] “libtorrent,” http://www.rasterbar.com/products/libtorrent/.
[36] “ip2c,” http://firestats.cc/wiki/ip2c.
[37] “IsoHunt,” http://isohunt.com/.
[38] “War of Warcraft avatar history dataset,” http://mmnet.iis.sinica.

edu.tw/dl/wowah/.
[39] Y. Li, W. Li, and C. Jiang, “A survey of virtual machine sys-

tem: Current technology and future trends,” in Proc. of Interna-
tional Symposium on Electronic Commerce and Security (ISECS’10),
Guangzhou, China, July 2010, pp. 332–336.

[40] S. Nanda and T. Chiueh, “A survey of virtualization technolo-
gies,” Tech. Rep., February 2005, www.ecsl.cs.sunysb.edu/tr/
TR179.pdf.

[41] R. Rose, “Survey of system virtualization techniques,”
Tech. Rep., March 2004, http://www.robertwrose.com/vita/
rose-virtualization.pdf.

[42] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and
implementation of zap: a system for migrating computing envi-
ronments,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI,
pp. 361–376, December 2002.

Hua-Jun Hong is a Masters student at the Na-
tional Tsing Hua University, Taiwan. He received
his B.S. in Computer Science from National Ts-
ing Hua University, too. His research interests
are in cloud computing, cloud gaming, and mul-
timedia networking.

De-Yu Chen is a research assistant at the Insti-
tute of Information Science of Academia Sinica.
He received his M.S. in Computer Science from
National Taiwan University in 2009, and his
B.B.A. in Business Administration from National
Taiwan University in 2006. His research interests
include cloud computing, distributed computing,
and network traffic analysis.

12

Chun-Ying Huang (S’03–M’08) is an Associate
Professor at the Department of Computer Sci-
ence and Engineering, National Taiwan Ocean
University. He received his B.S. in Computer
Science from National Taiwan Ocean Univer-
sity in 2000 and M.S. in Computer Information
Science from National Chiao Tung University in
2002. Dr. Huang received his Ph.D. in Electrical
Engineering Department from National Taiwan
University in 2007. His researches focus on
computer network and network security issues,

including traffic measurement and analysis, malicious behavior detec-
tion, and multimedia networking systems. Dr. Huang is a member of
ACM, CCISA, IEEE, and IICM.

Kuan-Ta Chen (a.k.a. Sheng-Wei Chen) (S’04–
M’06) is an Associate Research Fellow at the
Institute of Information Science and the Re-
search Center for Information Technology Inno-
vation (joint appointment) of Academia Sinica.
Dr. Chen received his Ph.D. in Electrical Engi-
neering from National Taiwan University in 2006,
and received his B.S. and M.S. in Computer
Science from National Tsing-Hua University in
1998 and 2000, respectively. His research in-
terests include quality of experience, multimedia

systems, and social computing. He has been an Associate Editor of
IEEE Transactions on Multimedia since 2011. He is a member of ACM,
IEEE, IICM, and CCISA.

Cheng-Hsin Hsu (S’09–M’10) received the
B.Sc. degree in mathematics and M.Sc. de-
gree in computer science and information en-
gineering from National Chung-Cheng Univer-
sity, Taiwan, in 1996 and 2000, respectively.
He received the M.Eng. degree in electrical
and computer engineering from the University of
Maryland, College Park, in 2003 and the Ph.D.
degree in computing science from Simon Fraser
University, Burnaby, BC, Canada, in 2009. He
is an assistant professor at National Tsing Hua

University at Hsin Chu, Taiwan. His research interests are in the area of
multimedia networking and distributed systems. He is a member of the
IEEE and ACM.

APPENDIX

VIRTUALIZATION

Many different virtualization technologies, such as JVM,
virtual storage, virtual machines, have been proposed in
the literature [39], [40], [41], [42]. These technologies can
be roughly classified into the following 6 kinds:

• Application Virtualization (AV): We can utilize this
technique to virtualize an environment designed
for an application to make it work on different
systems. Take JVM for example, with JVM, we can
execute a Java program on different environments,
such as Windows, Linux, and OS X. On the other
hand, if we want to execute a C program on those
systems, we need to recompile it and import a great
number of libraries to make this program work.
Another example is Wine, an application installed
on Linux, which can make Windows executables
work on Linux machines.

• Resource Virtualization (RV): RV is a technique in
which specific host resources, such as CPU, net-
work, and memory will be virtualized for guests.
Take Gluster for example, it is one of resource
virtualization techniques called virtual storage (VS).
Gluster is constructed by some bricks. Each of them
can be assigned to storage devices of different types
and from different manufacturers, and those bricks
will be combined into a single volume that guests
use without any knowledge of storage devices.

• Operating System Level Virtualization (OSLV): OSLV
enables multiple guests running on a single operat-
ing system kernel. This technique has the perfor-
mance close to native machine, and dynamic re-
source management is feasible. On the other hand,it
does not allow to run different kernels, so if a guest
performs a system call and crashes, it may affect
other guests. Also, it cannot create guest with Win-
dows if the kernel system is UNIX-based. Examples:
FreeBSD Jail, Solaris Zones, and OpenVZ.

• Para-virtualization (PARA): Para-virtualization is not
full software virtualization. Without binary trans-
lation, it modifies guests OS’s to make directly
communicating with hardware whenever feasible.
Because it requires modified guest OS, it can only
create virtual machines with open source operating
system such as, Linux and FreeBSD.

• Hardware Virtual Machine (HVM): We also call it vir-
tualization with hardware assistance. Popular virtu-
alization solutions, such as VMware, Xen, KVM, and
VirtualBox, are all implemented with it. Without
modified operating system and binary translation,
this technique leverages the CPU (Intel-VT, AMD-
V) virtualization supports and enable the guests to
directly communicate with hardware.

• Full Virtualization (Full): With software, this virtu-
alization technique can completely virtualize the
environment to support guests, so we do not need
to worry about what operating system guest want

13

to create. When guests send a kernel call, virtual
machine monitor (VMM) will receive it and, as a
communicating bus, sends the request to hardware
with binary translation mechanism. But, because
of the software virtualized environment and com-
plex translation mechanism, significant performance
degradation exists on guests.

In Fig. 18, we sort these virtualization techniques
according to their level of virtualization, where tech-
niques on the right have higher virtualization levels. The
aforementioned six techniques can be further grouped
into two types, as illustrated in Fig. 19. The first type
(Fig. 19(a)) enables multiple guests running on the same
OS kernel; therefore, the kernel calls from different
guests may affect each other. The AV, RV, and OSLV
belong to this type. The second type (Fig. 19(b)) isolates
guests from each other by running each guest in its own
OS.

Our cloud gaming testbed is built upon type-2 HVM
solutions, such as VMware, which are more flexible at
the expense of slightly higher virtualization overhead.
To reduce the virtualization overhead, type-1 solutions
may be adopted, which however may require more
customizations in game software.

Fig. 18. Levels of virtualization.

(a) (b)

Fig. 19. Two types of virtualization: (a) multiple guests

with a single operating system and (b) multiple guests

with individual operating systems.

