
GPU Consolidation for Cloud Games: Are We There Yet?

Hua-Jun Hong1, Tao-Ya Fan-Chiang1, Che-Run Lee1, Kuan-Ta Chen2, Chun-Ying Huang3, and Cheng-Hsin Hsu1
1Department of Computer Science, National Tsing Hua University

2Institute of Information Science, Academia Sinica
3Department of Computer Science and Engineering, National Taiwan Ocean University

Abstract—Since the operating expense is crucial to the in-
creasingly popular cloud gaming services, server consolidation
is one of the key technologies for the success of these services.
In this paper, we conduct extensive experiments using real
GPUs and a complete cloud gaming platform to answer the
following question: Are modern GPUs ready for cloud gaming?
Our experiment results show that modern GPUs have low
consolidation overhead, and are powerful enough to concurrently
support multiple GPU-intensive cloud games. For example, when
using our cloud gaming platform, the recent NVidia K2 GPU
outperforms NVidia Quadro 6000 by up to 3.46 times in FPS
(frame per second). Moreover, our experiments lead to two new
findings that are counter to common beliefs. First, with the latest
GPU virtualization technique, shared GPUs may run faster than
dedicated GPUs. Second, more context switches not necessarily
lead to lower FPS. Last, our experiments shed some light on
further enhancements of cloud gaming platforms. For example,
offloading the software video codec to the GPUs will result in
better gaming experience, which is one of our future tasks.

I. INTRODUCTION

The computer game industry generated five times higher

revenues than the music industry, 15% more revenues than

the consumer book sales, and roughly equal revenues as the

movie industry in 2011 [10]. Moreover, cloud gaming has been

recognized as the killer application of cloud computing [14],

and attracted serious attentions from both the industry [6], [13]

and the academia [11], [17]. Cloud gaming moves the games

from potentially weak clients to powerful cloud servers, where

the game scenes are captured, encoded, and streamed to the

clients in real-time. The game scenes are decoded and rendered

at clients for gamers, whose inputs are intercepted, coded, and

sent back to cloud servers over the reverse channels. Cloud

gaming enables gamers to play computer games anywhere,

anytime on any devices, and is expected to be very popular in

the near future [3].

The cloud gaming providers face a challenge for higher

revenues: they want to minimize the operating expense yet

achieving high gaming experience [8], [21]. One possible way

to reduce the operating expense is to consolidate multiple

virtual machines (VMs) onto a physical machine, so as to vir-

tualize various resources, including CPUs, networks, storages,

and GPUs for sharing. Server consolidation, however, has to

be carefully performed, or it may result in degraded gaming

experience and drive gamers away from the service. While

virtualizing CPUs, network interfaces, and storages is rather

mature, virtualizing GPUs is still considered experimental. In

fact, several papers warn the potentially poor performance in

terms of low frame rate, high response time, and low video

quality when GPUs are shared among multiple VMs [4], [16].

For example, Shea and Liu [16] show that the frame rate

of Doom 3 is lower than 40 FPS (frame-per-second) even if

the hypervisors (Xen and KVM) are configured with one-to-

one GPU pass-through, which indicates that sharing the GPU

among multiple VMs is virtually impossible.

Nonetheless, in the past couple of years, the GPU virtu-

alization technology has been dramatically improved, which

may have solved the performance issue of GPU consolidation.

In this paper, we conduct detailed experiments using modern

GPUs and a real cloud gaming platform called GamingAny-

where (GA) [9] to answer the following question: Are modern

GPUs ready for cloud gaming? In particular, we perform

two types of experiments: (i) end-to-end experiments using

the complete cloud gaming platform to quantify the overall

gaming performance, and (ii) GPU-only experiments using

only GPUs to zoom into their detailed performance. Our end-

to-end experiments demonstrate that modern GPUs, such as

NVIDIA K2, significantly outperform the earlier generation

GPUs, such as Quadro 6000, by up to 3.46 times in FPS.

This can be attributed to both Moore’s law and more advanced

GPU virtualization technologies. Moreover, the cloud gaming

platform is stable under different network conditions, such

as various bandwidth, delay, and packet loss rate, and in the

Internet. On the other hand, we also find that the cloud gaming

server with the modern GPUs may become CPU-bounded.

Hence, offloading the software video codec to the GPUs will

further improve the gaming experience.

Our GPU-only experiments reveal several insights that have

never been reported in the literature. For example, we observe

that: (i) virtualized GPUs may outperform pass-through GPUs,

(ii) more context switches not necessarily result in lower FPS,

and (iii) the hypervisor is not a bottleneck for managing the

virtual GPUs. Some of the observations are different from

the previous studies [16], and can be attributed to the recent

advances on GPU virtualization. The findings in the GPU-only

experiments show the merits of modern virtualized GPUs and

shed some light on how to optimize the configurations of cloud

gaming platforms.

The rest of this paper is organized as follows. We survey

the literature in Sec. II. Sec. III presents our testbed setup and

measurement methodology. This is followed by the experiment

results and discussions in Sec. IV. Sec. V concludes this paper.978-1-4799-6882-4/14/$31.00 c© 2014 IEEE



II. RELATED WORK

GPU architecture has been constantly changing, which

renders virtualizing GPU for multiple VMs fairly challenging.

Dowty and Sugerman [4] discuss several GPU virtualization

techniques, which can be roughly classified into software-

based and pass-through. The software-based GPU virtualiza-

tion is compatible with more GPU hardware, while the pass-

through approach achieves better performance. The software-

based virtualization is more flexible, adopted by VMWare [4],

and used in prototyping optimization algorithms for GPU

scheduling [23]. The pass-through approach can further be

classified into: (i) one-to-one fixed pass-through and (ii) one-

to-many mediated pass-through [4].

Until very recently, commercial products did not support

mediated pass-through and refer to fixed one-to-one pass-

through as pass-through. In fact, the performance of one-to-

one fixed pass-through GPUs for cloud gaming has not been

studied until late 2013 [16]. More precisely, Shea and Liu [16]

conduct extensive experiments to quantify the performance

gap between native hardware (without virtualization) and pass-

through GPU (with virtualization). They find that the native

hardware significantly outperforms pass-through GPU, and

conclude that sharing a GPU among multiple cloud gaming

VMs will lead to unacceptable low frame rate. Their measure-

ment results also reveal that the low frame rates are partially

attributed to the excessive context switches. Our current paper

extends Shea and Liu [16] in the sense that: (i) we consider

modern GPUs that support more advanced (mediated) pass-

through approach, and (ii) we quantify the performance of

GPUs shared by multiple VMs. To our best knowledge, the

performance of these modern GPUs has not been measured in

the literature.

III. EXPERIMENT METHODOLOGY

We present our testbed implementation and measurement

methodology in this section.

Dummynet

GPU

Virtual GPU Pass Through

GA 

Client

GA 

Client

GA 

Client

Gamers

GA 

Server
Game

Virtual Machine
VM VM VM

GA 

Client

Fig. 1: Our testbed consists of a cloud gaming server running
multiple GA servers and games, a dummynet router, and several

GA clients.

TABLE I: Specifications of The Two Considered GPUs.

GPU Year Core Memory No. Inst. vSGA vGPU

Quadro 6000 2010 448 6 GB 1 Yes No
K2 2013 3072 8 GB 2 Yes Yes

A. Testbed Setup

Fig. 1 illustrates our testbed setup. We setup a XenServer

6.2 on a cloud gaming server with a Xeon 2.1 GHz 24-core

CPU and 64 GB memory. We conduct experiments with two

GPU cards: NVIDIA Quadro 6000 (released in 2010) and

NVIDIA K2 (released in 2013). Their specifications are given

in Table I. The K2 GPU has two physical GPU instances,

and each instance can be independently configured to be

in one of the following modes: (i) pass-through, (ii) vGPU

with up to 2 VMs, (iii) vGPU with up to 4 VMs, and (iv)

vGPU with up to 8 VMs. vGPU is the latest NVIDIA GPU

virtualization technique realizing mediated pass-through [4].

We refer to these modes as: PassThrough, vGPU2 (2 VM

on each GPU instance), vGPU4 (4 VMs on each instance),

and vGPU8 (8 VMs on each instance), respectively. Since

each K2 GPU contains two instances, we can configure it

for up to 16 VMs. Quadro 6000 GPU does not support

vGPU and only works with vSGA, which is software-based

GPU sharing. If not otherwise specified, we allocate 1 CPU

core and 2GB memory to Dom0, which manages all VMs.

The remaining CPU cores and memory are equally divided

among the VMs running Windows 7. Next, we set up the

GA server [9] (as of August 2014) in these Windows VMs,

which are connected to 8 Windows machines running GA

client. GA is an open-source cloud gaming platform, which

is modularized, cross-platform, and efficient. Therefore, GA is

suitable to the research community for testing innovative ideas,

to the service providers for developing the systems, and to the

gamers for setting up private cloud gaming servers. To emulate

diverse and dynamic network conditions, we add a dummynet

router [1] to impose additional bandwidth constraints, network

delay, and packet loss rate, between GA clients and servers.

B. Workload Generators

We generate GPU workload using two kinds of applications

on Windows 7. The details are given below.

• Game. Three games are chosen from different game

genres: Fear2 is a first-person shooter game, LEGO

Batman is an action game, and Limbo is a scroll-based

puzzle game. In all these games, the graphics detail levels

are kept as default.

• Benchmark. We use Sanctuary for overall GPU bench-

mark and Cadalyst for detailed (2D versus 3D) GPU

benchmark. The Sanctuary benchmark gives an FPS num-

ber as the overall score. The Cadalyst benchmark gives

four 2D scores on ortho lines, radial lines, texts/blocks,

and erase/zoom, and we denote them as 2D1, 2D2, 2D3,

and 2D4 in the figures. The Cadalyst benchmark also

gives four 3D scores on rotate wireframe, rotate hidden,

rotate conceptual, and rotate realistic, which are referred

to as 3D1, 3D2, 3D3, and 3D4 in the figures. We set the

resolution for benchmarking to 1920x1200.

For fair comparisons, we use TinyTask [18] to record the

mouse and keyboard inputs of a 3 minutes gameplay session

of each game. We then replay the same user inputs in each

experiment with different system parameters.



C. Performance Metrics

In addition to the scores given by Sanctuary and Cadalyst

benchmark, we also consider the following metrics.

• FPS. The number of rendered frames per second.

• Context switch. The number of context switches in

Dom0.

• CPU utilization. The CPU load of Dom0 (CPUdom0) and

each VM (CPUvm).

• GPU utilization. The load of GPUs.

• Frame loss rate. The fraction of frames that are not

rendered at the GA client due to packet loss or late arrival.

• PSNR (Peak Signal-to-Noise Ratio) [19] and SSIM

(Structural Similarity) [20]. The video quality at the

GA clients, compared against the videos captured at the

GA servers.

• Response delay The time difference between a gamer

generates an input and the GA client renders the first

frame affected by that input.

When reporting the results, we give 95% confidence intervals

whenever possible.

D. Measurement Utilities

XenServer is a patched CentOS Linux and thus may not

support all Linux utilities. For example, the PAPI and Perf do

not work on XenServer, and we adopt the following utilities:

• Fraps [5]. To measure the FPS of the foreground window.

• Sar [15]. To measure the number of context switches.

• Xentop [22]. To measure the CPU utilization of Dom0

and VMs.

• Nvidia-smi [12]. To measure the GPU utilization under

vGPU.

• GPU-Z [7]. To measure the GPU utilization of pass-

through GPUs.

In addition, we write several tools to derive measured values.

For example, the frame loss rates are calculated using color-

coded frame numbers.

TABLE II: Achieved frame rates on two considered GPUs

# of VMs Quadro 6000 K2 Speed-up (times)

2 VMs 22.3 25.1 1.13
4 VMs 13.1 32.3 2.47
8 VMs 7.0 24.2 3.46

IV. EXPERIMENT RESULTS

We first use the complete GA platform to compare the

modern vGPU technology with the previous generation one.

We then isolate and zoom into the GPU performance. This is

followed by comprehensive end-to-end experiments using the

complete GA platform.

Performance edge and scalability of vGPU. We first

compare the performance of Quadro 6000 (software-based

vSGA) and K2 (mediated pass-through vGPU) using the GA

testbed. We report the achieved average FPS from Limbo at

1.5 Mbps, which is the streaming rate of GA server. in Table II.

This table shows that K2 outperforms Quadro 6000 by up to

3.46 times in terms of FPS. Furthermore, the FPS achieved by

K2 does not drop too much even with 8 VMs, which shows

its scalability. This experiment demonstrates the huge edge

of vGPU (mediated pass-through) over vSGA (software-based

virtualization). Hence, we no longer consider Quadro 6000

and vSGA in the rest of this paper.

TABLE III: Sanctuary Scores in FPS from Different GPU
Configurations

GPU Configuration PassThrough vGPU

1 PassThrough on 1 Instance 150.4 x
2 PassThrough on 2 Instances 146.6 x

1 PassThrough + 4 vGPU4 142.7 45.9
4 VMs with vGPU4 on 1 Instance x 42.7
8 VMs with vGPU4 on 2 Instances x 42.8

Independence of the two K2 GPU instances. We use the

benchmark Sanctuary in the VMs on the GA server to measure

the FPS of pass-through, vGPUs, and mixed configurations.

We report the average results in Table III, which shows that the

two GPU instances of K2 operate independently, as the FPS

values are pretty stable. To reduce the experiment complexity,

we only enable a K2 instance in the rest of this paper.

Shared GPUs may outperform dedicated GPUs. We next

compare the performance of pass-through, vGPU2, vGPU4,

and vGPU8 by running Sanctuary, Fear2, Batman, and Limbo

on the GA servers, where pass-through refers to one-to-one

fixed pass-through. We plot the resulting FPS in Fig. 2(a).

This figure reveals a surprising observation: vGPU results

in higher FPS than pass-through when executing Limbo and

Fear2. This is different from the common belief. We therefore

take a step further by running Cadalyst in the VMs and

reporting the 2D and 3D scores in Figs. 2(b) and 2(c). These

two figures show that vGPU2 outperforms pass-through in all

2D operations by up to 15%. Moreover, vGPU2 also leads

to better scores than pass-through when executing some 3D

operations (two out of four scores). Similar observations are

also true for vGPU4 and vGPU8. Such observations explain

the inferior FPS of pass-through GPUs: Limbo and Fear2

heavily rely on 2D operations; in contrast, the 3D-intensive

Batman performs better on pass-through GPUs. The take-away

of this experiment is that state-of-the-art vGPU virtualization

technique has been well optimized and works better than pass-

through GPUs for some game genres. Therefore, sharing a

GPU among multiple VMs running games is now a reality.

TABLE IV: Relation Between FPS and Number of Context
Switches

Game
FPS No. Context Switches

vGPU8 vGPU4 Ratio vGPU8 vGPU4 Ratio
Fear2 45.8 64.9 0.7 9472 14149 0.67

Batman 43.3 41.6 1.04 4325 3991 1.08
Limbo 39.2 64.8 0.6 10700 13927 0.76

The performance of modern GPUs is no longer domi-

nated by the overhead due to context switches. An earlier

study [16] reports that more context switches incur higher

overhead and reduce the rendered FPS. We try to reproduce



Sanctuary Fear2 Batman Limbo
-100

0

100

200

300

400

F
P

S

 

 PassThrough

vGPU2

vGPU4

vGPU8

(a)

0

100

200

300

400

2D
1

2D
2

2D
3

2D
4

S
co

re

 

 
PassThrough

vGPU2

vGPU4

vGPU8

(b)

0

200

400

600

800

3D
1

3D
2

3D
3

3D
4

S
co

re

 

 

PassThrough

vGPU2

vGPU4

vGPU8

(c)

Fig. 2: Comparing the pass-through and vGPU: (a) resulting FPS, (b) 2D benchmark scores, and (c) 3D benchmark scores.

0 2 4 6 8 10
0

20

40

60

Number of VMs

F
P

S

 

 

Batman
Fear2
Limbo
Sanctuary

(a)

Sanctuary Fear2 Batman Limbo
0

20

40

60

80

100

F
u
ll
y

L
oa

d
ed

T
im

e
R

at
io

(%
)

 

 

CPUdom0

CPUvm

GPU

(b)

0

20

40

60

80

vGPU
8

vGPU
4

vGPU
2

GPU Mode

F
P

S

 

 8 VMs
4 VMs
2 VMs
1 VM

(c)

0

20

40

60

80

vGPU
8

vGPU
4

vGPU
2

GPU Mode

F
P

S

 

 8 VMs
4 VMs
2 VMs
1 VM

(d)

0

20

40

60

80

100

vGPU
8

vGPU
4

vGPU
2

GPU Mode

G
P

U
U

ti
li
za

ti
on

(%
)

 

 8 VMs
4 VMs
2 VMs
1 VM

(e)

0

20

40

60

80

100

vGPU
8

vGPU
4

vGPU
2

GPU Mode

G
P

U
U

ti
li
za

ti
on

(%
)

 

 8 VMs
4 VMs
2 VMs
1 VM

(f)

Fig. 3: GPU consolidation overhead: (a) resulting FPS with various numbers of VMs, (b) fully loaded time ratio from vGPU8, (c), (d)
resulting FPS, samples from Fear2 and Sanctuary, and (e), (f) resulting GPU utilization, samples from Fear2 and Sanctuary.

this by running three games on vGPU4 and vGPU8, and

measure the resulting FPS and number of context switches in

Dom0. We report the results in Table IV, which shows that the

FPS is proportional to the number of context switches. That

is, more context switches indicate that VMs are busier, leading

to higher FPS, which is different from the earlier study [16].

Consolidation overhead and root cause analysis. Next,

we quantify the consolidation overhead by configuring the

K2 GPU into vGPU8, and gradually adding more VMs (from

1 to 8). We then measure the FPS, CPUdom0, CPUvm, and

GPU utilization when running Sanctuary and each game in

the VMs. We plot the resulting FPS in Fig. 3(a). This figure

shows that Limbo and Batman do not suffer from consolidation

overhead, while Fear2 and Sanctuary do. We then compute

the fraction of time each resource is fully loaded, and refer

to it as fully loaded time ratio in %. We plot the sample

ratio from vGPU8 in Fig. 3(b), which shows that Sanctuary

and Fear2 are bounded by GPU, while Limbo and Batman

are not bounded by any resource. To take a deeper look at

the consolidation overhead of Fear2 and Sanctuary, we repeat

the same experiments with 1, 2, 4, and 8 VMs on vGPU8,

vGPU4, and vGPU2. We plot the achieved FPS and GPU

utilization in Figs. 3(c)–3(d) and 3(e)–3(f), respectively. We

make two observations out of these figures. First, under the

same vGPU mode, fewer VMs lead to higher FPS and lower

GPU utilization. For example, under vGPU8, moving from

8 VMs to 4VMs, the FPS increases to 35 (Fear2) and 45

(Sanctuary), respectively. This indicates that K2 dynamically

allocates GPU resources among all VMs, rather than statically

distributing a fixed share to each VM. Second, we observe

that even when the GPU utilization is not saturated, the FPS

never exceeds 48 and 66 under vGPU8 and other modes,

respectively. This indicates that an FPS-aware GPU scheduling

algorithm, similar to Zhang et al. [23], has been implemented,

making vGPU even more suitable for sharing GPUs among

VMs running cloud games.



PassThrough vGPU
0

10

20

30

40

F
P

S

 

 

Limbo Fear2 Batman

(a)

0 50 100 150
0

50

100

150

200

Time (sec)

C
P

U
v
m

U
ti

li
za

ti
o
n

(%
)

 

 

Limbo
Fear2
Batman

(b)

0 50 100 150
0

50

100

150

200

Time (sec)

C
P

U
v
m

U
ti

li
za

ti
o
n

(%
)

 

 

Limbo
Fear2
Batman

(c)

Fig. 4: End-to-end performance of a complete GA platform: (a) resulting FPS, (b) CPUvm utilization with pass-through GPU, and (c)
CPUvm utilization with vGPU2.

1 2 4 8
0

10

20

30

40

50

Number of Client

F
P

S

 

 

Limbo
Fear2
Batman

(a)

1 2 4 8
0

20

40

60

80

Number of Client

P
S
N

R
(d

B
)

 

 

Limbo
Fear2
Batman

(b)

0 25 50 100
0

10

20

30

40

50

Delay (ms)

F
P

S

 

 

Limbo
Fear2
Batman

(c)

0 25 50 100
0

0.2

0.4

0.6

0.8

1

Delay (ms)

S
S
IM

 

 

Limbo
Fear2
Batman

(d)

0 0.05 0.1 0.5
0

20

40

60

80

Packet Loss Rate (%)

P
S
N

R
(d

B
)

 

 
Limbo
Fear2
Batman

(e)

0 0.05 0.1 0.5
0

0.2

0.4

0.6

0.8

1

Packet Loss Rate (%)

S
S
IM

 

 

Limbo
Fear2
Batman

(f)

Fig. 5: End-to-end performance of a GA platform with dummynet: (a) FPS and (b) sample PSNR under different numbers of clients; (c)
FPS and (d) sample SSIM under different transmission delays; (e) PSNR and (f) SSIM under different packet loss rate.

Importance of hardware codecs. Next, we measure the

end-to-end cloud gaming performance using the complete

GA platform. We configure the server for pass-through and

vGPU2, assign 8 CPU cores to each VM, and measure the

rendered FPS at clients and the CPU utilization at the server,

which is configured to stream at 1.5 Mbps. We report the

resulting FPS values in Fig. 4(a), which are between 20 and

42. The FPS results are less ideal to high-quality cloud gaming,

and a closer look indicates that this is because of limitations

of XenServer and Windows 7. In particular, because the GA

server [9] relies on the CPUs for real-time video encoding,

more CPU cores mean higher encoding speeds. However, the

free version of XenServer only supports exposing multiple

virtual CPUs, rather than CPU cores, to each guest OS, and

Windows 7 supports up to 2 CPUs. Hence, the guest Windows

7 only schedules the tasks to 2 CPUs while leaving the other 6

CPUs idle (see Figs. 4(b) and 4(c)), which renders lower FPS

values. We note that K2 GPUs come with hardware H.264

codecs, and how to leverage these codecs for higher cloud

gaming FPS is an interesting future task.

Performance under diverse network conditions. We set

the network latency to be in {0, 25, 50, 100, 200} ms, the

bandwidth to be in {10, 15, 20, 40} Mbps, the packet loss

rate to be in {0%, 0.05%, 0.10%, 0.5%}, and the number of

clients to be in {1, 2, 4, 8}. If not otherwise specified, we set

0 ms delay, 15 Mbps bandwidth, 0% packet loss rate, and

launch 2 GA clients in the following experiments. The network

constraints are applied to both uplink and downlink using

dummynet [1]. The XenServer is configured with the GPU

modes that match the number of clients, and the GA clients are

configured to stream at 2 Mbps. We vary the number of clients

and give the FPS and sample PSNR results in Figs. 5(a) and

5(b). Fig. 5(a) shows that the FPS decreases once the number

of consolidated clients is increased, and the FPS is at least 18.

Fig. 5(b) shows that the PSNR values are always higher than

21, 32, and 42 dB in Batman, Fear2, and Limbo, respectively.



We vary the network latency, and report the FPS and sample

SSIM results in Figs. 5(c) and 5(d), which reveal that the

FPS and SSIM values are always higher than 25 and 0.9,

even when the latency is long. In the part where we vary the

server bandwidth, we notice that once the bandwidth exceeds

8 Mbps, each game’s performance is fairly consistent, e.g.,: (i)

in terms of FPS, Limbo, Fear2, and Batman achieve at least

26.86, 28.49, and 42.14, (ii) in terms of sample PSNR, Limbo,

Fear2, and Batman achieve at least 42.61, 32.08, and 27.67

dB, (iii) in terms of sample SSIM, Limbo, Fear2, and Batman

achieve at least 0.9887, 0.9038, and 0.8737. In all the above

experiments, the frame loss rates are always less than 2.38%.

We vary the packet loss rate and report the resulting PSNR and

SSIM in Figs. 5(e) and 5(f). These two figures show that the

video quality slightly drops as the packet loss rate increases.

The frame loss rates of Limbo, Fear2, and Batman are 4.97%,

5.21%, and 6.88% under 0.5% packet loss rate. In summary,

Fig. 5 demonstrates that the GA platform performs well on

modern K2 GPUs under diverse network conditions.
Response delay in real networks. Response delay is

critical to gamers, and we set up a real testbed to measure

the response delay over a Trans-Pacific fiber between Taiwan

and California. We configure the K2 server in Taiwan into

vGPU4 mode, and launching 3 GA clients in Davis, CA

playing Limbo, Fear2, and Batman streaming at 2 Mbps. The

experiments are conducted at 12 p.m. (GMT+8) on September

1, 2014. We measure the response delay by pressing the ESC

button and capturing in-game video at the GA client to find the

first frame with the pop-up menu. Their time difference is the

response delay [2]. We measure the response delay 5 times.

We then move the games and GA servers out of the XenServer,

and repeat the same experiments. Table V gives the response

delay with and without XenServer. We make two observations

from this table. First, given the round-trip-time of about 140

ms between Taiwan and California, the response delay of our

GA platform is short. Second, the virtualization overhead is

negligible in terms of response delay. This confirms that the

modern virtualization techniques are ready for cloud gaming.

TABLE V: Response Delay Between Taiwan and
California

Game Platform Delay (ms)

Limbo
XenServer 250 260 265 275 310

Native 250 255 265 265 270

Fear2
XenServer 250 290 314 350 355

Native 250 254 280 300 305

Batman
XenServer 215 220 230 250 260

Native 225 235 240 250 260

V. CONCLUSION

In this paper, we designed and carried out detailed mea-

surement studies to understand whether the state-of-the-art

GPU virtualization techniques are ready for cloud gaming. We

have found that the mediated pass-through GPU virtualization

implemented in the latest GPUs enables efficient GPU sharing

among multiple VMs. In fact, shared GPUs: (i) may outper-

form dedicated GPUs and (ii) are rather scalable to the number

of VMs. Therefore, modern GPUs can be shared by VMs

running GPU-intensive computer games. We also observed

that CPUs may become the bottleneck on the VMs in the

data center if the video coding is done in software, because

a guest Windows 7 OS can only utilize up to 2 CPU cores.

Hence, leveraging the hardware video codecs on GPUs is an

attractive option to cloud gaming platforms. Furthermore, we

evaluate the end-to-end performance of GA using an open-

source cloud gaming platform [9] in both a dummynet testbed

and in the live Internet. The experiment results shows that

the cloud gaming platform achieves stable performance under

diverse network conditions and in the Internet.

REFERENCES

[1] M. Carbone and L. Rizzo. Dummynet revisited. ACM SIGCOMM

Computer Communication Review, 40(2):12–20, April 2010.
[2] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and C.-

H. Hsu. On the quality of service of cloud gaming systems. IEEE

Transactions on Multimedia, 16(2):480–495, February 2014.
[3] Distribution and monetization strategies to increase revenues

from cloud gaming. http://www.cgconfusa.com/report/documents/
Content-5minCloudGamingReportHighlights.pdf.

[4] M. Dowty and J. Sugerman. GPU virtualization on VMware’s hosted
I/O architecture. ACM SIGOPS Operating Systems Review, 43(3):73–82,
July 2009.

[5] FRAPS game capture video recorder fps viewer. http://www.fraps.com/.
[6] Gaikai web page. http://www.gaikai.com/.
[7] GPU-Z video card gpu information utility. http://www.techpowerup.

com/gpuz/.
[8] H. Hong, D. Chen, C. Huang, K. Chen, and C. Hsu. Placing virtual

machines to optimize cloud gaming experience. IEEE Transactions on

Cloud Computing, May 2014. Accepted to Appear.
[9] C. Huang, K. Chen, D. Chen, H. Hsu, and C. Hsu. GamingAnywhere:

The first open source cloud gaming system. ACM Transactions on Mul-

timedia Computing, Communications, and Applications, 10(1s):10:1–
10:25, January 2014.

[10] A. Marchand and T. Hennig-Thurau. Value creation in the video
game industry: Industry economics, consumer benefits, and research
opportunities. Journal of Interactive Marketing, 27(3):141–157, August
2013.

[11] D. Mishra, M. E. Zarki, A. Erbad, C. Hsu, and N. Venkatasubramanian.
Clouds + games: A multifaceted approach. IEEE Internet Computing,
18(3):20–27, May-June 2014.

[12] NVIDIA System Management Interfacei. https://developer.nvidia.com/
nvidia-system-management-interface.

[13] Onlive web page. http://www.onlive.com/.
[14] P. Ross. Cloud computing’s killer app: Gaming. IEEE Spectrum,

46(3):14, March 2009.
[15] Sar man page. http://www.linuxcommand.org/man pages/sar1.html.
[16] R. Shea and J. Liu. On GPU pass-through performance for cloud

gaming: Experiments and analysis. In Proc. of ACM Annual Workshop

on Network and Systems Support for Games (NetGames’13), Denver,
CO, December 2013.

[17] R. Shea, J. Liu, E. Ngai, and Y. Cui. Cloud gaming: Architecture and
performance. IEEE Network, 27(4):16–21, July-August 2013.

[18] TinyTask. http://www.vtaskstudio.com/support.php#tools.
[19] Y. Wang, J. Ostermann, and Y. Zhang. Video Processing and Commu-

nications. Prentice Hall, 2001.
[20] Z. Wang, L. Lu, and A. Bovik. Video quality assessment based on struc-

tural distortion measurement. Signal Processing: Image Communication,
19(2):121–132, February 2004.

[21] D. Wu, Z. Xue, and J. He. iCloudAccess: Cost-effective streaming of
video games from the cloud with low latency. IEEE Transactions on

Circuits and Systems for Video Technology, December 2013. Accepted
to appear.

[22] Xentop man page. http://wiki.xen.org/wiki/Xentop(1).
[23] C. Zhang, Z. Qi, J. Yao, M. Yu, and H. Guan. vGASA: Adaptive

scheduling algorithm of virtualized GPU resource in cloud gaming.
IEEE Transactions on Parallel and Distributed Systems, November
2013. Accepted to appear.


