Quantifying User Satisfaction in Mobile Cloud Games

Chun-Ying Huang!, Cheng-Hsin Hsu?, De-Yu Chen?, and Kuan-Ta Chen?

!Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan
2Department of Computer Science, National Tsing Hua University, Taiwan
3Institute of Information Science, Academia Sinica, Taiwan

ABSTRACT

We conduct real experiments to quantify user satisfaction
in mobile cloud games using a real cloud gaming system
built on the open-sourced GamingAnywhere. We share our
experiences in porting GamingAnywhere client to Android
OS and perform extensive experiments on both the mobile
and desktop clients. The experiment results reveal several
new insights: (1) gamers are more satisfied with the graph-
ics quality on mobile devices, while they are more satisfied
with the control quality on desktops, (2) the bitrate, frame
rate, and network delay significantly affect the graphics and
smoothness quality, and (3) the control quality only depends
on the client type (mobile versus desktop). To the best of
our knowledge, such user studies have never been done in
the literature.

Categories and Subject Descriptors: H.5[Information
Systems Applications]: Multimedia Information Systems

General Terms: Measurement

Keywords: Cloud games, mobile games, performance eval-
uation, user studies

1. INTRODUCTION

Increasingly more cellular users own smartphones and
tablets, e.g., majority (> 50%) of cellular users in U.S.,
U.K., China, Australia, South Korea, and Italy have
switched from feature phones to smartphones [11]. Many
of these mobile users play mobile games, e.g., 59% of the
mobile users have played games on their mobile devices in
2011 [12]. Moreover, the mobile gaming market share is ex-
pected to grow to 16 billion USD by 2016 [10]. Compared to
console and desktop games, mobile games are often less vi-
sually appealing due to the limited CPU/GPU power, mem-
ory space/speed, network bandwidth, and battery capacity,
which may drive serious gamers away from mobile games.

Cloud gaming renders, captures, and encodes game scenes
on powerful cloud servers, and streams the encoded game
scenes in real time over the Internet to less capable client

Permission to make digital or hard copies of all or part of thiknfor

personal or classroom use is granted without fee providedtpies are not

made or distributed for profit or commercial advantage and thyaies bear
this notice and the full citation on the first page. Copyrigfior components
of this work owned by others than ACM must be honored. Absingatith

credit is permitted. To copy otherwise, or republish, to mwsservers or to

redistribute to lists, requires prior specific permissiod/ana fee. Request

permissions from permissions@acm.org.
Copyright 2014 ACM MoVid'14 978-1-4503-2707-7 ...$15.00.

devices. The client devices collect gamers’ inputs and send
them back to the cloud servers, in order to interact with
cloud games [13]. Although cloud gaming appears to be very
suitable for resource-constrained mobile devices, commercial
cloud gaming solutions, from OnLive, GaiKai, G-Cluster,
OTOY, Spoon, T5-Labs, and Ubitus, are mostly accessible
on: (i) PCs using native or web applications or (ii) TVs
using set-top boxes. We believe that mobile cloud gaming
has not been widely deployed at least due to the following
two serious challenges:

e Steep development cost. Traditionally, the
game industry is conservative and careful about adapt-
ing to new consoles and development environments,
for the sake of cost control. However, most of the
cloud gaming platforms [1, 4, 14] dictate proprietary
SDKs, which in turn discourages the game industry
from adopting cloud gaming. Thus far, GamingAny-
where [6] is the only cloud gaming platform in the lit-
erature, which is fully transparent to games. That is,
GamingAnywhere frees the game industry from port-
ing their games to new SDKs.

e High bars on user satisfaction. Gamers demand
for high-quality game scenes and low response delay,
which are inherently difficult, especially on resource-
constrained mobile devices. Existing measurement
studies [9] concentrate on low-level objective metrics,
and how these measurement results affect user satis-
faction is not well understood.

In this paper, we addressed the two challenges in two
steps. First, we optimize GamingAnywhere [6] client for mo-
bile devices. GamingAnywhere is the first open-source cloud
gaming platform, designed for high extensibility, portability,
and reconfigurability. Optimizing GamingAnywhere client
on mobile devices is non-trivial due to tight resource con-
straints, and specialized CPU/GPU architectures and mo-
bile OS’s. In this paper, we share our experiences in porting
GamingAnywhere client to Android, while porting to other
mobile OS’s is also possible. To the best of our knowledge,
our mobile client is the first mobile cloud gaming client that
is transparent to games, i.e., gamers can use our client to
play any PC games on their mobile devices. Details on our
porting experiences are given in Section 3.

Second, we conduct user studies using the real mobile
cloud gaming system to analyze how different configurations
affect the gaming experience. We consider configurations
with several parameters: resolution, frame rate, bitrate, and
network delay. Both resolution and frame rate affect the
visual quality under a given bitrate; however, the precise

impacts depend on many other factors including game gen-
res and device types. For example, car racing games may
need higher frame rates, while strategy games need higher
resolutions. Moreover, response delay greatly affects user ex-
perience [3], and network delay is a component of response
delay [2]. The network delay does not seem to be control-
lable at first glance. This observation however is not always
correct, for example: (1) cloud gaming platforms may place
games in different data centers to control network latency [5]
and (2) mobile clients may choose different access networks
(such as 4G/LTE over 3G networks) for lower network delay.
Our extensive user studies lead to several key observations:

e Overall. Gamers demonstrate diverse user satisfac-
tion levels on desktops and mobile devices. Generally,
gamers are more satisfied with: (1) the graphics qual-
ity on mobile devices and (2) the control quality on
desktops.

e Impacts of configurations on user satisfaction.
Encoding bitrate, frame rate, and network delay are
the three most critical system parameters affecting the
graphics and smoothness quality.

The rest of this paper is organized as follows. Section 2
surveys the current mobile cloud gaming research. Section 3
presents our experiences in porting GamingAnywhere client
to Android OS. This is followed by the detailed user studies
in Section 4. Section 5 concludes the paper.

2. RELATED WORK

All commercial cloud gaming platforms are closed and
proprietary, and thus cannot be used in our user studies.
GamingAnywhere [6] is an open-source cloud gaming plat-
form consisting of three entities: the server, client, and por-
tal. To use GamingAnywhere, a gamer first logs into the
portal and selects a desired game. The portal then launches
the chosen game and server on the same (virtual) machine
in the cloud. The portal also notifies the client to set up
connections to the server, which starts a game session. In
the current paper, we port the GamingAnywhere client to
mobile devices, and use it to conduct user studies, which is
not possible on commercial cloud gaming platforms.

Several research projects [1, 4, 14] attempt to enhance the
low-level performance of mobile cloud gaming. Shu et al. [14]
propose to employ 3D warping technique to perform light-
weight image processing at mobile clients, so as to increase
coding efficiency and mitigate network delay. Hemmati et
al. [4] propose to selectively encode game objects to reduce
the required network bandwidth and processing power with-
out affecting gaming quality. Cai et al. [1] propose to dynam-
ically allocate cloud resources to meet the needs of mobile
gamers, who often move across diverse contexts. These ap-
proaches [1, 4, 14] are not transparent to games, requiring
game developers to adopt proprietary SDKs. In contrast,
GamingAnywhere supports all PC games as-is.

Most existing measurement studies on cloud gaming are
done using desktop computers [2, 7, 8, 13]. Chen et al. [2]
and Shea et al. [13] concentrate on objective quality metrics,
while Jarschel et al. [7, 8] consider subjective quality met-
rics. Different from these studies [2, 7, 8, 13], we take mobile
cloud gaming into consideration. The performance of mobile
cloud gaming has only been measured recently [9]. Lampe
et al. [9] consider three low-level performance metrics: la-
tency, energy, and cost, trying to demonstrate the feasibility
of mobile cloud gaming. In contrast, we study how differ-

Controller pads (transparent overlay) |

Video surface (Java frontend) 5

» .
g 1
o Audio H OpenGL
© output)) +| Rendering
[Built-in H 9 z
1] video | | seccccsccces - 3 o
- decoder y H - g <
Bullt-in || S/WiEudio S/W video = @
audio [!| decoder decoder 3 8
decoder | +| (ffmpeg) (ffmpeg) 2 3
' 2 »
Pre-process 5
P o
+
z
v-path#1 a-path#1 a-path#2 v-path#2 c-path

Networking (RTSP, RTP, and control protocol)

Figure 1: The architecture of the mobile client.

ent configurations affect user satisfaction via extensive user
studies, which is a key research problem to optimize mobile
cloud gaming.

We emphasize that our GamingAnywhere client is a trans-
parent and open mobile cloud gaming platform, which allows
us (and other researchers) to use off-the-shelf PC games for
experiments.

3. PORTING CLIENT TO ANDROID

Challenges. Mobile devices are connected to the Inter-
net via WiFi or cellular networks, which incur long net-
work latency and dictate an extremely efficient GamingAny-
where mobile client. Furthermore, computational power and
battery life are two critical constraints on mobile devices.
Therefore, modern mobile devices often come with built-in
GPUs and audio/video hardware codecs, which are different
from general-purpose CPUs. Last, due to small screen sizes,
designing a unified game controller for all game genres is
quite difficult. Details on how we address these challenges
are given below.

Architecture. We implement the mobile GamingAny-
where client on Android OS. Figure 1 reveals the software
architecture of the Android client. The skeleton of our mo-
bile client is written in Java, but some components are im-
plemented as loadable shared objects in native C and C++
codes. The native codes are mainly used for two purposes:
(1) to bridge the codes between Java and GamingAnywhere
library, and (2) to minimize maintenance overhead by shar-
ing existing desktop client codes.

Networking component. This component is respon-
sible for several operations, such as setting up RTSP con-
nections, receiving RTP packets, and transmitting control
packets. The same software component also manages au-
dio/video buffers, parses the audio/video packet headers,
extracts the MIME-type, and configures the decoders. The
networking component is implemented in the native code,
and integrated with the Java skeleton via Java Native Inter-
face (JNI).

Decoding. The mobile GamingAnywhere client supports
two types of codecs: (1) software codecs and (2) Android
built-in codecs. The audio and video codecs are configured
independently. Hence, there are four paths in Figure 1,
i.e., a-path#1l and a-path#2 for audio and v-path#1 and
v-path#2 for video. Software codecs are the same as those
of GamingAnywhere desktop client. In contrast, the built-
in codecs are provided by the Android MediaCodec frame-

181 GAClient

Choose a Profile:

SERVER CONFIGURATION limbo

rtspi//192.168.1.81:8554/deskiop
Protocol 4
tsp ' Use Android built-in audio decoder

+ Use Android built-in video decoder
Host
152.168.1.61 Portrait mode
+ Watchdog timeout: 3s
Port number
8554 °

Controller Pad:

Object path

/desktop L|mb°
Arrow keys and Ctrl/Enter
RTP over TCP =
Connect

CONTROLLER CONFIGURATION

Enable v
=_————
I
(a) Edit profile for (b) Choose profile
Limbo. and controller pad for

Limbo.

(d) Play Mario Kart with N64 controller pad.

Figure 2: Screenshots of the mobile client.

work, which is available on Android 4.1 or later. MediaCodec
framework is only accessible from Java side. Therefore, on
receipt of an audio or video packet from the network, the
packet is parsed in native codes and then passed to Java
for decoding. For audio packets, decoded raw audio frames
can be retrieved from the framework and then used for play-
back. For video packets, decoded video frames are directly
presented to the user through a pre-created surface object.
That is, the decoded raw video frames are not accessible to
applications, and are automatically resized to fit the resolu-
tion of the surface object.

Rendering. The raw audio frames are always rendered
with the AudioTrack framework in Java, no matter whether
built-in or software codecs are used. When software codecs
are used, the decoded video frames have to be first con-
verted from YUV420P to RGB565 format. We then em-
ploy OpenGL ES library to resize and render decoded video
frames. More specifically, each decoded frame is treated as a

GamingAnywhere
Desktop Client

GamingAnywhere
Mobile Client

GamingAnywhere
Server

WiFi AP

Figure 3: Our experiment setup.

texture and drawn on an OpenGL surface. The MediaCodec
framework and OpenGL ES adopt different surface objects:
SurfaceView and GLSurfaceView, respectively.

Controllers. The controller pads are transparent over-
lays on top of the video surface. Designing a unified con-
troller to support all game genres is out of the scope of
this paper. Instead, we implement three representative con-
trollers for gamers to choose from. The implemented con-
trollers are designed for: (1) Nintendo 64 emulator, (2) Nin-
tendo DS emulator, and (3) Limbo.

Practical concerns. Our mobile GamingAnywhere
client is affected by two practical limitations. First, the
H.264 intra-refresh option is not supported by some built-in
codecs, especially those hardware-accelerated codecs. This
option increases the robustness of video streaming under
lossy wireless channels. We have tested this on several An-
droid devices and found that at least the first generation
Nexus 7 tablet does not support the option: the built-in
codec freezes shortly after the video playout starts. A work-
around is to disable intra-refresh on the GamingAnywhere
server at the expense of degraded robustness. Second, some
built-in codecs are not included in system images built from
Android Open Source Project (AOSP). This is because these
codecs require drivers that are not open-source. In that
case, the mobile GamingAnywhere client only shows a blank
screen.

Prototype implementation. Upon installing the
client, a user first creates a profile using the user interface
shown in Figure 2(a). Each profile consists of configura-
tions, like server address, server ports, and codec parame-
ters. Then, the user selects the desired profile and controller
using the interface shown in Figure 2(b). Once the Connect
button is pressed, the client connects to the server. Fig-
ures 2(c) and 2(d) show the rendered game screens with
user-specified controllers for Limbo and Mario Kart, respec-
tively.

4. EXPERIMENTS

In this section, we present our experiments that were
designed to evaluate the user satisfaction in mobile cloud
games. We focus on the differences in user satisfaction in-
troduced by the mobile devices (i.e., compared with desktop
cloud gaming), and the effect of various system parameters
on the perception of mobile cloud gamers.

4.1 Experiment Setup

The experiment environment consists of three hosts: a
server, a desktop client, and a mobile client. We set up our
GamingAnywhere server on a Windows 7 desktop with an
Intel Core i7-870 Processor (8 MB cache and 2.93 GHz) and

Table 1: Selected Games
[Game Title [Genre [Platform |
Limbo (limbo) 2D platform | Windows
Mario Kart 64 (kart) Racing Nintendo 64
Super Mario 64 (mario) 3D platform | Nintendo 64
Super Smash Bros. (smash) | Fighting Nintendo 64

Table 2: A Summary of Experiment Settings

Period 2013/11/28—2013/12/19
Subjects 15 (5 females, 10 males)

Age 21-34 years old (mean 26.2 years old)
Total game sessions 1,020

Total gameplay time | 1,020 minutes

Parameters’
Resolution® 640x480, 960x720, 1280x960
Bitrate 1 Mbps, 3 Mbps, 5 Mbps

Frame rate 5 fps, 20 fps, 50 fps
Delay 0 ms, 150 ms, 300 ms

T Default values are highlighted in boldface.
* Screen resolution for Limbo is fixed at 1280x720.

8 GB main memory. The desktop client runs on a Windows
7 desktop with an Intel Core2 Quad Processor Q9400 (6
MB Cache and 2.66 GHz) and 4 GB memory, and the mo-
bile client runs on a Samsung Galaxy Nexus (1.2 GHz dual-
core CPU, 1 GB memory, AMOLED 4.65-inch screen, and
720p resolution) with Android 4.2.1. The desktop client and
the mobile client were connected to the server via a Giga-
bit Ethernet LAN and an 802.11 wireless LAN, respectively.
We ensured that both LANs are under-utilized during our
experiments for fair comparisons. The experiment environ-
ment is shown in Figure 3.

4.2 Experiment Design and Data Collection

We select four games, as listed in Table 1, in different
genres for this study. Three of the four games are from the
Nintendo 64 platform, and we use the mupen64plus emu-
lator to run those games. To study the user satisfaction
under different configurations, we vary four system param-
eters: video resolution (resolution), encoding bitrate (bi-
trate), frame rate, and network delay (delay). In the ex-
periments, we vary each parameter with three levels while
keeping the other parameters to their default values. For res-
olution settings, we change the game resolution options in
the mupen64plus emulator for the three Nintendo 64 games;
unfortunately, Limbo does not allow resolution setting, so
we can only run Limbo with 1280x720. We configure the
frame rate and encoding bitrate at the GamingAnywhere
server. As to the network delay, we employ ipfw' to in-
crease the network delay of the traffic between the server
and the clients. Detailed settings for each factor are listed
in Table 2 with the default values highlighted in boldface.

We conduct two user studies: (1) desktop cloud gaming
and (2) mobile cloud gaming. Each subject participates in
both studies in random order, and each study consists of
the four games in random order. Every subject plays each
game under various configurations: 9 configurations for the
Nintendo 64 games and 7 for Limbo, as Limbo disallows res-

!ipfirewall (or ipfw in short) is a FreeBSD IP packet filter
and traffic accounting facility. There is a port of ipfw and
the dummynet traffic shaper available on Linux, OpenWrt
and Microsoft Windows.

O Mobile m PC

30 35 40
1

Average quality
20 25
|

15

Graphics Smoothness Control

Figure 4: Overall MOS scores under different sys-
tem parameters and client devices.

olution changes. Therefore, each player was asked to play
a total of (9 x 3+ 7) x 2 = 68 game sessions in our exper-
iment. We require each game session to last for a minute,
and the game is automatically terminated. Each subject is
then prompted to evaluate their gaming experience in terms
of the following three aspects on a five-level MOS scale:

e Graphics: The visual quality of the game screens.

e Smoothness: The negative impact due to delay, lag,
or unstable frame rate observed during game play.

e Control: The quality of the control mechanism (i.e.,
keyboard for desktops and touch screen for mobile de-
vices).

We recruited a total of 15 subjects to participate in our
experiments and summarize the collected dataset in Table 2.

4.3 Mobile versus PC: Which One Is More
Satisfying?

To compare the overall user satisfaction of GamingAny-
where clients on different devices, we first compute the over-
all MOS scores across all games and configurations on each
device. Figure 4 gives the average results with 95% confi-
dence levels. We make the following observations.

Graphics. Interestingly, the mobile client leads to signif-
icantly higher scores, although the mobile display is much
smaller. This observation may be attributed to two reasons.
Firstly, the subjects may have lower expectation on graph-
ics quality in mobile games. Generally, mobile devices have
relatively low computing and graphics rendering power com-
pared to high-end desktops, as a result, most mobile games
do not even try to compete with PC games in terms of graph-
ics quality. While GamingAnywhere provides basically iden-
tical graphics qualities on both mobile and desktop client,
they are evaluated with different standards. Secondly, as the
physical dimensions of desktop and mobile devices are quite
different (i.e., 27 versus 4.65 inches), the graphics imper-
fectness due to video encoding/decoding and network loss,
such as blur, blocking effects, and mosquito noise, tends to
be more easily spotted by subjects on desktop screens. It
appears that the subjects rate the graphics quality based on
a “minus principle.” In other words, the satisfaction levels
are rated based on the flaws observed rather than on the
absolute quality of a stimulus.

Smoothness. Overall, the smoothness of game play on
desktop and mobile clients is fairly close. This demonstrates
that our GamingAnywhere client is well-tuned on both desk-

Table 3: Student’s One-tailed t-tests for the Differences Between Desktop and Mobile Cloud Gaming

[[overall] kart [limbo | mario | smash |
Graphics Mobile is better 6.4e-11%** 0.011%* 2.1e-06*** | 6.2e-04*** | 6.4e-04%**
PC is better 1.000 0.989 1.000 0.999 0.999
Smoothness Mobile is better 0.889 0.764 0.769 0.186A 0.963
PC is better 0.111A 0.236 0.231 0.814 0.037*
Control Mobile is better 1.000 1.000 0.984 0.988 1.000
PC is better 1.4e-09*** 5.7e-05%** 0.016* 0.012* 2.5e-04***

Signif. codes: 0 “*** 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘A’ 0.2 <’ 1

Resolution

O 640x480 [1280x960
O 960x720 E 1280x720

Frame rate

o svps @ 20fps @ 50fps

— 3

10 15 20 25 30 35 40 45

Graphics
10 15 20 25 30 35 40 45
1 I I I I | |

Mobile Mobile

35 4.0
I

3.0

20

15
I

Smoothness
10 15 20 25 30 35 40
| I I | | |
T
i O

1.0
L

Mobile Mobile

35

20 25
I

15
I

Control
10 15 20 25 30 35 40
I I I | | |
o
i O

1.0

Mobile

bl
o

Mobile

Bitrate Delay

1 2 3 4
I I I
10 15 20 25 30 35 40 45
I I I I I I

Mobile

Mobile

4.0

1.0 15 20 25 3.0 35
I I I I I |

35 4.
I

3.0

20

15

1.0
L

Mobile Mobile

20 3.0 35
I |
20 25
I

15
15

1
|

Mobile PC Mobile

1.0
1.0

1
|
|

Figure 5: MOS scores associated with each factor setting and client device.

tops and mobile devices. Therefore, the software implemen-
tations do not bias the experiment results on the graphics
and control quality.

Control. The desktop client performs better than the
mobile version in terms of control. It is less surprising as
the selected games are not specifically designed for mobile
devices. On desktop computers, keyboards are capable of
complicated key-stroke combinations and can be easily used
to simulate controls of other platforms such as N64. In con-
trast, touch screens are much more restricted.

Next, we perform hypothesis tests to study how the device
differences affect user satisfaction while the subjects play
games in different genres. Table 3 lists the one-tailed t-tests
for the scores from different client devices and games. The
table reveals that the differences in graphics and control be-
tween the two clients are highly significant, with p-values less
than 0.001. It is also shown that the subjects are much more
sensitive to the graphics difference in Limbo than in Mario

Kart. This can be attributed to the nature of the two games:
Mario Kart is a fast-paced racing game, hence gamers may
not pay too much attention on the degradation in graphics
quality; in contrast, Limbo is relatively static, and gamers
are sensitive to the graphics quality. The other observation
is that the subjects are less sensitive to the difference in
control in platform games (Limbo and Super Mario) than
in fighting (Super Smash Bros.) and racing (Mario Kart)
games. We believe this is because fighting and racing games
are faster-paced and have AI opponents directly competing
with you, therefore precise control is crucial for gamers to
prevail in these games; while in platform games, you have
time to prepare for your every action and some failed at-
tempts are tolerable.

4.4 Impact of Various System Parameters

We report the average MOS scores (with 95% confidence
levels) under different system parameters and client devices
in Figure 5. Since there are three levels for each system pa-

Table 4: ANOVA Tests for the Impact of Individual
System Parameters on User Satisfaction

[[[Res. [Frame rate [Bitrate [Delay |
Graphics Mobile 0.134A 0.030% 0.010% 0.404
PC 0.894 0.169A 1.6e-04*** | (0.738
Smoothness Mobile 0.210 0.013* 0.041%* 0.042%
PC 0.406 0.102A 0.929 0.085A
Control Mobile 0.863 0.922 0.542 0.471
PC 0.767 0.411 0.460 0.494

Signif. codes: 0 “***’ 0.001 “**’ 0.01 “*’ 0.05 ‘A’ 0.2’ 1

rameter in our experiments (except the 1280x720 resolution
for Limbo), we use one-way analysis of variance (ANOVA)
model to test whether each factor introduces significant ef-
fect on the user satisfaction in gaming. We had to ex-
clude some data from Limbo, as Limbo disallows resolu-
tion changes. Table 4 gives the ANOVA results. This table
shows that bitrate is the most important parameter that af-
fects the graphics quality on both client devices. A deeper
look reveals that the bandwidth needed to stream the game
screen under the default resolution and frame rate is about
3.5 Mbps. When the bandwidth is not enough, data will
be dropped and the graphic quality will severely decrease.
The drop in frame rate also degrades subjects’ perceived
quality of graphics, although the impact is much weaker.
One may expect the resolution to be a significant factor to
graphic quality, however, the results show that it has only
little if any effect on graphic quality. It is probably because
the selected games have substandard graphics details com-
pared to today’s standards, therefore when the screens are
upscaled to the same resolution on the client, the differences
are hardly noticeable. We will look into more details on this
observation in the future.

The smoothness of the games is affected by many system
parameters. Not surprisingly, network delay and frame rate
impose significant impact on smoothness, because lag and
unstable frame rate directly result in low smoothness. In
fact, high network delay and low frame rate both lead to the
same negative impacts on gamers’ reactions, which increases
the gamers’ levels of frustration. In addition to delay and
frame rate, our analysis indicates that low bitrate may also
affect the games’ smoothness on mobile devices. We suspect
that subjects may give low MOS scores on smoothness when
the graphics quality is extremely low, as they can not play
the game anyway. More detailed user studies to verify our
hypothesis are among our future tasks.

Last, the control quality is not affected by any of the sys-
tem parameters. Rather, it is affected by the client device
types (desktops versus mobile devices) more.

5. CONCLUSION

In this paper, we have presented a mobile cloud gaming
system built upon GamingAnywhere. We shared our experi-
ences in porting a cloud gaming client to Android, which are
also applicable to other mobile OS’s. We used the mobile
and desktop clients to conduct extensive user studies, so as
to understand the implications of different system parame-
ters (resolution, frame rate, bitrate, and network delay) on

user experience (graphics, smoothness, and control). The
experiment results reveal that: (1) gamers are more sat-
isfied with the graphics quality on mobile devices and the
control quality on desktops, (2) the bitrate, frame rate, and

delay affect the graphics and smoothness quality the most,
and (3) the control quality is mainly affected by the device
type. Several future research directions are possible. For
example, we have not observed the impact of resolution on
user experience, which may be shown in larger-scaled user
studies.

References

[1] W. Cai, C. Zhou, V. Leung, and M. Chen. A cognitive plat-
form for mobile cloud gaming. In Proc. of the IEEE Inter-
national Conference on Cloud Computing Technology and
Science (CloudCom’13), pages 72-79, Bristol, UK, Decem-
ber 2013.

[2] K. Chen, Y. Chang, H. Hsu, D. Chen, C. Huang, and C. Hsu.
On the quality of service of cloud gaming systems. IEEE
Transactions on Multimedia, 16(2), Feb 2014.

[3] M. Claypool and K. Claypool. Latency can kill: Precision
and deadline in online games. In Proc. of ACM SIGMM
Conference on Multimedia Systems (MMSys’10), pages 215~
222, Phoenix, Arizona, February 2010.

[4] M. Hemmati, A. Javadtalab, A. Shirehjini, S. Shirmoham-
madi, and T. Arici. Game as video: Bit rate reduction
through adaptive object encoding. In Proc. of ACM In-
ternational Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’13), pages
7-12, Oslo, Norway, February 2013.

[5] H. Hong, D. Chen, C. Huang, K. Chen, and C. Hsu. QoE-
aware virtual machine placement for cloud games. In Proc.
of IEEE Workshop on Network and Systems Support for
Games (NetGames’13), Denver, CO, December 2013.

6] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H.
Hsu. Gaminganywhere: The first open source cloud gam-
ing system. ACM Transactions on Multimedia Computing
Communications and Applications, pages 1-25, Jan 2014.

[7] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hobfeld. An
evaluation of QoE in cloud gaming based on subjective tests.
In Proc. of International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS’11),
pages 330-335, Seoul, Korea, June 2011.

[8] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hobfeld.
Gaming in the clouds: QoE and the users’ perspective. Math-
ematical and Computer Modelling, 11-12(57):2883-2894,
June 2013.

9] U. Lampe, R. Hans, and R. Steinmetz. Will mobile cloud
gaming work? Findings on latency, energy, and cost. In
Proc. of IEEE International Conference on Mobile Services
(MS’183), pages 960961, Santa Clara, CA, June 2013.

[10] Mobile gaming, July 2011. https://www.abiresearch.com/
research/product/1006313-mobile-gaming/.

[11] The mobile consumer: A global snapshot, February
2013. http://www.nielsen.com/content/dam/corporate/
uk/en/documents/Mobile-Consumer-Report-2013.pdf.

[12] PopCap games mobile gaming research, June 2012. http:
//wuw.infosolutionsgroup.com/popcapmobile2012.pdf.

[13] R. Shea, J. Liu, E. Ngai, and Y. Cui. Cloud gaming:
Architecture and performance. IEEE Network Magazine,
27(4):16-21, July/August 2013.

[14] S. Shi, C. Hsu, K. Nahrstedt, and R. Campbell. Using graph-
ics rendering contexts to enhance the real-time video cod-
ing for mobile cloud gaming. In Proc. of ACM Multimedia
(MM’11), pages 103-112, Scottsdale, AZ, November 2011.

