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ABSTRACT

Botnet has become one major Internet security issue in recent years. Although signature-based solutions are accurate, it

is not possible to detect bot variants in real-time. In this paper, we propose behavior-based botnet detection in parallel

(BBDP). BBDP adopts a fuzzy pattern recognition approach to detect bots. It detects a bot based on anomaly behavior

in DNS queries and TCP requests. With the design objectives of being efficient and accurate, a bot is detected using the

proposed five-stage process, including: 1) traffic reduction, which shrinks an input trace by deleting unnecessary packets;

2) feature extraction, which extracts features from a shrunk trace; 3) data partitioning, which divides features into smaller

pieces; 4) DNS detection phase, which detects bots based on DNS features; and 5) TCP detection phase, which detects

bots based on TCP features. The detection phases, which consume approximately 90% of the total detection time, can be

dispatched to multiple servers in parallel and make detection in real-time. The large scale experiments with the Windows

Azure cloud service show that BBDP achieves a high true positive rate (95%+) and a low false positive rate (∼3%).

Meanwhile, experiments also show that the performance of BBDP can scale up linearly with the number of servers used

to detect bots. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Botnet has become one major threat to Internet users in

recent years. A botnet is comprised of a large number

of bots, which are networked computers compromised by

malicious attackers. With a botnet, an attacker controls the

bots to launch various types of attacks such as phishing and

spamming, and thereby receives huge economic benefits.

Consequently, detecting bots’ activities and preventing

users from being infected is critical to security experts and

researchers.

Most commodity solutions detects bot activities based

on predefined patterns and signatures retrieved from well-

known bots [1, 2, 3, 4, 5, 6]. Although signature-based

solutions are able to detect bots accurately, it has two

major drawbacks. First, a bot is able to evade signature-

based detection by using a code obfuscation technique.

For example, the Mariposa bot adopts such a technique

to prevent it from being detected [7]. Second, patterns or

signatures used to detect bots are retrieved from known

bots. This means that there would be no protection for

a new bot before its patterns or signatures are identified.

Therefore, we believe that a behavior-based (or anomaly-

based) solution would be a good alternative to detect bots.

With well-tuned parameters, behavior-based solutions are

able to achieve high detection rates and low error rates. In

addition, it is able to detect bot variants and even unknown

bots.

This study presents a behavior-based botnet detection

technique that is capable of detecting bots in parallel.

Based on our previous work [8], we show that a behavior-

based botnet detector not only detects bots effectively,

but also efficiently. The proposed solution also leverages

a fuzzy pattern recognition approach and detects bots

in two phases. The domain name service (DNS) phase

analyzes DNS queries requested by clients and investigates

possibly malicious queries sent from bots. In contrast,

the transmission control protocol (TCP) phase examines

TCP request packets and response packets and identifies

anomaly access patterns in terms of packet counts and

packet sizes. We revise the previously proposed algorithm

to have more sophisticated membership functions in order
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(a) The infection phase. (b) The attack phase.

Figure 1. Two common phases of a bot’s behavior.

to achieve higher detection (true positive) rates and lower

error (false positive) rates. In addition, a parallel process

design is proposed as well to improve the performance of

the detection system. By adopting modern infrastructure

as a service (IaaS) cloud computing services, the required

detection time of the proposed system can be shortened

linearly to the number of allocated detecting servers.

The remaining of this paper is organized as follows.

Section 2 briefly introduces the behavior of botnet and

reviews several previous works related to the proposed

solution. Section 3 explains the proposed approach in

detail. Section 4 presents the experiment results for the

proposed solution using commodity cloud computing

services and real-world botnet traces. Finally, Section 5

provides the conclusion.

2. BACKGROUND AND RELATED
WORK

2.1. Overview of Botnet Behavior

Figure 1 shows the two common phases of a bot’s behavior,

i.e., the infection phase and the attack phase. In the

infection phase, a bot master attempts to intrude in a

victim and then turn the victim into a bot. There are many

techniques to intrude in a host such as remote exploits and

drive-by downloads. Once the bot master has successfully

intruded in a victim, remote controllable software (bot

software) is downloaded and installed into the victim. The

infection phase then finished after the bot software has

been successfully installed and configured. Bot software

is usually configured to launch automatically when the

system boots. The attack phase then starts as well. In the

attack phase, the bot software is responsible for reporting

the status of the infected host to the bot master, receiving

attack commands from the bot master, and launching

commanded tasks. Possible commands include, but not

limited to, launching distributed denial of services, setting

up phishing sites, relaying malicious traffic, and sending

spam mails. Behavior-based solutions can detect bots in

the infection phase, the attack phase, or both, depending

on how the algorithms are designed.

2.2. Related Work

Park et al. [9] proposed an automated approach to generate

semantic patterns for bot detection. They proposed to

identify one pattern that represents the important behavior

of an entire class of bots, rather than of individual

instances. They adopted static analysis techniques to

characterize bot behavior, and proposed to use hierarchical

clustering of the resulting semantic patterns from a set

of bot programs. The major contribution of this work is

that patterns and signatures are generated automatically.

However, since it is based on static analysis from assembly

source codes, the effectiveness is therefore limited when

code obfuscation techniques are applied. In addition,
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Figure 2. The five stages of the proposed behavior-based botnet detection in parallel.

signature-based detection limits its ability to detect bot

variants and unknown bots.

Yu et al. [10] proposed online botnet detection based on

an incremental discrete Fourier transform approach. They

first defined the concept of “feature streams” to describe

raw network traffic. They then compared feature streams

originated from different hosts and detect suspicious bot

activities if similar feature streams are identified. It is

innovated to representing network traffic as feature streams

and detecting bots using incremental discrete Fourier

transform (DFT). However, the proposed solution has two

issues. First, represent network traffic as feature streams

and detect using DFT is a computation-intensive work.

It could be inefficient to detect bot activities. Second,

according to the experiment data provided by the authors,

the error rates (false positive rates) is not low enough.

A number of works attempted to detect and discuss

specific type of bots. Perdisci et al. [11] proposed to

detect bots that leverage HTTP channels to communicate.

Hsu et al. [12] and Lin et al. [13] proposed to detect a

specific type of bots called fast-flux bots, which attempts to

extend the life time of malicious web or Internet services

using dynamic domain names with shorter TTLs. Shirley

et al. [14] discussed the possibilities that a bot could

evade detection if a bot detection mechanism did not

associate bots’ communications with the corresponding

hosts. Huang [15] proposed to detect bots based on failures

generated from bots. If a bot never generate a failure, it

could be missed.

Wang et al. [8] proposed to detect bots based on

a fuzzy pattern recognition approach. They proposed

a traffic reduction algorithm to reduce the amount of

network traffic that the solution needs to process. To

work with fuzzy pattern recognition techniques, they then

designed several membership functions to compute the

probability of being bot activities from aggregated DNS

and TCP traffic. Although the simple functions adopted

by this work are able to perform well on detection

bots, the detection accuracy can be improved with more

sophisticated membership functions. Some network traces

generated by regular network activities such as checking

new software updates may lead to false positives. With

more sophisticated membership functions, it is possible

to reduce the error (false positive) rates caused by regular

network activities.

The proposed solution differs from previous researches

in several aspects. First, it does not examine the binary

codes or source codes of bot software. Detection is made

based on external behaviors. Therefore, code obfuscation

does not prevent a bot from being detected. Second, since

it is a behavior-based detector, bot variants and event

unknown bots can be detected. The proposed solution

extends Wang’s et al. work. Similar to their work, the

proposed solution adopts a fuzzy pattern recognition

approach. However, it extends the previous work in two

directions. First, the proposed solution adopts even more

sophisticated membership functions to detect bots. It

hence improves the overall detection (true positive) rates

and reduces the error (false positive) rates. Second, the

proposed solution pays more attention on detection bot

activities in large scale networks. Therefore, the workload

of detection tasks can be dispatched to multiple servers and

detect bots in parallel. The efficiency of the detector can be

improved linearly when the number of allocated detection

server increases.

3. THE PROPOSED SOLUTION

3.1. Design Objective

Given a network packet trace, the goal of the proposed

behavior-based botnet detection in parallel (BBDP) is to

detect bot activities from the trace. Two objectives of

the proposed solution are accuracy and efficiency. The

proposed solution should be able to detect as many bots

as possible in a reasonable detection time. To achieve the

goal, BBDP splits the process of the trace into five stages,

as shown in Figure 2. The five stages (in the order) are

traffic reduction, feature extraction, data partitioning, DNS

detection, and TCP detection. The first two stages are used
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Figure 3. The packet filtering process to reduce the number of

processed packets for the proposed system.

to reduce the amount of data that has to be processed by the

system. To be more efficient, BBDP attempts to parallelize

the detection process by dispatching workloads to multiple

detectors in the third stage. Finally, BBDP detects bots

in two phases which focus on DNS queries and TCP

requests generated by bots. Although the two phases are

similar to our previous work [8], we revised the detection

algorithms and adopted more detection policies to improve

the overall detection accuracy. The details of each stage

are discussed later in this section. In addition to detect

bot activities, BBDP retrieves bot relevant domain names

and IP addresses from the detected activities and sends the

information to firewalls and/or intrusion detection systems

to prevent other hosts from being attacked.

3.2. Traffic Reduction

To improve the system efficiency, it would be better if the

system only process required packets. Therefore, BBDP

adopts a packet filtering process to reduce the number of

packets that the system has to examine. Figure 3 shows

the packet filtering process. Based on our observations, we

found that a bot’s activities often start from DNS lookups.

This is because a bot often has to obtain new commands

from the bot master or the command and control (C&C)

servers, which are usually hard-coded as a list of domain

names in bot software. With the bot master’s or the C&C

servers’ IP addresses, the bot then attempts to interact with

each of the returned IP addresses from DNS queries. We

also found that most bots interact with the bot master or

the C&C servers using TCP connections. Therefore, the

proposed solution currently focused only on examining

TCP packets. The filter process discards a packet if it is

neither a DNS request/response packet nor a packet with

known source/destination IP addresses. If a packet is not

discarded, it is passed to the next stage and is used for

detecting bot activities.

3.3. Feature Extraction

Since bot activities often start with DNS queries and then

followed by interactions using TCP flows, BBDP retrieves

several features relevant to DNS queries and TCP flows

for botnet detection. For DNS features, we observed that

a bot often sends DNS queries regularly in a period of

Figure 4. The number of DNS query packets sent by an

observed live bot. [x-axis: time in seconds; y-axis: total number

of DNS query packets.]

Figure 5. The number of TCP request packets sent by an

observed live bot. [x-axis: time in seconds; y-axis: total number

of TCP request packets.]

time. Figure 4 shows an example of DNS query packets

sent from a bot. BBDP collects DNS packets for a period

of time and then retrieves relevant DNS features including

the queries round trip times, queries intervals, and queries

frequencies.

For TCP features, we also observed that a bot would

setup regular network flows to the bot master or the C&C

server, as shown in Figure 5. BBDP collects TCP packets

for a period of time as well and then retrieves relevant TCP

features including packet-count per second, byte-count per

packet, requests intervals, and request frequencies. Both

the retrieved DNS and TCP features are passed to the next

stage for botnet detection.

3.4. Data Partitioning

BBDP aims to be an accurate and efficient bot detection

system. It is straightforward to improve system efficiency

by splitting the whole workloads into smaller pieces and

then dispatching pieces to multiple servers. However, if

workloads are not split properly, the detection accuracy

could be degraded. Therefore, the system has to consider

how input features are split so that it can achieve high

efficiency without losing its accuracy. BBDP splits features

by following a similar manner to traffic reduction. Since a

bot’s activities start with DNS queries and then followed

by a number of relevant TCP flows, the DNS queries and

the incurred TCP flows should not be split into different

pieces. For example, suppose a host H made a DNS lookup

to a domain name D and receives a list of n corresponding

IP addresses IP1, IP2, ..., IPn. The DNS features involved

with D and the TCP features involved with IP1, IP2, ...,

IPn should not be split into different pieces. For the ease

of processing, we use H’s IP address as the key to split
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Table I. Summary of inspected host behavior

Type Equation Description

X1 Number of concurrent queries

DNS X2

Cumulated queries to each

distinct domain

X3 Query frequency

X1

Average packet rate

(per connection)

X2

Average packet size

(per connection)

TCP
X3

Packet count variance

(per connection)

X4

Packet size variance

(per connection)

X5 Average packet rate (per host)

traffic. Consequently, both DNS features and relevant TCP

features for H would be placed in the same piece. Since

BBDP detect bots for an entire network, features collected

for different hosts can be split into different pieces and

therefore improves the parallelism.

3.5. Behavior-based Botnet Detection in Parallel

(BBDP)

BBDP adopts a fuzzy pattern recognition approach to

identify bots. The bot detection process contains two

phases—the DNS detection phase and the TCP detection

phase. The two phases detect bots using features retrieved

from DNS packets and TCP packets, respectively. BBDP

attempts to detect a bot in the DNS detection phase first.

If a bot is detected in the DNS detection phase, BBDP

ignores TCP features associated with the DNS features

and reports the detection result. In contrast, if no bot

is detected, the TCP detection phase is then applied to

detect a bot. Both the DNS detection phase and the TCP

detection phase detect bots using the max membership

principle to determine whether a retrieved feature is more

close to bot activities or benign activities. A number of

fuzzy membership functions are defined to determine a

retrieved feature set from host activities is a member

of bot features or benign features. Given a feature set

retrieved from a networked host, if membership functions

for bots output higher values, the host is detected as a

bot. Similarly, if membership functions for benign hosts

output higher values, the host is detected as a benign host.

The basic concept of the max membership principle is

shown in Figure 6. The detection is made by finding the

maximal values from the defined membership functions.

We summarize host behaviors inspected by the proposed

solution in Table I. The details of how the membership

functions are defined are discussed later in this subsection.

3.5.1. DNS Detection Phase

Given a predefined observation period and a trace file,

we defined a packet feature vector x = (α, β, γ, λ) for the

DNS detection phase. α is a set of time intervals measured

between a pair of a DNS query and the corresponding

DNS response. Suppose n DNS queries are observed

from a host, each measured time interval in α is notated

as αi, where 1 ≤ i ≤ n. β is a set of counters, which

count the number of concurrent DNS queries within the

period defined by α. The cardinality of β (|β|) should

be equivalent to that of α (|α|) because the observation

is made for exact the same trace file. Each counter in β

is notated as βi, where 1 ≤ i ≤ n. γ is another set of

counters, which count the number of total times that a

domain name or an IP address has been queried by a host.

Suppose a monitored host has queried N distinct remote IP

addresses, the cardinality of γ (|γ|) would be N . A counter

γi ∈ γ, 1 ≤ i ≤ N , maintains the number of times that a

domain names or IP addresses found in the trace. λ is also

a set of counters, which count the number of DNS queries

in each second within the observation period. Suppose a

trace has been monitored for M seconds, there would be

M counters in λ. In the DNS detection phase, we defined

four states and proposed the corresponding membership

functions, as described in the following.

(a) Normalized variance of number of concurrent DNS

queries

A bot often generates concurrent DNS queries to

shorten its online time. A higher variance of number

of concurrent DNS queries indicates a host is possibly

a bot. Therefore, we defined a membership function

X1 for calculating the normalized variance of number

of concurrent DNS queries as follows.

X1(x) =







0 , if all (βi − β)2 < Tx1

max((βi − β)2)
∑

((βi − β)2)
, otherwise;

(1)

for i ∈ {1, 2, ..., n}, where n is the total number

of DNS queries and Tx1
is the variance threshold of

being abnormal.

(b) Normalized total times that a node queried the same

domain name or IP address

A bot may query specific domain names or IP

addresses many times when it is activated. Therefore,

we calculated the number of queries to a domain name

or an IP address to identify abnormal hosts. We defined

a membership function X2 for calculating normalized

total times that a node queried the same domain name

or IP address.

X2(x) =







0 , if all γi < Tx2

max(γi)
∑

(γi)
, otherwise;

(2)

for i∈ {1, 2, ..., N}, where N is the number of domain

names and IP addresses that a host has queried and Tx2

is the threshold of the abnormal contact counts for a

domain name and an IP address.
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(c) Normalized total number of DNS query and response

packets per second

A bot sends DNS queries several times when it is

activated. Therefore, we calculate the total number of

DNS queries per second to identify anomalies. We

defined a membership function X3 for calculating

normalized total number of DNS query and response

packets per second as follows.

X3(x) =







0 , if all λi < Tx3

max(λi)
∑

(λi)
, otherwise;

(3)

for i ∈ {1, 2, ..., M}, where M is the duration of an

input trace in seconds and Tx3
is the threshold for the

total number of DNS query and response packets per

second.

The first three membership functions define bots’ DNS

activities. We also defined a membership function X4 for

calculating the probability of being a normal DNS activity.

X4(x) = 1−max(X1(x), X2(x), X3(x)) (4)

3.5.2. TCP Detection Phase

We defined a packet feature vector x = (α, β, γ, λ)

as well for the TCP detection phase. α is a set of time

intervals measured between a pair of a TCP request and

the corresponding response. Suppose n TCP requests are

observed, each measured time interval in α is notated as

αi, where 1 ≤ i ≤ n. β is a set of counters, which count

the number of TCP request packets involved in each TCP

request. The cardinality of β (|β|) should be equivalent to

that of α (|α|) because the observation is made for exact

the same trace file. Each counter in β is notated as βi,

where 1 ≤ i ≤ n. γ is a set of counters, which count the

number of payload bytes that are sent in a TCP request.

Similarly, the cardinality of γ (|γ|) should be equivalent

to that of α (|α|). Each counter in γ is notated as γi,

where 1 ≤ i ≤ n. λ is another set of counters, which count

the average number of TCP request and response packets

sent per second. In the TCP detection phase, we defined

six states and proposed the corresponding membership

functions, as described in the following.

(a) Normalized packet counts per second

It is abnormal for a TCP connection to send a large

number of request packets in a second. Based on the

assumption, we defined a membership function X1 for

calculating the normalized packet counts per second as

follows.

X1(x) =











βt/αt

Tx1

− 1, 1 <
βt/αt

Tx1

< 2

1 ,
βt/αt

Tx1

>= 2

0 , otherwise;

(5)

where βt is the total number of TCP packets in an

input trace, αt is the duration of an input trace in

seconds, and Tx1
is the threshold for abnormal packet

count per second.

(b) Normalized byte counts per packet

If a bot master attempts to send commands to

its controlled bots, the byte count per TCP packet

may reflect the anomaly. We defined a membership

function X2 for calculating the normalized byte count

per packet as follows.

X2(x) =











γt/βt

Tx2

− 1, 1 <
γt/βt

Tx2

< 2

1 ,
γt/βt

Tx2

>= 2

0 , otherwise

(6)

where γt is the total number of bytes in an input trace,

βt is the total number of TCP packets in an input trace,

and Tx2
is the threshold for abnormal byte counts per

packet.

(c) Normalized variance of total number of TCP packets

in each request

A bot often sends a large number of request packets in

a short time. The burst can then be found through the

high variance of requested TCP packets. Therefore, we

defined a membership function X3 for calculating the

normalized variance of total number of TCP packets

in each request as follows.

X3(x) =







0 , if all (βi − β)2 < Tx3

max((βi − β)2)
∑

((βi − β)2)
, otherwise;

(7)

for i ∈ {1, 2, ..., n}, where n is the total number

of TCP requests and Tx3
is the variance threshold of

being abnormal.
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(d) Normalized variance of the total number of payload

bytes in each request

In addition to send packets in a burst, we observed that

the sizes of the payloads carried by the packets from

a bot are large. Therefore, we defined a membership

function X4 for calculating the normalized variance

of the total number of payload bytes in each request as

follows.

X4(x) =







0 , if all (γi − γ)2 < Tx4

max((γi − γ)2)
∑

((γi − γ)2)
, otherwise;

(8)

for i ∈ {1, 2, ..., n}, where n is the total number

of TCP requests and Tx4
is the variance threshold of

being abnormal.

(e) Normalized total number of TCP request and response

packets per second

A bot may send TCP request and response packets

many times when it is activated. Therefore we

calculated the total number of TCP request and

response packets per second to identify anomalies. We

defined a membership function X5 for calculating the

normalized total number of TCP request and response

packets per second as follows.

X5(x) =







0 , if all λi < Tx5

max(λi)
∑

(λi)
, otherwise;

(9)

for i ∈ {1, 2, ..., M}, where M is the duration of an

input trace in seconds, λi is the total number of TCP

request and response packets in the ith second, and

Tx5
is the threshold of the total number of TCP packets

per second.

The first five membership functions define bots’ TCP

activities. We also defined a membership function X6 for

calculating the probability of being a normal TCP activity.

X6(x) = 1−max(X1(x), X2(x), X3(x), X4(x), X5(x))
(10)

4. PERFORMANCE EVALUATION

4.1. Trace Collection

We collected a large number of bot traces from 250 real

bot samples and iteratively launched each of them in a

controlled environment, as shown in Figure 7. Each bot

was launched in a virtual machine running an unpatched

Windows XP service pack 3 operating system. Each virtual

machine moves a bot from the share folder to its local disk,

launches the bot for two hours, and then restores itself to

a clean state. The virtual machines repeatedly launch bots

from the share folder until all bots have been examined.

The traces generated from the virtual machines were then
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Figure 7. The experimental environment for botnet traces

collection.

captured by an external sniffer. In the experiments, 240 out

of the 250 bots had generated network traces. Both packet

headers and the complete packet payloads were stored. We

called the collected malicious traces “data set M.”

In addition to bot traces, we collected benign traces

to evaluate the proposed system. Benign traces were

collected from two different sources. One was collected

from the campus dormitory network [16] and the other was

collected from our lab. We collected traces generated from

695 hosts in the dormitory network and from five hosts

in our lab. Each host was collected for two hours as well.

These traces contained many types of benign applications

including IRC, HTTP, and peer-to-peer traffic. We called

the traces collected from dormitory network “data set B1”

and the traces collected from our lab “data set B2.”

4.2. Feature Evaluation

BBDP detects bots based on counting membership values

for the selected features. Therefore, we have to know

whether the selected features are able to differentiate

bots from benign hosts before making experiments. We

randomly selected 25 bot traces and 25 normal traces to

evaluate the selected features. Figure 8 shows the scatter-

plots for the selected features. The scatter-plots are plotted

from six selected features including the variance of packet

inter-arrival time, the variance of bytes per packet, the

number of packets between request and response packets,

and the contact counts per host, the average number of

packets per second, and the average number of bytes per

packet. Therefore, there are total C6

2 plots. We found that
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Figure 8. Scatter plots for combinations of selected features. Blue-cross for normal traces and red-diamond for bot traces.

bots and normal hosts can be roughly differentiated based

on the combinations of the selected features. In addition,

we also found that some features are especially useful for

detection certain types of bots. For example, “the number

of packets between request and response packets” and “the

contact counts per host” are better for detection IRC bots.

In contrast, “the average number of packets per second”

and “the average number of bytes per packet” are better

for detection HTTP bots.

4.3. Detection Threshold

To work with the proposed solution, we have to decide the

thresholds used by the membership functions. We obtained

the thresholds by making statistics to the collected benign

and bot traces. The thresholds used for detection are listed

as follows:

Table II. Detection accuracy of the proposed solution.

Data Set M Data Set B1 Data Set B2

Type Malicious Benign Benign

Number of Traces 240 695 5

Captured Size 3.4GB 32.4GB 910MB

Avg. Reduction Rate 75.4% 77.3% 73.1%

Correctly Classified 230 671 5

Incorrectly Classified 10 24 0

True Positive Rate 95.83% N/A N/A

True Negative Rate N/A 96.55% 100%

False Negative Rate 4.17% N/A N/A

False Positive Rate N/A 3.45% 0%

1. Tx1
for Equation (1): 4

2. Tx2
for Equation (2): 45
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Figure 9. The statistics on the origin of false positives.

3. Tx3
for Equation (3): 1.25

4. Tx1
for Equation (5): 1.5

5. Tx2
for Equation (6): 75

6. Tx3
for Equation (7): 4

7. Tx4
for Equation (8): 45

8. Tx5
for Equation (9): 1.25

4.4. Detection Accuracy

We used the collected traces to evaluate BBDP. A

summarization of the detection accuracy is provided in

Table II. In addition to high traffic reduction rates, BBDP

has a low false negative rate (4.17%) and low false positive

rates (3.45% for Data Set B1 and 0% for Data Set B2).

Among the total 10 false negatives, we found that six

instances are IRC bots and four instances are HTTP bots.

In contrast, there are total 24 false positives. We further

investigated the origin of false positives. Figure 9 shows

the origin of false positives in the DNS detection phase and

the TCP detection phase. The statistics also show that false

positives are distributed evenly across all the membership

functions.

4.5. Detection Efficiency

We investigated the distribution of execution time in

each stage of BBDP. The experiments show that the

traffic reduction stage spent approximately 10% of the

total execution time; the DNS detection phase spent

approximately 37% of the total execution time; and the

TCP detection phase spent approximately 53% of the total

execution time. Therefore, it suggests that dispatching the

DNS detection phase and the TCP detection phase to

multiple servers is able to effectively improve the detection

efficiency.
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Figure 10. The total execution time and the performance

improvements in a cloud-based configuration. We used the

Windows Azure cloud service to implement the detection

servers.

Figure 10 shows total execution time with respect to

number of server instances of the proposed botnet detec-

tion system in a cloud-based configuration. We conducted

the experiments in both a single-host configuration and

a cloud-based configuration. In the single-host configura-

tion, we used a commodity personal computer equipped

with an AMD Athlon X2 4000+ (2.1GHz) dual-core CPU

and 2 gigabytes of RAM. In the cloud-based configuration,

we varied the number of allocated servers from one to

five to evaluate how the performance of the detection load

distributed to a various number of servers. Note that we

adopted the Windows Azure cloud service to host the

detection servers. Each machine is equipped with two

1.6GHz CPUs and 3.5 gigabytes of RAM. However, it

is able to be deployed in any infrastructure as a service

(IaaS) architecture. The experimental results show that the

total execution time can be reduced almost linearly to the

number of allocated servers. The single-host configuration

requires 398.1 seconds to finish processing all the two-hour

data sets. However, due to extra overheads in the cloud-

based configuration, running a single detector under the

cloud-based configuration requires 419.14 seconds. Nev-

ertheless, when there are five servers allocated, the cloud-

based configuration requires only 84.16 seconds, which is

4.73 times faster than the single-host configuration.

4.6. Summary

We finally compared the proposed BBDP against several

alternative solutions to detect botnets activities. The

comparison is shown in Table III. Although most existing

researches evaluated their bot detection solution using self-

made or limited number of bot samples, we used 250
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Table III. Comparison of the proposed solution against other previous works.

The proposed solution (BBDP) Park et al. [9] Yu et al. [10] Wang et al. [8]

Basic idea Fuzzy pattern Static analysis and Feature stream Fuzzy pattern

recognition with data-mining approaches recognition

data partitioning

Evaluated bots 250 IRC+HTTP 110 IRC+HTTP 4 IRC 250 IRC+HTTP

(real bots) (real bots) (self-made bots) (real bots)

True positive rate 95.83% 94.35% 100% 90.41%

False positive rate 3.45% 4.39% 14.70% 9.59%

False negative rate 4.17% 5.65% 0% 5.41%

Required

execution time 398.1 seconds N/A N/A N/A

(with five servers) (84.2 seconds) N/A N/A N/A

real bot samples to evaluate BBDP. The proposed solution

performs better than compared solutions except Yu’s et

al. work [10]. However, their work was only evaluated

by four self-made bots. Their performance is not known

when working with real bots. One special note for Wang’s

et al. work [8] is that, we used exact the same 250 bots

to reproduce their experiments. Therefore, the numbers

shown in the table is different from that in their paper,

which conducted experiments with only 44 live bots. For

the detection efficiency in terms of the required detection

time, we only show our numbers because we did not have

numbers for the other solutions. However, based on the

design of the previous algorithms, we believe that it is

difficult for those detection algorithms to scale up by using

multiple servers.

5. CONCLUSION

In this paper, we presented behavior-based botnet detection

in parallel (BBDP). BBDP extends our previous work

in terms of detection accuracy and efficiency. The

detection accuracy is improved by tuning the membership

functions used by the fuzzy pattern recognition approach.

In contrast, the detection efficiency is improved by

dispatching workloads to multiple servers concurrently.

We implemented BBDP on the Windows Azure cloud

service and evaluated it using a large number of benign

traces (generated from more than 670 hosts) and malicious

traces (generated from 240 live bots). Experiments show

that BBDP is able to detect more than 95% of bots and

only has a false positive rate lower than 3.5%. In addition

to good detection accuracy, the implementation shows

that the proposed parallel process architecture improves

the detection efficiency linearly to the number allocated

detection servers. We believe that the demand on scaling

out detection servers would be necessary when monitored

networks get larger and more complex.
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